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Abstract: In this paper, we propose a Bag-of-Joint-Features model for the classification of human actions from body-
joints data acquired using depth sensors such as Microsoft Kinect. Our method uses novel scale and translation
invariant features in spherical coordinate system extracted from the joints. These features also capture the sub-
tle movements of joints relative to the depth axis. The proposed Bag-of-Joint-Features model uses the well
known bag-of-words model in the context of joints for the representation of an action sample. We also propose
to augment the Bag-of-Joint-Features model with a Hierarchical Temporal histogram model to take into ac-
count the temporal information of the body-joints sequence. Experimental study shows that the augmentation
improves the classification accuracy. We test our approach on the MSR-Action3D and Cornell activity datasets
using support vector machine.

1 INTRODUCTION

The availability of depth-based sensors like Kinect
has opened a new dimension for action recogni-
tion which finds application in surveillance, human-
computer interaction, smart homes and content-based
video search among others (Li et al., 2010), (Ni et al.,
2011), (Sung et al., 2011), (Wang et al., 2012). These
depth sensors provide depth maps which can be effec-
tively used to estimate 3D joint positions of human
skeleton. The maps provide 3D information of not
only the human body but also the total scene, which
is useful for recognition in situations where humans
interact with other subjects or objects. However, this
comes at a cost, the depth maps substantially increase
the amount of data to be processed.

It is a well known fact that humans tend to rec-
ognize actions based on the variation in poses, where
a pose is defined as the spatial configuration of body
joints at a given point in time. However, lack of effec-
tive and efficient mechanism for estimation of joints
resulted in earlier action recognition approaches re-
lying on methods based on features extracted from
color images and videos (Bobick and Davis, 2001),
(Laptev, 2005), (Lv and Nevatia, 2006), (Laptev et al.,
2008), (Niebles et al., 2008). With depth-based sen-
sors such as Kinect having facilitated effective estima-
tion of body joints, the interest in methods based on
skeleton data has again taken off (Sung et al., 2011),
(Jin and Choi, ).

A wide variey of approaches have been used
for the task of action recognition from conventional
videos. Part-based approaches relying on extraction
of local features around interest points and building
bag-of-words model, have been widely used. This
representation ignores the positional arrangement of
the spatio-temporal interest points. Although the rep-
resentation turns out to be simpler, the lack of spatial
information provides little information about the hu-
man body. Further, the lack of long term temporal in-
formation does not permit modeling of more complex
actions (Niebles et al., 2008). Besides, it still remains
an open question as to how, if at all, a bag-of-words
model can be constructed from body-joints data.

In this paper, we propose to extract novel set of
scale and translation invariant features. We employ
a Bag-of-Joint-Features (BoJF) model to represent an
action sample using these features. Our idea is to de-
scribe an action sample as an encoded sequence of
‘key’ features for each joint. In order to take into ac-
count the temporal variation in movements of joints,
we propose a hierarchical temporal-histogram (HT-
hist) model which uses histograms to represent move-
ment of a set of joints. The HT-hist tries to character-
ize the temporal variation of a joint in the action sam-
ple. Support vector machine is used to perform clas-
sification of various actions. The proposed features
and models are evaluated on the benchmark MSR-
Action3D dataset(Li et al., 2010) and Cornell Activity
dataset(Sung et al., 2012).
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The rest of the paper is organized as follows: Sec-
tion 2 provides a brief review of some of the related
work in this field. Section 3 introduces the proposed
features based on skeleton data. Section 4 describes
the action models used by us to represent an action
sample. Section 5 gives the method used for classi-
fication followed by results of experimental study in
section 6. Finally, section 7 presents conclusion and
future extensions.

2 RELATED WORK

Human action recognition from images and video has
been an active area of research for the past decade,
with the focus being on recognition of actions in more
challenging scenarios. The approaches primarily vary
in the terms of the visual input and the recognition al-
gorithm with complexity of actions and environmen-
tal settings being the driving factors. A wide variety
of approaches can be found in the literature (Turaga
et al., 2008), (Poppe, 2010).

