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Abstract: Although agglomerative hierarchical software clustering technique has been widely used in reverse 
engineering to recover a high-level abstraction of the software in the case of limited resources, there is a 
lack of work in this research context to integrate the concept of pair-wise constraints, such as must-link and 
cannot-link constraints, to further improve the quality of clustering. Pair-wise constraints that are derived 
from experts or software developers, provide a means to indicate whether a pair of software components 
belongs to the same functional group. In this paper, a constrained agglomerative hierarchical clustering 
algorithm is proposed to maximize the fulfilment of must-link and cannot-link constraints in a unique 
manner. Two experiments using real-world software systems are performed to evaluate the effectiveness of 
the proposed algorithm. The result of evaluation shows that the proposed algorithm is capable of handling 
constraints to improve the quality of clustering, and ultimately provide a better understanding of the 
analyzed software system. 

1 INTRODUCTION  

Software requires continuous change and 
enhancement to satisfy new business rules and 
technologies. This is a human intensive task that 
requires deep understanding and comprehension of a 
software before any decision to modify it. Therefore, 
software maintainers must first gain a complete 
understanding of the structure and behavior of the 
software to be maintained before making any major 
changes. However, most software that had undergone 
instant changes does not have up-to-date 
documentation. Thus, software maintainers may need 
to reverse engineer the source code to gain a high-
level abstraction view of the software. Software 
clustering is one of the techniques used to recover a 
semantic representation of the software design and 
documentation. It has received a substantial attention 
in recent years because of its capability to help in 
improving the modularity of poorly designed 
software systems.  

However, in certain scenarios, software 
maintainers may have access to additional 
information or domain knowledge about the software 
to be maintained. For instance, the core business 
rules and functionalities of a software remain 

unchanged after undergoing several major updates, 
or stakeholders have additional knowledge about the 
software because they were involved in the early 
stage of software development. Thus, even if the 
software documentation is not up-to-date, 
maintainers are able to salvage some useful 
information about the structure of the software. 
However, such information are worthless unless 
there is a proper way to synthesis them.  

An improvement to conventional clustering 
techniques was proposed in (Basu et al., 2004) by 
incorporating side information to further improve the 
accuracy of clustering results. The side information is 
commonly referred as “constraints” which reveal the 
similarity between pairs of clustering entities, or user 
preferences about how those entities should be 
grouped during clustering.  

It has been proven in several fields of research 
that constrained clustering can significantly improve 
the reliability and accuracy of clustering results 
(Davidson and Ravi, 2009). However, there is still a 
lack of studies on integrating constrained clustering 
to effectively improve the modularity of poorly 
designed software. In cases where end-users or 
developers have side information regarding the 
software to be maintained, the relevant knowledge 
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can help improve the results of clustering by the 
means of constraints. 

In this study, we focus on fulfilling different 
types of constraints using agglomerative hierarchical 
clustering. Agglomerative hierarchical clustering is a 
bottom-up approach that iteratively merge pair of 
clusters until all clusters are merged into a big 
cluster. Unlike the work by (Davidson and Ravi, 
2009) which solely imposed absolute constraints 
(must be fulfilled regardless of any situation), the 
constrained clustering technique to be presented in 
this paper involves several types of constraints which 
differ according to their importance, i.e. must be 
fulfilled, or good to have. As such, a constrained 
clustering algorithm is introduced in this study to 
help ease the software maintenance problem when 
the system documentation is non-existent or 
inconsistent with real implementation.  

2 RELATED WORK 

Software maintenance and verification is crucial to 
discover and validate the relationship between 
technology and business models. How well a certain 
software fulfills stakeholders’ requirements often 
depicts the effectiveness of the software.  

A major fraction of software life cycle’s 
expenditure is contributed by software maintenance 
and support. The authors estimated that over 50% of 
software development budget is spent on maintaining 
and supporting the software itself. This shows that 
maintenance indeed plays a very important role in the 
software life cycle. Before performing any relevant 
maintenance work, the person in charge must first 
gain a complete understanding of the particular 
software. This is to ensure that when there are 
requests to update a particular functionality, 
maintainers can recognise in advance, the interrelated 
components. Eventually, the threats of introducing 
faults and bugs during maintenance can be 
minimized. Therefore, maintainers often need to 
spend a significant amount of time in comprehending 
the structure and design of the software. 
Accomplishment of maintenance is highly dependent 
on how much information can be extracted by 
maintainers.  

However, maintainers are typically not involved 
in early stages of software design and development. 
Furthermore, the documentation of the software is 
usually not up-to-date, especially for projects that 
follow agile software development where software 
requirements and solutions evolve rapidly. Thus, 
maintainers require additional options. One way to 

alleviate these problems is through remodularization 
of software, which is one of the reverse engineering 
techniques used to help recover a semantic 
representation of the design and documentation. 

Software clustering is one of the techniques used 
to perform remodularization of software. The goal of 
clustering is to form multiple groups of clusters, such 
that components within the same group are similar to 
each other, and dissimilar from components in other 
groups. The measurement of similarities between 
components is based on inter-relationships between 
components or common features shared by them 
(Maqbool and Babri, 2007). Mutual exclusive groups 
of components can be identified to provide more 
insight toward the analyzed software. The results of 
clustering can also help maintainers to understand the 
behavior and dependencies of programs, identify 
orphaned source code, and allow adding of new 
software modules without interfering with the 
general workflow of the software system (Antonellis 
et al., 2009). 

