
Traceability and Interfacing Between Requirements Engineering and
UML Domains using the Standardized ReqIF Format

Arne Noyer1,2, Padma Iyenghar1, Elke Pulvermueller1, Florian Pramme3 and Gert Bikker3
1Institute for Software Engineering, University of Osnabrueck, Osnabrueck, Germany

2Willert Software Tools GmbH, Hannoversche Str. 21, Bueckeburg, Germany
3Institute for Distributed Systems, Ostfalia University, Salzdahlumer Str. 46/48, Wolfenbuettel, Germany

Keywords: Requirements Interchange Format (ReqIF), Model-driven Development, Unified Modeling Language (UML),
Requirements Engineering, Requirements Traceability.

Abstract: Model Driven Development (MDD) is deemed as a key to address the increasing complexity of software sys-
tems. It is imperative that the developed software fulfills the end-user’s requirements. This implies that a
collaboration between the Requirements Management (RM) tools and the modeling tools, enabling complete
traceability and interfacing among these tools, is essential. On the other hand, existing tools collaborating
between RM and modeling tools support a very limited sub-set of new features (e.g. traceability analysis)
and are compatible with only a few tools. As a result, software engineers are often required to educate them-
selves on another (often complex), intermediate (collaborating) tool, merely to realize a very limited sub-set
of supported features. This paper addresses these gaps and introduces an approach for exchanging informa-
tion between RM tools and Unified Modeling Language (UML) tools by using the standardized Requirements
Interchange Format (ReqIF). The proposed approach (a) enables software developers to create links between
requirements and UML elements in their modeling tool and (b) facilitates requirements engineers to make
traceability/other analyses down to linked model elements inside their RM tool. In contrast to many other
approaches, no additional user interface is needed for traceability.

1 INTRODUCTION

In the series of evolution in software engineering,
Model Driven Architecture (MDA) can be considered
as the next/ongoing paradigm shift. Towards this di-
rection, in the recent decade, MDD (France et al.,
2006) has already made significant inroads for its
application in software engineering projects. Some
examples of tools used for MDD in software engi-
neering projects are Rhapsody (IBM, 2014b), En-
terprise Architect (Sparx Systems, 2014), Papyrus
(Eclipse Foundation, 2013a) and Matlab/Simulink
(Mathworks, 2014). In this paper, the focus is on
the Unified Modeling Language (UML) for MDD.
The UML (Object Management Group, 2013b) is one
among the widely used industry standards for MDD
(France et al., 2006). Besides general UML elements,
UML profiles enable to address application areas such
as real-time embedded systems and system engineer-
ing.

While the software requirements engineering pro-

cess by itself may vary widely on the application do-
main, it is imperative that the requirements specified
for the software are met during system modeling and
development (e.g. using a UML tool). This implies
that, while collaborating between a RM tool and a
modeling tool, there needs to be complete traceability
and interfacing between the requirements engineering
tool and the MDD tool. This aspect gains further sig-
nificance during the development of safety-certified
software.

However, UML tools (e.g. Rhapsody) have to in-
terface with further interfacing tool(s) (e.g. Rational
Rhapsody Gateway (IBM, 2010)) that may provide an
interface between the UML tool and RM tools. This
is required, for example, to create links between re-
quirements and model elements and to provide addi-
tional analysis capabilities to support traceability and
requirements analysis. However, many interfacing
tools only allow to do such things inside their own
user interfaces. Thereby, engineers have to learn how
to work with another tool, which can be quite com-

370 Noyer A., Iyenghar P., Pulvermueller E., Pramme F. and Bikker G..
Traceability and Interfacing Between Requirements Engineering and UML Domains using the Standardized ReqIF Format.
DOI: 10.5220/0005327303700375
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 370-375
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



plex. This can result in a lower acceptance rate for a
traceability solution. Further, most of the interfacing
tools are proprietary for one modeling tool and only
support data exchange with certain RM tools.

Addressing the aforementioned gaps this paper
presents a framework for complete traceability and in-
terfacing between software requirements engineering
tools and modeling tools. It presents the following
novel contributions with initial prototype implemen-
tation and results.