Earlier approaches involved extraction of silhou-
ettes from color videos. In (Bobick and Davis, 2001),
Hu moments were computed from motion energy and
motion history images, constructed by temporally ac-
cumulating the silhouettes. The Hu moments serve as
action descriptors with Mahalanobis distance measure
being used for classification. Recognition based on
spatio-temporal interest points (Schuldt et al., 2004),
(Laptev, 2005), (Laptev et al., 2008) and methods
using spatio-temporal features with models such as
pLSA (Niebles et al., 2008) for action recognition
have shown good performance. In (Niebles et al.,
2008), the authors build a bag-of-words model by
first extracting local space-time interest regions and
then by clustering them into a set of spatio-temporal
words, called codebook. Bag-of-words model is also
used in (Laptev et al., 2008), where authors use HoG
and HoF features to describe interest points in a video.
They cluster the features and assign the features to
closest cluster centers to construct a bag of visual
words. Eventhough the methods based on RGB data
achieve good results, it may be noted that the RGB
data is voluminous. In this paper, we show that in-
stead of the exhaustive RGBD data, it is possible to
get comparable results using only body-joints data.

Action recognition from skeleton data has been
explored in (Lv and Nevatia, 2006), where the au-
thors use 3D joint locations to construct a number
of features. They further use Hidden Markov Model
(HMM) and AdaBoost for classification. In (Yao
et al., 2011), the authors use skeleton data to ex-
tract relational pose features such as joint velocity,

plane feature between a joint and a plane, and joint
distance feature as Euclidean distance between two
joints. Further, they use Hough-transform voting
method for classification. They suggest that pose-
based features extracted from skeleton data indeed aid
in action recognition.

With the introduction of depth sensors, the field
of action recognition has received an impetus. In (Li
et al., 2010), the authors use action graph to model the
dynamics of action from depth sequences. They use
bag of 3D points to characterize a set of salient pos-
tures corresponding to nodes in action graph. They
propose a projection based sampling scheme to sam-
ple the bag of 3D points from depth maps. The au-
thors in (Ni et al., 2011), use depth-layered multi-
channel representation based on spatio-temporal in-
terest points. They propose multi-modality fu-
sion scheme, developed from spatio-temporal interest
points and motion history images, to combine color
and depth information.

Approaches based on skeleton data obtained from
Kinect have been used in (Sung et al., 2011), (Wang
et al., 2012), (Jin and Choi, ). In (Sung et al., 2011),
the authors consider a set of subactivities to consti-
tute an activity. They use features extracted from es-
timated skeleton and use a two-layered Maximum-
Entropy Markov Model (MEMM) where the top layer
represents activities and the mid-layer represents sub-
activities connected to the corresponding activities in
top-layer. Wang et al.(Wang et al., 2012) use depth
maps data and skeleton data to construct novel local
occupancy (LOP) feature. Each 3D joint is associ-
ated with a LOP feature which can be treated as depth
appearance of a joint. They further propose fourier
temporal pyramid and use these in mining approach
to obtain actionlets where an actionlet is a combina-
tion of features for a subset of joints. They propose
to consider an action as a linear combination of ac-
tionlets and their discriminative weights are learnt via
multiple kernel learning (MKL). In (Jin and Choi, ),
the authors propose an encoding scheme to convert
skeleton data into a symbolic representation and per-
form activity recognition using longest common sub-
sequence method.

Our contributions include the proposal of Bag-of-
Joint-Features (BoJF) from novel set of skeleton fea-
tures. We also suggest a hierarchical histogram based
scheme to take into account the temporal information.

3 FEATURES BASED ON
BODY-JOINTS DATA

In this section, we describe our approach for obtain-
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Figure 1: Features based on skeleton data: (a)Skeleton
model (b)Features for joint j.

ing scale and translation invariant features from skele-
ton data. The output skeleton data from Kinect SDK
provides 3D coordinates of 20 body joints. For each
joint j in a frame, we have 3 values of the coordinates
specifying the position,p j = (x j ,y j ,zj). Using these
60 values directly as features for action classification
may not give good results if persons are likely to move
around while they perform the actions. To take care of
this we can choose a reference point for the features.
This may be done as follows:

a) Using the hip joint as reference (root joint in
Figure 1), and computing the relative values of rest
of the joints with respect to this one. We name this
feature set as ‘hip’ set in our paper.

b) Using the mean of all the joints as the reference
point. We term the feature set obtained this way as
the ‘mean’ set.