2.1 Software Clustering 

Clustering can be based on either a supervised or 
unsupervised approach to pick from a collection of 
entities, then form multiple groups of entities such 
that entities within the same group are similar to each 
other, while dissimilar from entities in other groups. 
In the context of software clustering, entities are 
normally source code or classes. Similarity measures 
are normally common global variables used by an 
entity or function calls made by an entity. The 
identification of similarity is often depending on 
what kind of reliable information is available. 

Generally, clustering can be categorized into 
partitional and hierarchical clustering. Given a 
collection of data, partitional clustering works by 
directly decomposing it into a set of disjoint clusters. 
On the other hand, hierarchical clustering iteratively 
merge smaller clusters into larger ones or divide 
large clusters into smaller ones, depending on either 
it is a bottom-up or top-down approach. Merging or 
dividing operations are usually depend on the 
clustering algorithm used in the existing studies. The 
result of partitional clustering are usually presented 
in several disjoint set of clusters, with each cluster 
contains at least one entity and each entity belongs to 
only one cluster. Meanwhile, the final result of 
hierarchical clustering is a tree diagram, called 
dendrogram. A dendrogram shows taxonomic 
relationships of clusters produced by hierarchical 
clustering. Cutting the dendrogram at a certain height 
produces a set of disjoint clusters. 
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In the domain of software clustering, partitional 
clustering is less viable because it is almost 
impossible to know the initial number of clusters 
before performing software clustering (Chong et al., 
2013). According to the work by (Wiggerts, 1997), 
the working principle of agglomerative clustering 
(bottom-up hierarchical clustering) is actually similar 
to reverse engineering where the abstractions of 
software designs are recovered in a bottom-up 
manner. Thus, in this research, agglomerative 
clustering will be used to recover high-level 
abstraction of a poorly documented or poorly 
designed software system.  

Agglomerative hierarchical clustering starts by 
forming all entities as initial clusters. At each step, a 
pair of entities is merged and the algorithm ends with 
one big cluster. The following steps show a standard 
agglomerative hierarchical clustering algorithm. 
Input: Set ܶ ൌ ሼݔଵ, ⋯,ଶݔ ,  .௡ሽ of entitiesݔ
Output: Dendrogram 

1. Each entity ݔ௜  forms an initial cluster ௜ܩ	 . The 
total number of clusters K = n. For each pair of 
clusters ܩ௜ and	ܩ௝, ݅ ് ݆, the distance between ܩ௜ 
and	ܩ௝ is denoted by ݀ሺܩ௜,   .௝ሻܩ

2. Find a pair of clusters with minimum distance, 
	݀൫ܩ௜,   : ௝൯ܩ

Let ሺܩ௔, ௕ሻܩ ൌ ݉݅݊	݀൫ܩ௜,  ௝൯ܩ

Merge ܩ௖ ൌ ௔ܩ ∪   ௕ andܩ
reduce the number of clusters K= K-1 

3. If K = 1, stop the iteration; else update 
distance 	݀൫ܩ௖, ௝൯ܩ , for all other clusters ௝ܩ	 . 
(Follow step 2) 

Although some clustering algorithms produce a 
single clustering result for any given dataset, a 
dataset may have more than one natural and optimum 
clustering. For instance, source code can only tell 
very limited information about the architectural 
design of a software system since it is a very low-
level software artifact. The work by Deursen and 
Kuipers (1999) adopted a greedy search method by 
using mathematical concept analysis to analyze the 
structure of cluster entities and identify the features 
that are shared by them. The proposed approach finds 
all of the possible combination of clusters and 
evaluates the quality of each combination. 
Agglomerative clustering is used in this work. The 
authors discovered that it is hard to analyze all 
possible combination and useful information might 
be missing if no attention is given to analyze the 
results of different dendrogram cutting points.  

In contrast to the greedy search method proposed 
by Deursen and Kuipers, the work by (Fokaefs et al., 

2009; Fokaefs et al., 2012) proposed an approach that 
results in multiple solutions from which software 
designers can select their best solution. Their goal is 
to decompose large classes by identifying Extract 
Class refactoring opportunities. The authors used 
agglomerative clustering to generate the dendrogram 
that demonstrated how the clusters are formed. 

On other hand, our previous work (Chong et al., 
2013) proposed a technique to enhance existing 
agglomerative clustering algorithms by minimizing 
redundant effort and penalizing for the formation of 
singleton clusters during software clustering. By 
utilizing a least-squares polynomial regression 
analysis, the algorithm finds the optimum result that 
produces sets of clusters with high cohesion and low 
coupling. The proposed technique is based on a 
bottom-up approach, which starts by transforming 
source code into a flat sequence of class diagrams, 
and finally restructures them into a package diagram 
to provide a high-level semantic view of the whole 
system design. Figure 1 shows the overall workflow 
of the work presented in (Chong et al., 2013). The 
clustering process are summarized as follow. 

1. Identification of entities and features - UML 
classes are represented as cluster entities, while 
relationships between classes are used to 
calculate the distance between a pair of entities.  

2. Calculation of similarity measure - Sorensen-
Dice coefficient (Sørensen, 1948) is used to 
calculate the similarity between pairs of cluster 
entities because it is more suitable to be applied 
to asymmetric binary features, which is similar to 
the behavior of functional dependencies and 
method calling.  

