
Learning, New York, Springer. 
Bock, R., Gluge, S., Wendemuth, A., Limbrecht, K., 
Walter, S., Hrabal, D. & Traue, H. C. Intraindividual 
and interindividual multimodal emotion analyses in 
Human-Machine-Interaction.  Cognitive Methods in 
Situation Awareness and Decision Support 
(CogSIMA), 2012 IEEE International Multi-
Disciplinary Conference on, 6-8 March 2012 2012. 
59-64. 
Cacioppo, J. T. & Tassinary, L. G. 1990. Inferring 
psychological significance from physiological signals. 
American Psychologist, 45, 16-28. 
Chanel, G., Kierkels, J. J. M., Soleymani, M. & Pun, T. 
2009. Short-term emotion assessment in a recall 
paradigm.  International Journal of Human-Computer 
Studies, 67, 607-627. 
Chang, C.-Y., Chang, C.-W., Zheng, J.-Y. & Chung, P.-C. 
2013. Physiological emotion analysis using support 
vector regression. Neurocomputing, 122, 79-87. 
Cheng, B. 2012. Emotion recognition from physiological 
signals using support vector machine. Software 
Engineering and Knowledge Engineering: Theory and 
Practice. Springer. 
Christie, I. C. & Friedman, B. H. 2004. Autonomic 
specificity of discrete emotion and dimensions of 
affective space: a multivariate approach. International 
Journal of Psychophysiology, 51, 143-153. 
Crider, A. 2008. Personality and Electrodermal Response 
Lability: An Interpretation. Applied Psychophysiology 
and Biofeedback, 33, 141-148. 
Dongrui, W., Christopher, G. C., Brent, J. L., Shrikanth, S. 
N., Michael, E. D., Kelvin, S. O. & Thomas, D. P. 
2010. Optimal Arousal Identification and 
Classification for Affective Computing Using 
Physiological Signals: Virtual Reality Stroop Task. 
IEEE Transactions on Affective Computing, 1, 109-
118. 
Fairclough, S. H. 2009. Fundamentals of physiological 
computing. Interacting with Computers, 21, 133-145. 
Frantzidis, C. A., Bratsas, C., Klados, M. A., 
Konstantinidis, E., Lithari, C. D., Vivas, A. B., 
Papadelis, C. L., Kaldoudi, E., Pappas, C. & Bamidis, 
P. D. 2010. On the Classification of Emotional 
Biosignals Evoked While Viewing Affective Pictures: 
An Integrated Data-Mining-Based Approach for 
Healthcare Applications. IEEE Transactions on 
Information Technology in Biomedicine, 14, 309-318. 
Haag, A., Goronzy, S., Schaich, P. & Williams, J. 2004. 
Emotion Recognition Using Bio-sensors: First Steps 
towards an Automatic System. In: ANDRÉ, E., 
DYBKJAE R, L., MINKER, W. & HEISTERKAMP, 
P. (eds.) Affective dialogue systems. Springer Berlin / 
Heidelberg. 
Hristova, E., Grinberg, M. & Lalev, E. 2009. Biosignal 
Based Emotion Analysis of Human-Agent 
Interactions.  In: ESPOSITO, A. & VÍCH, R. (eds.) 
Cross-Modal Analysis of Speech, Gestures, Gaze and 
Facial Expressions. Springer Berlin / Heidelberg. 
Johannes, B. & Gaillard, A. W. 2014. A methodology to 
compensate for individual differences in 
psychophysiological assessment. Biological 
psychology, 96, 77-85. 
Kim, K., Bang, S. & Kim, S. 2004. Emotion recognition 
system using short-term monitoring of physiological 
signals.  Medical & biological engineering & 
computing, 42, 419-427. 
Kolodyazhniy, V., Kreibig, S. D., Gross, J. J., Roth, W. T. 
& Wilhelm, F. H. 2011. An affective computing 
approach to physiological emotion specificity: Toward 
subject-independent and stimulus-independent 
classification of film-induced emotions. 
Psychophysiology, 48, 908-922. 
Kukolja, D., Popović, S., Horvat, M., Kovač, B. & Ćosić, 
K. 2014. Comparative analysis of emotion estimation 
methods based on physiological measurements for 
real-time applications. International Journal of 
Human-Computer Studies. 
Lang, P. J., Bradley, M. M. & Cuthbert, B. N. 2008. 
International affective picture system (IAPS): 
Affective ratings of pictures and instruction manual. 
Technical report B-3. University of Florida, 
Gainesville, FI. 
Lee, K. & Ashton, M. C. 2004. Psychometric Properties of 
the HEXACO Personality Inventory. Multivariate 
Behavioral Research, 39, 329-358. 
Marwitz, M. & Stemmler, G. 1998. On the status of 
individual response specificity. Psychophysiology, 35, 
1-15. 
Myrtek, M. 1998. Metaanalysen zur 
psychophysiologischen persönlichkeitsforschyung 
[Meta-analysis for psychophysiological personality 
research].  In: RÖSLER, F. (ed.) Ergebnisse und 
Anwendungen der Psychophysiologie. Göttingen: 
Hogrefe Verlag für Psychologie. 
Nejtek, V. A. 2002. High and low emotion events 
influence emotional stress perceptions and are 
associated with salivary cortisol response changes in a 
consecutive stress paradigm. 
Psychoneuroendocrinology, 27, 337-352. 
Novak, D., Mihelj, M. & Munih, M. 2012. A survey of 
methods for data fusion and system adaptation using 
autonomic nervous system responses in physiological 
computing. Interacting with Computers, 24, 154-172. 
Picard, R. W., Vyzas, E. & Healey, J. 2001. Toward 
Machine Emotional Intelligence: Analysis of Affective 
Physiological State. IEEE Transactions on Pattern 
Analysis & Machine Intelligence, 23, 1175. 
Rani, P., Liu, C., Sarkar, N. & Vanman, E. 2006. An 
empirical study of machine learning techniques for 
affect recognition in human–robot interaction. Pattern 
Analysis & Applications, 9, 58-69. 
Russell, J. A. 1980. A circumplex model of affect. Journal 
of Personality and Social Psychology, 39, 1161-1178. 
Schuster, T., Gruss, S., Rukavina, S., Walter, S. & Traue, 
H. C. EEG-based Valence Recognition: What do we 
Know About the influence of Individual Specificity?  
The Fourth International Conference on Advanced 
Cognitive Technologies and Applications 
(COGNITIVE 2012), 2012 Nice, France. 71-76. 
Stemmler, G. 1997. Selective activation of traits: 
PhyCS2015-2ndInternationalConferenceonPhysiologicalComputingSystems
76