c) Using spherical coordinates with the root joint
serving as the origin. We term this set as‘Spherical’
set. Figure 1 illustrates the spherical set. The feature
set now consists of joint-distancer j , joint-angleφ j
and joint-angleθ j given as:

r j =‖ p j − proot ‖ (1)

φ j = arccos(ŷ j/r j) , 0≤ φ j ≤ π (2)

θ j = arctan(ẑj/x̂ j) , 0≤ θ j ≤ 2π (3)

Featureθ j is the angle between x-axis and the pro-
jection of vector from root to jointj onto the x-z plane
while φ j is the angle between y-axis and the vector
from root to jointj. (x̂ j , ŷ j , ẑj) are the components of
vector from root joint top j .

Since these joint-features are computed with re-
spect to the root joint, the features are invariant to
translation and scale variations. Specifically, if a per-
son moves by a small amount in a subsequent frame,
resulting in all the joints’ positions being shifted by
same amount, the distance featurer j would remain

(a)

(b)

Figure 2: High Arm Wave action for jointsj = 9 and j = 17
(a)Represents variation in r over time (b)Represents varia-
tion in φ over time.

invariant since it is computed with respect to the root
joint in that frame. Likewise,θ j andφ j are invariant
to changes in the scale or size of a person. In other
words, scale invariance is achieved because angles re-
main the same even though height changes across dif-
ferent subjects.

While the featuresr andφ capture the global vari-
ations of a joint in 3D coordinate system,θ captures
variations with respect to depth. Figure 2(a) and (b)
illustrate respectively, howr andφ vary for high arm
wave action. We can infer that joint 17(correspond-
ing to leg joint) shows little variation in comparison
to joint 9(corresponding to hand joint) for high arm
wave action. Figure 3 illustrates that for high arm
wave action, the variation ofθ is insignificant for both
joints, whereas in case of forward kick, the variation
in θ is significant for leg joint.

4 ACTION REPRESENTATION
MODEL

The bag-of-words model is very popular in human ac-
tion recognition (Niebles et al., 2008), (Laptev et al.,
2008). We develop a Bag-of-Joint-Features (BoJF)
model towards this end, so that the learning could be
made more efficient. This is described in detail be-
low. While the BoJF model is able to take care of
the spatial arrangements of various joints for most of
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Figure 3: Variations inθ for joints j = 9 and j = 17 (a)High
arm wave (b)Forward kick.

the actions, it totally ignores the temporal variations
in joint positions and may result in wrong classifica-
tion. For example, consider an action where a person
moves his hand forward to hit someone or something,
and another action where the hand moves backwards
to save himself or herself from being hit. The BoJF
model would create similar clusters in both the cases.
The lack of temporal information may affect recogni-
tion accuracy of complex actions. Towards this end,
we propose a hierarchical temporal histogram model
(HT-hist) later in this section.

4.1 Bag-of-Joint-Features Model (BoJF)

A feature pointf j (t) = (r j ,φ j ,θ j) describes the con-
figuration of joint j in time framet. We propose to
locate ‘key’ configurations for each joint and to rep-
resent an action sample as a distribution of its fea-
ture points across the ‘key’ configurations. In partic-
ular, given an action sample, we first obtain the joint-
feature f j (t), j = 1,2, ...19; ∀t as discussed in sec-
tion 3. We, next, construct individual codebooks for
each jointj by clustering the feature pointsf j over all
the actions using k-means clustering. The resultingk
cluster centers represent the codewords or the ‘key’
configurations for a joint.

Each feature point can now be described by the
codeword it is closest to, using Euclidean distance
measure. Specifically, a feature pointf j(t), be-
longing to an action sample, can be represented by

Codebook for joint 15

Codebook for joint 7

H15: Histogram for joint 15

H7: Histogram for joint 7

7

15

7

15

Action class 1

Action class M Histograms for an action 

sample

H1

H19

Figure 4: Bag-of-Joint-Features (BoJF) model.

wj(t) wherewj(t) is ak-dimensional vector contain-
ing a single 1 specifying the closest codeword and
rest zeroes. A typical vector would have the form:
〈0,0, . . . ,0,1,0, . . . ,0〉. Thus, given a sample video,
we obtain a histogram of ‘key’ configurations for each
joint. Formally, a BoJF model for an action sample
can be represented as:

V = {H j | j = 1,2, . . . ,19} (4)

H j =
N

∑
t=1

wj(t) (5)

whereH j is ak-dimensional vector representing his-
togram of codewords for jointj, V is the set of his-
tograms for an action sample and N represents the
number of frames in a sample video. Each histogram
is normalized and finally, all the 19 histograms of an
action sample are concatenated to form the BoJF rep-
resentation. Figure 4 illustrates the process of con-
structing BoJF.