3. Application of clustering algorithm - Un-
weighted Pair-Group Method using Arithmetic 
Average (UPGMA) is used to merge pairs of 
entities and form the dendrogram. 

 

Figure 1: Architecture recovery process proposed in 
(Chong et al., 2013). 

Our previous work does not differentiate between 
aggregation, association, cardinality and 
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generalization through different weightage. The 
presence of any type of correlation will be 
represented as a direct relationship between two 
entities. The technique does not have the ability to 
integrate domain knowledge or other sources of 
information which can further improve the quality of 
clustering result. Such way of incorporating domain 
knowledge is also known as semi-supervised 
software clustering.  

If one has the ability to exploit high-level 
information to guide and improve clustering, this will 
further improve the quality of the results. 
Constrained clustering, for instance, is one of the 
semi-supervised clustering techniques that combine 
external information in order to improve clustering 
results.  

2.2 Constrained Software Clustering 

Recent works (Basu et al., 2004; Davidson and Ravi, 
2009; Wagstaff and Cardie, 2000) have attempted to 
discover the benefits of instance-level constraints in 
both hierarchical and non-hierarchical clustering. The 
must-link (ML) and cannot-link (CL) constraints 
specify that two entities must both be part of or not 
part of the same cluster respectively. These 
constraints are useful when the information of cluster 
entities is vague, allowing domain experts to guide 
the clustering process. The information is normally 
given as a set of pairwise constraints which involve 
two entities and impose restriction such as 
determining whether the involved entities should be 
clustered into the same group or not. Constrained 
clustering method is contrary to traditional 
unsupervised clustering method where users have no 
influence toward the clustering results.  

Work by (Wagstaff and Cardie, 2000) has found 
that side information such as constraints can improve 
the quality of clustering when compared against 
those without constraints. Meanwhile, the work by 
(Davidson and Ravi, 2009) examined the complexity 
of traditional clustering algorithms and investigated 
methods to improve the efficiency of constrained 
agglomerative hierarchical clustering. The authors 
introduced new constraints apart from the traditional 
ML and CL constraints to further improve the run-
time of agglomerative hierarchical clustering. They 
discovered that small amounts of constraints not only 
improve the accuracy of agglomerative hierarchical 
clustering but also the overall run-time. However, 
clustering under all types of constraints is NP-
complete, which means that creating a feasible 
cluster hierarchy under all types of constraints is 
intractable.  

We found that there is a lack of research that 
focuses on applying constrained clustering in the 
field of software reverse engineering to remodularize 
poorly designed software systems. The NP-complete 
problem stated in the work by (Davidson and Ravi, 
2009) can be minimized if each constraint is assigned 
with a certain degree of importance, i.e. constraints 
that must be fulfilled, or optional constraints that are 
good to have. Therefore, different from the work by 
(Davidson and Ravi, 2009), this study aims to 
maximize the fulfillment of software constraints 
according to the degree of importance derived from 
stakeholders.  

Generally, current works involving constrained 
clustering methods can be divided into three 
categories, namely distance based, constrained based, 
or hybrid of both. In distance based constrained 
clustering, a distance metric is trained to satisfy the 
constraints before the clustering process. The 
distance metric represents the dissimilarity strength 
between pairs of entities. Merging or splitting of 
clusters is based on the distance metric. Thus, 
training the distance metric allows one to manipulate 
the process of clustering to allow certain pairs of 
entities to be clustered into the same group, or 
separated if otherwise. Examples of methods to train 
distance metrics include shortest path (Klein et al., 
2002), expectation maximization (Bilenko and 
Mooney, 2003), and convex optimization (Shental 
and Weinshall, 2003).  

On the other hand, constrained based methods 
work by modifying the cluster assignments, i.e. 
manually assign entities to designated clusters. For 
instance, must-link constraints can be used to 
initialize the baseline of cluster hierarchy so that the 
must-link constraints can be satisfied 
indefinitely(Kestler et al., 2006). Constrained based 
approaches ensure that all the constraints are fulfilled 
because the clustering assignments are manipulated 
by users based on the given constraints. However, 
experiments performed by (Davidson and Ravi, 
2009) discovered that manipulating with the 
clustering assignments might lead to “dead-end” 
situation where no pair of clusters can be merged to 
obtain a feasible clustering result. Thus, a proper way 
to ensure the fulfillment of constraints must be 
formulated before enforcing any kind of clustering 
constraints.  

Fulfillment of constraints can be classified as 
either hard or soft constraints associated with some 
cost of violation if those constraints cannot be 
fulfilled (Basu et al., 2004). Hard constraints are 
constraints that cannot be violated during the 
clustering process regardless of any condition. These 
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sets of constraints are usually highly reliable 
knowledge or information given by domain experts. 
In general, the cost of violating hard constraints 
supersedes the objective function of constrained 
clustering. Constrained based clustering method is 
one of the most reliable approaches to make sure that 
all hard constraints are fulfilled as much as possible.  