• Usage of the standardized ReqIF format to trans-
fer representations of requirements to UML tools

• Analysis of elements in UML tools, which are
linked to requirements

• Creation of representations for linked model ele-
ments inside the ReqIF file

• Enables traceability and impact analyses directly
in UML and RM tools

2 STATE OF THE ART AND
RELATED WORK

In requirements engineering, traceability is very im-
portant. Often, there are different refinement levels
of requirements (e.g. user requirements and system
specification) in RM tools. Requirements of these lev-
els are linked to each other in order to ensure consis-
tency. If a requirement changes, a requirements engi-
neer can check whether linked requirements have to
be changed accordingly or analyze the impact. There
are already powerful mechanisms for such a traceabil-
ity and other analyzes in many RM tools (e.g. (IBM,
2014a) and (Polarion Software, 2014)).

In the requirements management domain, the Re-
quirements Interchange Format (ReqIF) (Object Man-
agement Group, 2013a) has become a standard by the
Object Management Group (OMG) (Object Manage-
meng Group (OMG), 2014) for exchanging require-
ments between different RM tools. It is a norma-
tive XML-based data format to exchange and store
requirement information between different tools and
tool chains. ReqIF is an ensuing descendant of the
RIF standard defined by Hersteller Initiative Software
(HIS) (Hersteller Initiative Software (HIS), 2014)
working group in the automotive domain.

ReqIF even allows that requirements of different
levels are managed in different tools. For instance,
the user requirements could be managed by a client in
his RM tool. He can export them into a ReqIF file and
then send them to a supplier. On the other hand, the
supplier can import the requirements into another RM

tool, create system specification requirements in this
tool and create links to the user requirements. After-
wards, the system specification requirements and their
links to user requirements can be exported in a ReqIF
file and can be send back to the client. The client can
import the ReqIF file again and has complete trace-
ability information in his RM tool. Nowadays, many
RM tools support the ReqIF format for import/export.

Unfortunately, for exchanging requirements
and/or traceability information with MDD, there is
not such a standard. Most of the solutions, which are
available on the market, are proprietary for a certain
modeling tool, as shown in Fig. 1. They are based
on (third party) interfacing tools, which are only
compatible with a selection of the RM tools and other
sources for requirements (e.g. Rational Rhapsody
Gateway (IBM, 2010)).

RM Tool 1 

UML 

Tool 1 

UML 

Tool 2 

UML 

Tool 3

Interfacing Tools 

for transferring 

requirements

or for accessing 

data and linking

RM Tool 2 
Text 

Documents

Interfacing 

Tool 1

Interfacing 

Tool 2

Interfacing 

Tool 3

RM Tool 3 

Figure 1: Proprietary Interfacing Tools for Different UML
Tools.

There is a very detailed survey about traceability
in RM and MDD in (Winkler and von Pilgrim, 2010).
Among other topics, traceability in practice, over-
coming (current) limitations and future challenges are
discussed. As practice, it is mentioned that require-
ments traceability is usually managed in RM tools.
When a traceability to other tools is needed, success
stories are about companies, which developed their
own proprietary traceability tools for their internal us-
age.

As technical limitations, it is mentioned in (Win-
kler and von Pilgrim, 2010), that creating and main-
taining traceability links is not supported enough by
tools. Further, there is a lack of integration between
different tools and quite some effort has to be put in
keeping the links up to date.

The survey (Winkler and von Pilgrim, 2010) an-
alyzes two categories for overcoming integration is-
sues: integrative approaches and specialized trace-
ability tools. The specialized tools do all have their
own editors and user interfaces, which makes them
less intuitive, but traceability activities are supported
very well. Some even allow automatic trace record-
ing.

Integrative approaches, discussed in (Winkler and

Traceability�and�Interfacing�Between�Requirements�Engineering�and�UML�Domains�using�the�Standardized�ReqIF�Format

371



von Pilgrim, 2010), should be compatible with exist-
ing RM and MDD tools. Of course, the trace infor-
mation has to be stored in some way. In (Walderhaug
et al., 2008) an approach is proposed, which uses a
central repository for traceability information. Other
tools have to be integrated to this solution by using
its API. All the integrative approaches do not manage
the traceability links in the original tools, in which
the linked artifacts were created. This implies, that
the traceability links can not be viewed and analyzed
in the original tools. Further, it is pointed out in (Win-
kler and von Pilgrim, 2010) (page 548): ”Users that
are already familiar with their development tools usu-
ally do not want to switch tools just because some
other tool supports traceability”. Therefore, the goal
of the proposed approach is that users can do every-
thing in their tools.