4.2 Hierarchical Temporal Histogram
(HT-hist)

The BoJF model provides a simple and compact rep-
resentation of an action video. However, it is possible
that the temporal ordering for a set of joints may differ
in two or more action sequences. More specifically,
consider a complex action which can be broken down
into subactions A, B, C and another complex action
which has A, C, B as subactions. Both the actions
would result in similar clusters since the timing of
subactions is not taken into account while clustering.
To differentiate between such actions, we develop a
Hierarchical Temporal-histogram model (named HT-
hist henceforth).
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Let us say there are N frames in an action video.
We group these in a single set and call it the top layer.
At the next layer, we partition the N frames in two
halves resulting in two subsequences. At the bottom-
most layer each of these subsequences are again parti-
tioned in two equal parts resulting in 4 subsequences.

At this point we again revisit the set of joints
needed for our study. It is observed that while Kinect
provides data for 20 joints, most of the actions are car-
ried out by hands or legs. As such, we group the joints
of the left arm, right arm, left leg and right leg into
separate joint sets (JS). Since the features are com-
puted with respect to the root joint, changes in feature
values of shoulder and hip joints are often very small
in the temporal domain, and need not be considered
further. This results in 4 joint sets (JS), one for each
limb, with 3 joints in eachJS. Joint setsJS1 andJS2
correspond to right and left arms whileJS3, JS4 corre-
spond to right and left legs respectively as illustrated
in Figure 5(a).

JS1 = { j| j = 7,9,11} (6)

JS2 = { j| j = 6,8,10} (7)

JS3 = { j| j = 15,17,19} (8)

JS4 = { j| j = 14,16,18} (9)

(a)

(c)
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Figure 5: (a)Joint sets (b)Angular bins forθ (bin size ofπ/4
used for illustration) (c)Angular bins forφ (bin size ofπ/4
used for illustration) (d)θ-histograms for the three joints in
a JS(e)φ-histograms for the three joints in aJS.

We restrict our attention to temporal variations in
θ and φ by constructing separate angular bins with
bin size ofπ/12. We proposeNθ = 24 bins forθ and
Nφ = 12 bins forφ respectively, since the range forφ
extends from 0 toπ and that ofθ extends from 0 to
2π. Figure 5(b) and 5(c) illustrate the angular bins for
θ andφ respectively.

Given a framef, for each jointj in aJS, we obtain
a Nθ dimensional vectora j

f of all but one zeros with
the 1 corresponding to the angular bin forθ j . Like-
wise, we obtainNφ dimensional vectorb j

f of all but
one zeros with the 1 corresponding to the angular bin
for φ j . Next, we construct histogramsA j andB j for
each subsequence as:

A j =
nu

∑
f=nl

a j
f (10)

B j =
nu

∑
f=nl

b j
f (11)

wherenl and nu are the lower and upper frame
indices of a subsequence. Aθ-histogram is of dimen-
sionNθ while aφ-histogram is ofNφ dimension. Fur-
ther, these histograms are constructed for each jointj
in aJSas illustrated in Figure 5(d) and 5(e) where the
horizontal axis represents angular bins. The final step
of constructing HT-hist model involves normalization
and concatenation of the histograms.

5 CLASSIFICATION

We use support vector machine to perform action
recognition by considering it as a multi-class classi-
fication problem. In particular, we use SVM imple-
mented by LIBSVM (Chang and Lin, 2011) in the
one-vs-one scheme mode. Since our representation of
an action sample utilizes histograms, we use the his-
togram intersection kernel (Swain and Ballard, 1991)
defined as:

I(X,Y) =
m

∑
i=1

min(xi ,yi) (12)

where X and Y represent histograms consisting of m
bins,xi andyi represent theith bin of X and Y respec-
tively.