Meanwhile, soft constraints are usually associated 
with uncertainties and ambiguous information (Basu 
etal., 2004). The cost of violating soft constraints 
varies depending on the level of confidence provided 
by the stakeholders. Clustering results will still be 
acceptable if some of the soft constraints are not 
fulfilled, with a condition that it falls within an 
acceptable threshold (Ares et al., 2012). Soft 
constraints are more robust against “noisy” or 
incorrect. As a general rule, most of the objective 
functions attempt to maximize the fulfillment of hard 
and soft constraints. However, it is to be noted that 
constrained clustering can fall into a NP-Complete 
problem if the must-link and cannot-link constraints 
are contradicting with each other, for instance, 
(Must-Link ∪  Cannot-Link) > 0 . Thus, potential 
conflicts among hard constraints must be identified 
in advance.  

All in all, we found that it is feasible to 
incorporate the notion of constrained clustering with 
remodularization of software system. For instance, 
experienced software developers can provide 
opinions with a certain degree of confidence to 
suggest if two entities should be clustered into the 
same group. Furthermore, relationships among 
software entities such as inheritance and dependency 
suggest that two entities have strong affiliation and 
they must be grouped together. There are plenty of 
methods to derive constraints from the software itself 
or side information from stakeholders. However, 
there are certain cases where the stakeholder is not 
assertive enough to judge whether the given 
constraints are absolute, especially in the domain of 
software engineering. For instance, as mentioned in 
Section 1, the stakeholder who was involved in the 
early stage of software design might provide some 
constraints about the software to be maintained. 
However, such constraints might not be valid 
anymore after several phases of software updates and 
changes. Thus, the constraints given by the 
aforementioned stakeholder might be ambiguous or 
contains erroneous information. A proper method is 
needed to distinguish between absolute constraints 
and optional constraints, and subsequently fulfill 
those constraints according to their level of 
importance. Therefore, in this study, a constrained 
software clustering algorithm is proposed to alleviate 

the problem mentioned above for aiding in reverse 
engineering. 

3 PROPOSED APPROACH 

Constraints can be derived easily from stakeholders, 
who are not necessary experts in a particular domain, 
by asking them to make judgment whether two items 
are similar or not (Hong and Yiu-ming, 2012). The 
stakeholders can evaluate their judgments based on 
their level of confidence or based on background 
knowledge to support their decisions. In this 
proposed approach, if the stakeholder is highly 
confident that the provided constraints are reliable, 
they will be categorized as hard constraints. These 
sets of constraints must be fulfilled under any kind of 
conditions. On the other hand, if the stakeholder is 
doubtful about the given constraints, it will be 
categorized as soft constraints.  

3.1 Constraints with High Level of 
Confidence 

If a stakeholder has a high degree of confidence that 
a pair of entities must be grouped together or 
separated, these sets of constraints will be 
categorized as the Must-Link Hard (MLH) or 
Cannot-Link Hard (CLH) constraints. MLH and 
CLH constraints are relatively easier to fulfill using 
k-mean clustering because clustering assignment can 
be manipulated during the process of clustering. 
However, it is more difficult to achieve the same 
results for agglomerative hierarchical clustering 
because all entities in the dataset are linked together 
at some level of the cluster hierarchy (Bair, 2013). 
MLH and CLH constraints must always be fulfilled 
at all levels of the hierarchy. The work by 
(Miyamoto, 2012) introduced a distance based 
approach to impose MLH constraints by requiring 
entities linked by MLH constraints to be clustered 
together at the lowest level of cluster hierarchy. This 
is done by reducing the dissimilarities between pairs 
of MLH constraints to zero.   

Given a ܶ ൌ ሼݔଵ, ⋯,ଶݔ , ௡ሽݔ  with entities 
,ଵݔ ⋯,ଶݔ , ௡ݔ . For ( ,௜ݔ ௝ሻݔ 	∈ ܪܮܯ , the distance 
between ݔ௜ and ݔ௝ is modified to	݀൫ݔ௜, ௝൯ݔ ൌ 0.  

This will eventually form a baseline model for the 
clustering hierarchy. Since the MLH constraints are 
unconditionally fulfilled at the lowest level of the 
hierarchy, one can ensure that the same can be 
achieved all the way through the top of hierarchy. 
Thus in this study, we will adopt the same technique  
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proposed by (Miyamoto, 2012) to ensure the 
fulfillment of MLH constraints.  

For CLH constraints, there are typically two ways 
to enforce using either constrained based or distance 
based method. Constrained based methods modify 
the cluster assignments by inspecting the merger of 
two entities. If the chosen entities belong to the CLH 
pairs, one will need to look for the next pair of 
entities with the second highest similarity score. 
However, the work by (Davidson and Ravi, 2009) 
found that the formation of dendrogram may stop 
prematurely in a certain scenario. The authors called 
this scenario as the “dead-end” situation where 
unless CLH constraints are violated, there will be no 
more merging possible to form the final dendrogram. 
Thus, constrained based approach to fulfill CLH 
constraints is a less viable option in our case.  

Distance based approaches, on the other hand, 
modify the dissimilarities between pairs of CLH 
constraints to be a value high enough to prevent them 
from merging.  