In recent research, there is another integrative ap-
proach described in (Graf and Jastram, 2011). Com-
ponents of the prototype implementation seem to be
part of the product Yakindu Traceability (itemis AG,
2014) now. The approach provides its own traceabil-
ity meta-model and allows an integration with differ-
ent tools and formats by using so called Trace Point
Providers, which are basically like plug-ins. There is
already a Trace Point Provider for the ReqIF format,
which implies that it is compatible with a wide variety
of RM tools. Further, there is a Trace Point Provider
for UML models from Papyrus (Eclipse Foundation,
2013a). Papyrus uses the Eclipse-based implemen-
tation (Eclipse Foundation, 2013b) of the standard-
ized UML meta-model. Hence, it is possible to have
a traceability between requirements in ReqIF files and
UML model elements from Papyrus. Additionally,
Yakindu Traceability allows to define link types and
which kinds of artifacts they can have as source and
target. Furthermore, it has a powerful Eclipse-based
user interface for creating links, their visualization
and for traceability analyzes. While this approach
seems to be flexible and extensible to be compatible
with different tools, the same challenges as for other
integrative approaches apply.

Open Services for Lifecycle Collaboration
(OSLC) (Open Services for Lifecycle Collaboration
(OSLC), 2014) is not only a technology for integrat-
ing RM tools with MDD tools, but a general approach
for exchanging data between different tools (Ejaz
Ul Haq, 2013). It is already used for an integration
between Rhapsody (IBM, 2014b) and Doors (IBM,
2014a) by IBM. Creating OSLC interfaces for tools
enables them to directly access each others data.
Thus, tools have to implement which data they want
to visualize and what users are able to do with them.
Further, currently only a few RM and MDD tools

support OSLC. Furthermore, the IT infrastructure
must allow such a communication between tools.
This may not be always available; for instance, in
a situation when the requirements engineer is an
employee from one company and has to send the
specified requirements to a software developer in
another company.

3 INTERFACING BETWEEN RM
AND MDD TOOLS WITH REQIF

Since the ReqIF format is a standard for exchanging
requirements and traceability is already well estab-
lished in RM, ReqIF is also especially suitable for ex-
changing requirements with a modeling tool. A pro-
posed workflow for this exchange is illustrated in Fig
2.

ReqIF

Create User 
Requirements

Create System 
Specification

Export System 
Specification

Import 
Representations for 
System Specification

Model Software 
Artefacts

Create Dependencies between 
System Specification Requirements 

and Software Artefacts

Export 
Representations for 

linked Software 
Artefacts

ReqIF

Import 
Representations

for linked Software 
Artefacts

Make a Traceability 
Analysis

RM Tool MDD Tool

Figure 2: Proposed workflow for working with reqirements
in MDD.

On the left side, it is depicted what a requirements
engineer creates in his RM tool, while on the right
side, the work of a software developer in a MDD tool
is depicted. For a high acceptance rate of the ap-
proach, both have to be able to do all their work in
their established RM and MDD tool. A requirements
engineer exports the requirements, which are relevant
for the software developer, into a ReqIF file. Then,
the ReqIF file is sent to the software developer. The
software developer in turn imports representations of
the requirements into his MDD tool. Since not every
MDD tool necessarily supports requirements natively,
they may have to be represented by other elements,

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

372



depending on the MDD tool. Afterwards, model arti-
facts can be linked with requirements by using native
mechanisms of the MDD tool (e.g. by using UML
Dependencies). In order to transfer the traceability
information back to the RM tool, representations of
linked model artifacts are created in the ReqIF file
and are also linked to the requirements in it. Finally,
those representations of linked model artifacts can be
imported into the RM tool. In practice, the require-
ments should only be changed inside the RM tool
and the model artifacts only inside the MDD tool to
avoid redundancy issues. Thereby, loss of data can be
avoided, when changes inside representations for ele-
ments of the other domain are made. The workflow is
similar to what business partners already do when ex-
changing requirements of different refinement levels,
but extended to the domain of MDD.