The HT-hist model consists of hierarchical repre-
sentation, resulting in the number of matches at level
l also being included in levell+1 . Therefore, we use
weighted histograms for intersection (Lazebnik et al.,
2006) with the weights for histogram at levell being
defined as:

q(l) =

{

1/2L for l = 0
1/2L−l+1 for 1≤ l ≤ L

(13)

whereL+ 1 are the total number of hierarchical
levels. Therefore, given a subsequencec of level l
with weightql and histogramsA j andB j for that sub-
sequence, the final histograms areql A j andql B j re-
spectively.
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Table 3: Recognition accuracy comparison for three action subsets of MSR-Action3D dataset.

Test Two Cross-subject
BOP Ours BOP Ours

(Li et al., 2010) BoJF HT-Hist Combined (Li et al., 2010) BoJF HT-Hist Combined
AS1 93.4% 91.8% 86.3% 94.5% 72.9% 78.1% 78.1% 85.7%
AS2 92.9% 82.7% 85.3% 92% 71.9% 65.2% 77.7% 77.7%
AS3 96.3% 98.6% 91.9% 98.6% 79.2% 90.9% 79.3% 90.1%

Overall 94.2% 91.1% 87.8% 95.1% 74.7% 78.1% 78.4% 84.5%

Table 1: The three subsets of actions in MSR-Action3D
dataset (Li et al., 2010).

Action Set 1 Action Set 2 Action Set 3
(AS1) (AS2) (AS3)

Horizontal arm
wave

High arm wave High throw

Hammer Hand catch Forward kick
Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand

wave
Tennis serve

Tennis serve Forward kick Golf swing
Pickup &
throw

Side boxing Pickup &
throw

Table 2: Cross-validation results.

JS1 JS2 JS3 JS4

94.7% 93.3% 92.3% 90.8%

JS1+JS2 JS3+JS4 allJS
94.01% 91.5% 94.4%

We, now, have a BoJF and a HT-hist representa-
tion for an action sample. The final representation
consists of the combined BoJF and HT-hist models.

6 EXPERIMENTS

In the absence of a standard data set consisting of
complex actions (which may have overlapping sub-
sequences but in different temporal order) it was not
possible to test the usefulness of the HT-hist method
over other existing methods in the literature. How-
ever, we evaluate the performance of the proposed
method on the MSR-Action3D dataset (Li et al.,
2010) and Cornell Activity dataset(Sung et al., 2012).
The evaluation results are reported in terms of average
accuracy and class-confusion matrix.

6.1 MSR-Action3D Dataset

The MSR-Action3D dataset (Li et al., 2010) con-
sists of 20 action classes: high arm wave, horizon-

tal arm wave, hammer, hand catch, forward punch,
high throw, draw x, draw tick, draw circle, hand clap,
two hand wave, side boxing, bend, forward kick, side
kick, jogging, tennis swing, tennis serve, golf swing,
pick up & throw. Each action is performed 2-3 times
by 10 subjects. It consists of depth maps sequences
as well as 3D joint positions. It has a total of 557
samples that are used for experiments by us.

We used 2 testing scenarios mentioned in (Li et al.,
2010), namely, ‘Test Two’ and ‘Cross-Subject’ test.
In ‘test two’ scenario, 2/3 samples are chosen ran-
domly as training samples and the rest as testing sam-
ples. In ‘cross-subject’ testing scenario, half of the
subjects are used as training and the rest are used as
testing samples. We used the same subject splits as
used by the authors in (Li et al., 2010), where sub-
jects 1, 3, 5, 7, 9 were used for training and the rest
for testing.

The authors in (Li et al., 2010) divide the 20 ac-
tions into three subsets, each having 8 actions as listed
in Table 1. The AS1 and AS2, group similar actions
with similar movements. AS3, on the other hand, con-
sists of complex actions. We used the same settings
as well to compare the effectiveness of our model.

We carried out 5-fold cross-validation on the train-
ing data of ‘cross-subject’ scenario to find the combi-
nation ofJSfor the final model. Tables 2 summarizes
the results of cross-validation experiment. It turns out
that simply using the subset of jointsJS1 yields higher
accuracy since most actions are performed with right
arm. One could construct the HT-hist model simply
with JS1 as well.