Given a set 	ܶ ൌ ሼݔଵ, ⋯,ଶݔ , ௡ሽݔ  with entities 
,ଵݔ ⋯,ଶݔ , ௡ݔ . For ሺݔ௜, ௝ሻݔ 	∈ ,ܪܮܥ ݀൫ݔ௜, ௝൯ݔ ൌ
݀൫ݔ௜, ௝൯ݔ ൅  is a constant large ݐݏ݊݋ܥ  where ݐݏ݊݋ܥ
enough to prevent linkage in between entities ݔ௜,   .௝ݔ

By enforcing this rule, the pairs of CLH 
constraints will not be chosen to merge unless there 
is no more entities pair with distance more 
than 	݀൫ݔ௜, ௝൯ݔ ൅ .ݐݏ݊݋ܥ  Entities which belong to 
CLH constraints will then be merged at the top of the 
hierarchy to form the complete dendrogram. By 
looking into another perspective, the CLH constraints 
are violated at the top of the hierarchy since without 
violating them, “dead-end” situation will occur. 
However, we argue that violating CLH constraints at 
the top of the hierarchy is negligible because it is 
almost impossible to cut the dendrogram at that 
location. In a typical scenario, cutting the 
dendrogram at the top of hierarchy will yield very 
small number of clusters because this decision is at 
the trade-off of relaxing the constraint of cohesion in 
the cluster membership. Clusters formed under this 
cutting point are usually made up of entities with 
very fragile cohesion strength.  

However, changing the distance measure of MLH 
and CLH pairs will most likely result in violating the 
triangle inequality of resemblance matrix (Klein et 
al., 2002). This means that for some entities 
ሺݔ௦, ௧ሻݔ ∉ ,ܪܮܯ ሺݔ௦, ௧ሻݔ ∉  which were distance ܪܮܥ
݀ሺݔ௦, ௧ሻݔ  apart before imposing MLH or CLH 
constraints may now be ݀′ሺݔ௦, ௧ሻݔ 	൏ 	݀ሺݔ௦,  ௧ሻݔ
along some path which skip through the MLH or 
CLH pairs. As pointed out by (Klein et al., 2002), 

this problem can be solved by finding a new distance 
value with respect to the modified constraints pairs 
using all-pairs-shortest-path algorithm.  

For instance, Figure 2a shows a simple example 
of 6 entities, Classes A,B,C,D,E, and F. The number 
on the edges indicate the distance between two 
entities. In Figure 2a, the shortest distance between 
Class A and Class C is 0.9 with the following order: 
A-D-E-F-C.  

 

Figure 2: Example of problem when imposing MLH and 
CLH constraints. 

After several discussions, the original developers 
discovered that Class A and Class B in fact are very 
closely related and impose a MLH constraint onto the 
cluster. Thus, the distance between A and B is now 
0.0 to reflect the MLH constraint, as illustrated in 
Figure 2b. Therefore, the shortest path between Class 
A and Class C after the imposition of MLH 
constraint is now 0.5, with the following order: A-B-
C. If we do not update the distance matrix 
accordingly, the final clustering results might contain 
erroneous outcome. The overall algorithm to fulfill 
both MLH and CLH constraints is shown below. 
Input: A set of entities S = {ݔଵ, ⋯,ଶݔ ,  ௡ሽ, a set ofݔ
MLH (must-link hard constraints) and a set of CLH 
(cannot-link hard constraints) 
Output: A modified distance matrix  

1. Calculate the distance between each pair of 
entities and store it in a distance matrix D where 
௜,௝ܦ ൌ  ௝,௜ܦ	

2. Initialize: Let D’ = D (create a clone distance 
matrix to modify the original one) 
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3. while ൓	ሾ൫∀൫ݔ௣, ௤൯ݔ ∈ ൯ܪܮܯ ∩ ሺ∀ሺݔ௥, ௦ሻݔ ∈
ሻܪܮܥ ൐ 0ሿ 

i. for (ݔ௜, ௝ሻݔ 	∈ ,ܪܮܯ ,௜ݔ൫′ܦ ௝൯ݔ ൌ 0 

run all-pair-shortest-path algorithm to prevent 
violation of triangular inequality 

ii. for ( ,௜ݔ ௝ሻݔ 	∈ ,ܪܮܥ ,௜ݔ൫′ܦ ௝൯ݔ ൌ ,௜ݔ൫′ܦ ௝൯ݔ ൅
 is a constant large enough ݐݏ݊݋ܥ where ݐݏ݊݋ܥ
to prevent linkage in between entities ݔ௜,  ௝ݔ
run all-pair-shortest-path algorithm to prevent 
violation of triangular inequality 

3.2 Constraints with Low Level of 
Confidence 

In cases where users are not confident enough to 
judge whether the given constraints are absolute, 
these sets of constraints will be categorized as soft 
constraints. Since soft constraints are not definite, 
clustering results with partial fulfillment of soft 
constraints are still acceptable in most cases. 
However, soft constraints might be derived with a 
different level of importance and ranking, subject to 
the information provided by users. Fulfilling a 
handful of higher importance soft constraints might 
overshadow the fulfillment of several less important 
ones. Soft constraints are typically assigned with a 
penalty score. The penalty score is used to evaluate 
the quality of clustering results where minimization 
of the penalty score is preferred. Thus, a 
prioritization and ranking mechanism of soft 
constraints is introduced in this study.  

The nature of prioritizing a given set of 
constraints is a multi-criteria decision-making 
(MCDM) problem. MCDM is a research of methods 
and procedures by which it concerns about 
evaluating multiple conflicting criteria and derive a 
way to come to a compromise. This set of criteria 
often differs in the degree of importance. Examples 
of methods to handle MCDM problems are analytic 
hierarchical process (AHP), fuzzy AHP, goal 
programming, scoring methods, and multi-attribute 
value functions. 