The proposed workflow (Fig. 2) enables require-
ments engineers to make a traceability analysis and a
coverage analysis inside the RM tool. In order to al-
low software developers to make an impact analysis
inside the MDD tool, representations of changed re-
quirements have to be marked as changed (e.g. by us-
ing a UML Stereotype) when updating requirements.
Then, the software developer can check if linked
model artifacts have to be modified. Any analysis can
be made inside the already used tools. This also re-
duces the amount of needed licenses for tools. A soft-
ware developer, for instance, does not need to have a
RM tool installed on his computer.

In the proposed approach, the representations of
model artifacts are stored in the ReqIF format; just
like requirements as SpecObject (Object Manage-
ment Group, 2013a) elements of the ReqIF format.
SpecObjects reference a certain SpecType to indicate
what kind of requirements they are. Since the Re-
qIF format allows to define attributes for a SpecType,
information about the model artifacts, such as their
name and type, are stored inside the ReqIF file. Val-
ues of these attributes can then be shown for their rep-
resentations inside the RM tool.

Requirements, on the other hand, have to be repre-
sented inside the MDD tools. For the work discussed
in this paper, the focus for MDD tools is on the us-
age of UML tools. Some of them, such as Rhap-
sody (IBM, 2014b), natively support the creation of
requirements in their models. In such tools it is ob-
vious to use them to represent requirements from RM
tools. However, the UML standard itself does not de-
fine elements for requirements. Therefore, not every
UML tool has them, but the UML can be extended
by using profiles. The Systems Modeling Language
(SysML) (Object Managemeng Group (OMG), 2012)
is a profile for the UML, which also contains support

for requirements. Thus, it is possible to apply a pro-
file, such as the SysML, to a UML model to enable it
to work with requirements.

There are different possibilities for interfacing
with a UML tool. Most of them allow the ex-
port/import model elements from a XMI format,
which contains a standardized UML model. There-
fore, it seems like a suitable way to create a ReqIF to
(standardized) UML interface. Thereby, the represen-
tations of requirements would be created inside the
standardized UML format and then transferred to dif-
ferent UML tools. Unfortunately, as stated in (Noyer
et al., 2014), there are differences in how UML tools
use the standardized UML format for export/import.
It would have to be structured differently for differ-
ent tools. Furthermore, the usage of UML profiles for
creating requirements would be needed, since UML
does not support requirements natively. Then, when
transferring the requirements to a concrete UML tool,
they may not be mapped to their proprietary require-
ment elements, as they exist for some tools such as
Rhapsody.

Most UML tools also allow to access their models
by using Application Programming Interfaces (API).
They can directly be used for implementing ReqIF in-
terfaces to different UML tools. The disadvantage
is that this leads to proprietary solutions for every
UML tool. On the other hand, there is the advantage
that proprietary requirements elements from different
UML tools can be considered. In order to realize this
by using the standardized UML format, the tool spe-
cific behavior has to be considered anyway.

4 INITIAL EXPERIMENTAL
EVALUATION

A prototype of the proposed mechanism for directly
interfacing between ReqIF files and the UML tools
IBM Rational Rhapsody and Enterprise Architect,
which enables the usage of the workflow (as shown
in Fig. 2) has been implemented. The direct integra-
tion with these tools was made to be able to use their
proprietary model elements for requirements.

The ReqIF file is parsed by using the Require-
ments Modeling Framework (RMF) (Eclipse Founda-
tion, 2014) and the elements in the UML tools are
created/analyzed by using their Java APIs. This al-
lows to make a traceability analysis inside a RM tool
and an impact analysis inside the UML tools. The
prototype has been evaluated by exporting require-
ments from a RM tool, Polarion (Polarion Software,
2014) via ReqIF and transferring representations of
them to Rhapsody and Enterprise Architect. In future

Traceability�and�Interfacing�Between�Requirements�Engineering�and�UML�Domains�using�the�Standardized�ReqIF�Format

373



work, an integration with the standardized UML XMI
format is planned to support a wide variety of UML
tools. Thereby, the SysML profile is applied for cre-
ating requirements in UML.