Figure 6 illustrates the class confusion matrix
for the different Action sets(AS) of MSR-Action3D
dataset using our proposed model. We observe that
AS2 consists of very similar actions such as ‘Draw
X’, ’Draw circle’ and ’Draw tick’. Hence, most of the
misclassification occurs between these classes.

In Table 3, we compare our method with (Li et al.,
2010) for the three different action subsets. It is ob-
served that while BoJF model and the HT-hist mod-
els individually do not fare too well, the combination
gives better results for all the action subsets.

Table 4 shows the comparison for MSR-Action3D
dataset with state-of-the art methods in cross-subject
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Figure 6: Confusion matrices for MSR-Action3D dataset (a)Confusion matrix for AS1 (b)Confusion matrix for AS2
(c)Confusion matrix for AS3.

setup. We also compare our proposed models with
baseline features. BoJFH-hip consists of our com-
bined model applied to relative cartesian coordi-
nates(joint positions) computed from hip joint in a
frame. BoJF-mean consists of our combined model
applied to relative cartesian coordinates(joint posi-
tions) computed from mean of joint positions in a
frame. BoJFH-Spherical represents the combined
model consisting of BoJF and HT-hist computed us-
ing the proposed features. While our method gives
better results compared to other researchers, we ob-
serve that in (Wang et al., 2012), the authors achieve
higher accuracy since they use lower order fourier co-
efficients which helps to reduce the noise inherent in
skeleton data.

6.2 Cornell Activity Dataset

Cornell Activity dataset (CAD-60) (Sung et al., 2012)
contains depth sequences, RGB frames and tracked
skeleton joint positions captured with Kinect camera.
It consists of 12 different actions: “rinsing mouth”,
“brushing teeth”, “wearing contact lens”, “talking
on the phone”, “drinking water”, “opening pill con-
tainer”, “cooking (chopping)”, “cooking (stirring)”,
“talking on couch”, “relaxing on couch”, “writing on
whiteboard”, “working on computer”. The data con-
sists of actions recorded in 5 different environments:
office, kitchen, bedroom, bathroom, and living room
wherein 4 different subjects perform these activities.

Table 4: Comparision for MSR-Action3D dataset (Cross-
subject Testing).

Method Accuracy
BoJFH-hip 56.4%
BoJFH-mean 61.7%
(Li et al., 2010) 74.7%
(Yang and Tian, 2012) 82.3%
(Wang et al., 2012) 88.2%

BoJFH-Spherical 84.5%

Table 5: Comparision for Cornell Activity dataset.

Method S-Person C-Person
(Sung et al., 2012) 81.15% 51.9%
(Koppula et al., 2013) - 71.4%
(Wang et al., 2012) 94.12% 74.7%

BoJFH-Spherical 100% 86.8%

Besides these, it also includes “random” and “still”
activities.

The recognition accuracy is shown in Table 5. We
used the same experimental setup as (Sung et al.,
2012). The ‘Have seen’ or the ‘S-Person’ setup uses
half of the data of same person as training and the
‘New Person’ or the ‘C-Person’ setting uses leave-
one-person-out cross-validation. We achieve 100 %
accuracy for the “S-Person” setup and 86.8 % accu-
racy for ‘C-Person’ setup which are better than the
state-of-the-art methods. Figure 7 illustrates the con-
fusion matrix obtained for ‘C-Person’ setting.
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Figure 7: Confusion matrix for Cornell Activity Dataset.

7 CONCLUSION

In this paper, we presented a novel way of using the
bag-of-words model to represent an action sample
from noisy skeleton data. We have proposed a set
of novel joints based features and used these in the
proposed Bag-of-Joint-Features (BoJF) model. Fur-
ther, to take into account temporal differences within
and outside an action class, we have proposed the
Hierarchical Temporal-histogram (HT-hist) model.
We tested our approach on the MSR-Action3D and
Cornell activity datasets and obtained results that are
comparable with the other state-of-the-art methods.
The key advantage of this approach is that it provides
an efficient and simpler way of representing an
action sample. However, there are some challenges
to overcome. Actions involving interaction with
environment may not be well represented using just
the skeleton data. We may need data from other
channels and appropriate methods to represent such
actions. In future, we intend to use knowledge
from color and depth maps as well to improve the
recognition process.
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