In this study, ranking and prioritizing the 
importance of soft constraints are achieved using the 
fuzzy AHP technique. Fuzzy AHP is capable of 
handling the fuzziness of users’ opinions with respect 
to the importance of soft constraints (Chong et al., 
2014). The results gathered from fuzzy AHP will be 
represented in a table which shows a list of candidate 
criteria (soft constraints) associated with weightage 
(importance toward the analyzed software), where a 
higher weightage value represents higher priority. 
The result will act as a baseline to evaluate the 

penalty score of each soft constraint. MLS and CLS 
will be evaluated separately because the notion of 
ML and CL is opposing to each other. The objective 
function of MLS and CLS constraints is shown 
below:  

Given a set S = { ,ଵݔ ⋯,ଶݔ , ௡ሽݔ  with entities 
,ଵݔ ⋯,ଶݔ , ௡ݔ , a set of MLS (must-link soft 
constraints) and a set of CLS (cannot-link soft 
constraints). The objective function is to maximize 
the number of satisfied MLS and CLS constraints: 

ሺܼሻ݂	ݔܽ݉ ൌ
1
݊௖
෍ߛሺݔ௜ሻ െ

1
2
෍ߜሺݔ௜ሻ

௠

௜ୀଵ

௠

௜ୀଵ

 

Subject to  ߛሺݔ௜ሻ 	൒ 0, ݅ ൌ 1,⋯݉ 

0 ൑ ௜ሻݔሺߜ ൑ 1, ݅ ൌ 1,⋯݉ 

Where ݊௖  is the total number of available soft 
constraints (including MLS and CLS) and ߛሺݔ௜ሻ is 
the number of satisfied soft constraints involving 
pairs of entities with		ݔ௜  as one of the entities. The 
left side of the equation is the ratio of fulfilled soft 
constraints over the total number of soft constraints. 
Meanwhile, ߜሺݔ௜ሻ  is the penalty score for violated 
constraints involving pairs of entities with	ݔ௜ as one 
of the entities. The penalty score is based on its 
importance toward the overall software system using 
fuzzy AHP technique. The cumulative weightage 
(penalty score) of either MLS or CLS constraints is 
equal to 1. Thus, a scaling constant of 1/2 is used to 
normalize the second part of the equation when 
adding both the MLS and CLS constraints. 
Maximization of function ݂ሺܼሻ  is the goal of this 
objective function. The evaluation of soft constraints 
fulfillment is performed after the formation of 
dendrogram. The dendrogram needs to be cut at a 
certain height to produce a set of disjoint clusters. 
Evaluation of soft constraints can then be done by 
inspecting the set of disjoint clusters, to check 
whether or not the soft constraints are violated. A 
few cutting points can be executed to compare and 
contrast the quality of each cut with respect to the 
minimization of soft constraints penalty.  

3.3 Constrained Agglomerative 
Hierarchical Clustering Algorithm 

All in all, the complete algorithm of the proposed 
constrained agglomerative hierarchical software 
clustering is shown below. 

Given a set of entities S, the distance for each pair 
of entities x and y in S is  1 ൒ ݀ሺݔ, ሻݕ ൒ 0 and a set 
of constraints ߙ ൌ ,ܵܮܯ,ܪܮܯ ,ܪܮܥ  .ܵܮܥ

1. Construct the baseline clusters from MLH 
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constraints resulting in n number of initial 
clusters ܯଵ,ܯଶ,⋯ܯ௡. 

2. If there is a pair of entities ሺݔ, ሻݕ  in 
,ݔand CLHሺ	௡ܯ⋯,ଶܯ,ଵܯ ሻݕ ∈  then this is a ,ߙ
NP-Complete problem with no solution. 

3. Construct an initial clustering with ݐ௠௔௫ clusters 
consisting of the n clusters ܯଵ,ܯଶ,⋯ܯ௡  and a 
singleton cluster for each entity. ݐ௠௔௫  is the 
maximum number of clusters for the set of 
entities S.  

4. while ݐ ് 1 

a. Find the pair of entities ൫ܵ௣, ܵ௤൯	 with 
minimum distance. 

b. Merge ܵ௥ ൌ ܵ௣ ∪ ܵ௤  at the level of 
dissimilarity. 

c. Remove ܵ௣, ܵ௤. 

d. ݐ ൌ ݐ െ 1. 
e. repeat step 4. 

5. Generate a dendrogram tree based on the 
clustering results. 

6. Cut dendrogram at several points. 

7. Evaluate the fulfillment of MLS and CLS with 
respect to the penalty score. 

The overall workflow of the proposed technique 
work in the following manner: 

Software maintainers provide the UML class 
diagrams of the software to be analyzed. If class 
diagrams are not available, source codes are 
converted into class diagrams using an off-the-shelf 
round-trip engineering tool. The formation of 

clustering entities, identification of features, 
construction of dissimilarity matrix, and formation of 
dendrogram are executed based on our previous work 
(Chong et al., 2013) as discussed in Section 2.1. 
After the dendrogram is formed, software 
maintainers and/or the original developers can then 
provide domain knowledge to aid in the software 
clustering process. Based on the confidence level of 
the maintainers and/or developers, each input is 
categorized into hard or soft constraints.  
Dendrograms are cut based on the available 
constraints. Each cutting point is evaluated using the 
objective function proposed in Section 3.2. Cutting 
points that can fulfill the most constraints are 
prioritized. 