Figure 3: Mapping from requirements in Polarion and Re-
qIF to their representations in Rhapsody.

Figure 3 visualizes an extract of how requirements
are exported from Polarion into a ReqIF file and how
the prototype creates representations for them in the
UML tool Rhapsody. For each document with re-
quirements (in Polarion they are called Work Items),
a package is created inside Rhapsody. In these pack-
ages, there is a representation for every requirement
of the corresponding document. Since Rhapsody does
provide model elements for requirements, these are
used. The requirements are structured hierarchically,
just as they are structured in Polarion and ReqIF (Fig.
5). Requirements do further have types (e.g. func-
tional requirement) with attribute definitions, such as
author or creation time. In the UML domain, these are
mapped to Stereotypes with Tags. Therefore, every
requirement representation in Rhapsody has a stereo-
type assigned and its attribute values (e.g. creation
time) are stored inside tagged values. In Rhapsody,
these representations of requirements can be linked
with other UML model elements by using UML De-
pendencies (Fig. 4).

Figure 4: A class inside Rhapsody, which is linked to a rep-
resentation of a requirement from Polarion.

When the requirements are changed during devel-
opment and updated requirements are re-transfered
to Rhapsody, the prototype compares the already ex-
isting requirements representations with the updated
requirements. In most cases, it should be enough
to compare the attributelastChanged, which ev-
ery SpecObject (requirement) has inside ReqIF files.
However, to ensure a correct comparison, the proto-
type also allows to compare all attributes. If the pro-
totype identifies a changed requirement, it assigns a
stereotype Changed to it (Fig 5)). Further, if there is

a representation of a requirement, the corresponding
document is inside the updated ReqIF file and there
the requirement does not exist anymore, a stereotype
Deletedis assigned to the requirement representation
in Rhapsody. Since manually searching for elements
is a tedious task, Rhapsody allows to search for model
elements by defining search queries. Hence, a com-
plete impact analysis can be made inside Rhapsody.

Figure 5: Changed requirements in Rhapsody.

Further, an algorithm was implemented for
searching the model elements inside Rhapsody and
Enterprise Architect, which are linked to require-
ments with UML Dependencies, and to create repre-
sentations for them inside the ReqIF file. Therefore,
at first a Specification (document) and a SpecObject-
Type (compare Fig. 3) are created inside the ReqIF
file. Afterwards, SpecObjects are created for each
linked UML model element inside the Specification
and the SpecObjectType is set. Further, attributes are
created for storing information for the model from the
UML tool like its type (e.g. UML Class), description,
identifier and path inside the package structure. Ad-
ditionally, a link to the requirement inside the ReqIF
file is created accordingly to the Dependency inside
the UML tool. The ReqIF file can be re-imported into
the used RM tool now.

Figure 6: UML elements in Polarion

Figure 6 shows how representations of a UML
Package and a UML Class are visualized in a docu-
ment of the RM tool Polarion. The complete trace-
ability information is inside the RM tool and can be
used for different kinds of analyses, for which modern

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

374



day RM tools already provide powerful mechanisms.
Furthermore, the information can be considered dur-
ing document generation from RM tools, as it may be
needed for certification projects. The prototype im-
plementation is currently evaluated in a certification
project for this purpose. Please note that additional
implementation details of this prototype are available
at (Willert Software Tools, 2014).

5 CONCLUSION AND FUTURE
WORK

The paper discusses an approach for using the stan-
dardized ReqIF format to integrate the UML domain
and the RM domain. A prototype implementation of
this approach interfaces between ReqIF and the UML
tools Rhapsody (IBM, 2014b) and Enterprise Archi-
tect (Sparx Systems, 2014) by using their Java APIs.
This allows a requirements engineer to make a trace-
ability and coverage analysis directly inside his RM
tool and a software developer to make an impact anal-
ysis inside his UML tool. In order to increase the ac-
ceptance rate of the approach, both can work in the
tools they are used to, and they do not have switch to
another tool just because of traceability.