4 EVALUATION 

The work by Anquetil and Lethbridge (Anquetil and 
Lethbridge, 1999) discussed that instead of 
recovering a software system’s architecture, 
clustering techniques actually create a new one based 
on the parameters and settings used by the clustering 
algorithm. Thus, a way to evaluate the effectiveness 
of the produced result is needed. MoJoFM is a well-
established technique used to compare the similarity 
between clustering result and gold standard. High 
similarity between two partitions is more desirable as 
it indicates that the produced result resemble the gold 
standard. 

However, Mitchell and Mancoridis (2001) 
discussed that often time, gold standard does not

 

Figure 3: Overview of the original package diagram and the constrained software clustering results. 
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exist. The author suggested another approach by 
clustering the analyzed software using different 
clustering algorithms. Then, the similarity between 
the results of different algorithms are compared with 
each other. This will allow one to identify not only 
the quality of the clustering results, but also the 
stability of the clustering algorithm.  

Thus, in this paper, we perform the evaluation of 
the proposed technique in the following manner. 
1. Perform normal software clustering (without any 

constraints) based on our previous work (Chong 
et al., 2013).  

2. Perform constrained software clustering using our 
proposed technique by incorporating hard and 
soft constraints.  

3. Retrieve the original package diagram of the 
analyzed software. The original package diagram 
is by no means the gold standard since we could 
not verify the quality of the decomposition. 
However, it can be treated as a guideline to 
evaluate and compare between the results 
produced by the proposed technique and the 
documented artifact.  

4. Use MoJoFM to calculate the similarity between 
all three results (normal clustering, constrained 
clustering, and package diagram).  

Two evaluations were carried to assess the feasibility 
of the proposed method. First, we choose a university 
research project, MathArc ("MathArc - Ensuring 
Access to Mathematics Over Time," August 2009), 
as the input for our experiment. This project is aimed 
at creating a system that is capable of the long-term 
preservation and dissemination of digital journals in 
mathematics and statistics. This system is a joint 
project by Cornell University Library and Göttingen 
State University Library, which took two years to 
develop. The system contains 33 classes with an 
average of 8 attributes and 4 methods per class.  

The system’s functional modules are presented in 
Figure 3. Dotted black boxes represent the original 
UML packages. There are a total of six subsystems in 
this software. Since the software design of the 
MathArc system is documented properly, we can test 
the feasibility of our proposed algorithm in the 
following manner: 
1. Prior to the experiment, we assume that all the 

entities are scattered around and not grouped in 
their respective packages. 

2. Based on the original UML package diagram, we 
extract a few MLH, CLH, MLS, and CLS 
constraints. For instance, based on Figure 3, we 
understand that class “Monitor” and 
“Preservation” must be grouped into the same 

cluster because they are from the same 
subsystem. Thus, a MLH constraint “Monitor-
Preservation” is generated in Table 1.  

3. For MLS and CLS constraints, penalty score for 
violating the soft constraints are generated 
randomly. Besides that, we intentionally generate 
an erroneous constraint, but assign a very low 
penalty score to see how the proposed algorithm 
handles the constraint. For instance, although the 
original package diagram indicates that “Media” 
and “Standards” classes belong to different 
packages, we create a MLS constraint with 
penalty score of 0.1. This MLS constraint 
simulates the situation where stakeholders are not 
very confident about the given constraint.  

4. Apply the proposed constrained clustering 
algorithm to restructure the class diagram, so that 
similar classes are grouped into the same 
package, while dissimilar ones are separated from 
each other. 

5. Use MoJoFM to compare the result of the 
proposed constrained clustering technique with 
the original packages to identify its effectiveness. 

Table 1 shows some of the constraints generated for 
this experiment. Note that the bracketed value in 
MLS and CLS represents the cost of violating a 
constraint. Davies-Bouldin index (Davies & Bouldin, 
1979) is used in this experiment to evaluate the 
quality of cluster cohesion and separation.  

Table 1: Generated constraints for MathArc system. 

Constraints 

MLH CLH MLS(penalty) 
CLS 

(penalty) 

Submission-
QualityAssu 

AccessControl-
Submission 

Report-SysD(0.3) 
Monitor-

Negotiator 
(0.5) 

Monitor-
Preservation 

Report-
Services 

Standards-
AccessControl(0.3) 

Submission-
Services(0.5)

ErrorCheck-
Media 

 
Updates-

APGeneration(0.3) 
 

ReplaceMedia-
Media 

 
Media-

Standards(0.1) 
 

 

Figure 3 shows the clustering results using the 
proposed algorithm. The blue and red boxes 
represent the experimental results, with each box 
representing one subsystem. The blue boxes indicate 
the clustering results that match the original package 
diagram, while the red boxes indicate the mixture of 
results that match and do not match the original 
package diagram. The diagram was redrawn to 
normalize all of the association, aggregation, and 
generalization into the form of normal association 
notation. 
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Figure 4: Overview of the original package diagram and the clustering results without pairwise constraints.  

Table 2: Generated Constraints for JSPWiki system. 

Constraints 

MLH CLH MLS(penalty) CLS(penalty) 

GroupCommand-AbstractCommand Workflow-TemplateDirTag Tast-Outcome (0.3) 
Command-

WikiEventUtil(0.2) 

AbstractCommand-WikiCommand MailUtil-Entry WatchDog-RSSThread(0.3) 
WikiPrinciple-
WikiPage(0.3) 

UserCheckTag-WikiServletFilter 
Workflow-

CommandResolver 
PageManager-

EditorManager(0.2) 
Step-ParseException(0.3) 

AdminBeanManager-WikiEngineEvent PageRenamer-Entry Feed-RSS20Feed(0.1) UserBean-Editor(0.1) 

UserDatabase-WikiSession 
Workflow-

WikiRPCHandler 
Editor-RSSGenerator(0.1) BlogUtil-FileUtil(0.1) 

Entry-AclImpl MessageTag-Denounce   

WikiSession-UserProfile MessageTag-Entry   

FormClose-FormSelect FileUtil-RPCCallable   

FormElement-FormSet Heading-MarkupParser   

FormOutput-FormOpen 
Heading-

ProviderException 
  

FormInput-FormTestArea 
SecurityVerifier-
WikiException 

  

InsertPage-TableofContents FileUtil-ClassUtil   

Entry-FileSystemProvider BasicPageFilter-CoreBean   

InitializablePlugin-Plugin Util.PageSorter-Outcome   

TemplateDirTag-WikiRPCHandler Outcome-Feed   

 

Note that all the MLH and CLH constraints are 
fulfilled in the result. However, the MLS constraint 
of "Media-Standards was violated. This is because 
based on Davies-Bouldin index, fulfilling the MLS 
constraint of “Media-Standards” will result in low 
cohesion strength among the associated clusters. 

Since the cost of violation is relatively smaller, 
selecting another cutting point that violates this MLS 
constraint is a better option. The objective function of 
soft constraints in this experiment is ݂ሺܼሻ ൌ
ሾሺ5/6ሻ െ ሺ0.05ሻሿ ൌ 0.7833.  The left side of the 
equation signifies that 5 out of 6 soft constraints are 
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fulfilled. The value of 0.05 is calculated based on the 
penalty score of violating the constraint “Media-
Standards” and multiplying it with scaling constant 
of 1/2.  

By using the MoJoFM tool provided by (Zhihua 
and Tzerpos, 2004), we manage to achieve MoJoFM 
metric of 92.59%. This shows a very high 
resemblance between the result of our proposed 
constraint clustering technique and the original 
package diagram. However, as mentioned earlier, the 
original package diagram is by no mean the ‘gold 
standard’ because we are unable to verify if it is the 
best abstraction to represent the software design of 
MathArc system. Thus, we perform another 
evaluation by comparing the results without 
imposing the pairwise constraints. The result is 
shown in Figure 4.  

In Figure 4, we can observe that the 
‘Administrator’ package (lower left hand side) 
contains classes from two other packages. The reason 
is that these classes behave similarly to utility 
classes, for which the association strengths within the 
same package are relatively weak compared to the 
other packages. When compared with the original 
package diagram, the MoJoFM achieves value of 
88.89%. Although there are slight improvement 
when using the proposed constrained clustering 
technique, it is not significant enough. Thus, we 
decided to perform another experiment using a larger 
software. 

We chose another open-source project, the 
JSPWiki which is a Wiki engine written in J2EE 
component. Wiki engines are used to host and 
manage Wiki web pages. JSPWiki contains 42560 
lines of code and 425 classes with an average of 5.5 
methods per class.  

We extracted 15 MLH and CLH constrains, and 5 
MLS and CLS constraints from the original package 
diagram of JSPWiki. The constraints are listed in 
Table 2. However, due to the number of classes exist 
in the project, the size of the class diagram is too 
large to be displayed. We decided to report the 
MoJoFM metric instead.  

MoJoFM Metric: Constrained clustering compared to 
original package = 76.25% 

MoJoFM Metric: Normal clustering (without 
constraints) compared to original package = 62.45% 

The improvement by imposing pairwise constraints, 
observing from the perspective of MoJoFM metric, is 
more significant in larger software systems. The 
same observation was also found in the work by 
(Davidson and Ravi, 2009), where the author claimed 
that when performing on large datasets, a small 

number of constraints can significantly improve the 
results of agglomerative hierarchical clustering.  

5 CONCLUSION AND FUTURE 
WORK 

This paper presents a technique to integrate the 
concept of constrained clustering with agglomerative 
hierarchical software clustering to remodularize 
poorly designed and documented software systems. 
The proposed algorithm is capable of handling four 
types of constraints, namely MLH, CLH, MLS, and 
CLS constraints. Hard constraints are fulfilled 
throughout the whole clustering process while soft 
constraints are optional constraints associated with 
some validation of penalty if they are violated. 

The proposed algorithm has been successfully 
implemented on two projects, the MathArc and 
JSPWiki system. Several MLH, MLS, CLH, and 
CLS constraints were generated to test the proposed 
technique. We managed to restructure the software 
and present it in the form of package diagram. When 
compared against clustering without any constraints, 
our proposed approach managed to achieve better 
results measured using MoJoFM metric.  

Finally, we believe that there is potential research 
that can further improve the effectiveness of the 
proposed technique. For example, one can attempt to 
adapt the technique to be applied on partitional 
clustering algorithms such as k-mean clustering.  
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