Some future directions are: to support the stan-
dardized UML XMI format, to support the open-
source UML tool Papyrus (Eclipse Foundation,
2013a), to roundtrip UML diagrams to RM tools,
to support Dependencies in UML tools with custom
Stereotypes, to enable automatically invoking the in-
terfacing between ReqIF and UML tools (e.g. on
a build server), the realization of a OSLC interface,
and to investigate how the approach can be adapted
to other non-UML MDD tools (e.g. Matlab/Simulink
(Mathworks, 2014)).

REFERENCES

Eclipse Foundation (2013a). Papyrus UML Product web-
site. http://www.eclipse.org/papyrus/.

Eclipse Foundation (2013b). UML2 Project website. http://
www.eclipse.org/modeling/mdt/?project=uml2.

Eclipse Foundation (2014). Requirements Management for
Eclipse - Requirements Modeling Framework (RMF).
http://www.eclipse.org/rmf/.

Ejaz Ul Haq (2013). Tool integration using OSLC. Master
Thesis, Mlardalen University, Vsteras, Sweden, http://
www.idt.mdh.se/utbildning/exjobb/files/ TR1420.pdf.

France, R. B., Ghosh, S., Dinh-Trong, T., and Solberg, A.
(2006). Model-driven development using UML 2.0:
promises and pitfalls.Computer, 39:59 – 66.

Graf, A. and Jastram, M. (2011). Requirements, Traceabil-
ity and DSLs in Eclipse with the Requirements In-
terchange Format (RIF/ReqIF). http://deploy-eprints.
ecs.soton.ac.uk/307/1/mbees2011.pdf.

Hersteller Initiative Software (HIS) (2014). HIS Website.
http://www.automotive-his.de.

IBM (2010). Rational Rhapsody Gateway Add On User
Manual. http://pic.dhe.ibm.com/infocenter/rhaphlp/
v7r5/topic/com.ibm.rhapsody.oem.pdf.doc/pdf/
manual.pdf.

IBM (2014a). Rational DOORS Website. http://
www-03.ibm.com/software/products/en/ratidoor.

IBM (2014b). Rational Rhapsody Family Website. http://
www-03.ibm.com/software/products/en/ratirhapfami.

itemis AG (2014). Yakindu Traceability - Trace Man-
agement and Reporting (Product Website). http://
www.yakindu.com/traceability/.

Mathworks (2014). Matlab/Simulink Website. http://
www.mathworks.co.uk/products/simulink/index.html.

Noyer, A., Iyenghar, P., Pulvermueller, E., Pramme, F.,
Engelhardt, J., Samson, B., and Bikker, G. (2014).
Tool Independent Code Generation for the UML -
Closing the Gap between Proprietary Models and the
Standardized UML Model. InEvalutation to Novel
Approaches of Software Engineering (ENASE 2014),
Lisbon, Portugal.

Object Managemeng Group (OMG) (2012). SysML Speci-
fication 1.3. http:// www.omgsysml.org/.

Object Managemeng Group (OMG) (2014). OMG Website.
http://www.omg.org.

Object Management Group (2013a). Require-
ments Interchange Format Specification 1.1.
http://www.omg.org/spec/ReqIF.

Object Management Group (2013b). Unified Modeling
Language Specification. http://www.uml.org/.

Open Services for Lifecycle Collaboration (OSLC) (2014).
OSLC Website. http://open-services.net/.

Polarion Software (2014). Polarion alm. https://
www.polarion.com/products/alm/index.php.

Sparx Systems (2014). Enterprise Architect. http://
www.sparxsystems.de/.

Walderhaug, S., Stav, E., Johansenand, U., and Olsen, G. K.
(2008). Traceability in model-driven software devel-
opment. In: Tiako, P.F. (ed.) Designing Software-
Intesnvie Systems: Methods and Principles, pages
133–159.

Willert Software Tools (2014). ReqXChanger DataSheet.
http://www.willert.de/assets/Datenblaetter/DatBl-
ReqXChanger-V-2.0en-2014.pdf.

Winkler, S. and von Pilgrim, J. (2010). A survey of
traceability in requirements engineering and model-
driven development.Software & Systems Modeling,
9(4):529–565.

Traceability�and�Interfacing�Between�Requirements�Engineering�and�UML�Domains�using�the�Standardized�ReqIF�Format

375


