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Abstract: Ensemble Learning has been proved to be an effective solution to learning problems. Its success is mainly 
dependent on diversity. However, diversity is rarely evaluated and explicitly used to enhance the ensemble 
performance. Diabetic Retinopathy (DR) automatic detection is one of the important applications to support 
the health care services. In this research, some existing statistical diversity measures were utilized to 
optimize ensembles used to detect DR related signs. Ant Colony Optimization (ACO) algorithm is adopted 
to select the ensemble base models using various criteria. This paper evaluates several optimized and non-
optimized ensemble structures used for vessel segmentation. The results demonstrate the necessity of 
adopting the ensemble learning and the advantage of ensemble optimization to support the DR related signs 
detection. 

1 INTRODUCTION 

Diabetic retinopathy (DR) is one of the common eye 
diseases associated with diabetes. As the rising 
prevalence of diabetes worldwide, DR will become a 
more important problem. Early detection of DR is 
very essential for effective treatment. Given the 
increasing number of DR patients worldwide and the 
need of regular eye examination, the development of 
automated screening of DR has received a lot of 
attention from many research communities. The 
main goals are to reduce the ophthalmologists’ 
workload and to improve the health care services. 
DR computer-aided-diagnosis (DR-CAD) systems 
are designed to distinguish between normal and 
abnormal retinal images, in which DR symptoms 
appear. Figure 1 shows two samples of retinal 
fundus images; normal and image with DR lesion 
called haemorrhages. Vessel segmentation is a vital 
component of DR-CAD systems. Retinal blood 
vessels must be excluded to reduce the false 
positives in the detection of pathological lesions 
such as haemorrhages shown in Figure 1-b. The 
automatic detection of vessels can also be useful in 
in locating other anatomical structures such as optic 
disc and fovea. Furthermore, vessel segmentation is 
an important diagnosis key for several retinal 
pathologies leading to vascular anomalies. Many 
vessel segmentation techniques and algorithms  have 

  

Figure 1: Retinal Fundus Images Samples. 

been developed in the literature. However, the 
presence of noise, the variability of image 
acquisition equipment, and the presence of some 
pathological lesion make the vessel segmentation 
process more and more challenging. This 
emphasizes the need for developing more accurate 
automated techniques (Preethi and Vanithamani, 
2012) (Khan, Shaikh, and Mansuri, 2011) (Fraz et 
al., 2012). Vessel segmentation studies can be 
classified into two main groups, rule-based 
approaches and machine learning approaches 
(Marin, Aquino, Gegundez-Arias, and Bravo, 2011). 
Adaptive thresholding (Xu and Luo, 2010) (Jiang, 
Society, and Mojon, 2003), vessel tracking (Liu and 
Sun, 1993) (Vlachos and Dermatas, 2010) 
(Delibasis, Kechriniotis, Tsonos, and Assimakis, 
2010), mathematical morphology (Zana and Klein, 
1999) (Zana and Klein, 2001), and matched filtering 

a) Normal Retina 
b) Retina with DR Lesions 

(haemorrhages) 
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(Zhang, Zhang, Zhang, and Karray, 2010) 
(Chaudhuri, Chatterjee, Katz, Nelson, and 
Goldbaum, 1989), are all examples of the rule based 
approach. On the other hand, machine learning 
approach which can be supervised or unsupervised 
learning, is used to classify all pixels in an image 
into vessel or non-vessel classes. Supervised 
learning, such as work presented in (Becker and 
Rigamonti, 2013) and (Ricci and Perfetti, 2007) is 
based on training a classifier on a set of manually 
labelled reference images known as gold standard or 
ground truth data.  By contrast, unsupervised 
learning performs the vessel segmentation without 
any prior labelling information. Examples of such 
approaches were suggested in (Ricci and Perfetti, 
2007) and (Tolias and Panas, 1998). In this research 
we adopt heterogeneous ensemble learning for pixel 
classification.  

The use of ensemble models or ensemble 
classifiers has proved to provide better result than a 
single complex algorithm in many problems as 
ensembles are able to better resolve the bias-
variance trade-off. However, it is well known in the 
literature that in order for the ensemble models to 
have better performance, diversity should be 
maintained.  This diversity manifests itself as 
disagreement or ambiguity among the ensemble 
members and the performance of any ensemble 
models is largely dependent on diversity. Diversity 
is usually supposed to be enforced by the designing 
process such as using different training samples.  

Despite of its importance, how the diversity 
could be utilized to enhance the performance of 
ensemble is rarely studied, which calls for further 
investigations.   

In this paper, we adopt several ensemble 
structures used for retinal vessel segmentation. By 
developing ensemble models we are aiming to 
obtain much more accurate and robust learning 
model that outperforms any individual base model. 
An ant colony optimization algorithm is used to 
optimize the ensemble structures based on several 
criteria including the diversity and the ensemble 
members’ performances.  The results confirm the 
effectiveness of the ensemble learning and the 
advantage of ensemble optimization.   

The rest of the paper is organized as follows: 
Section 2 presents some existing vessel detection 
techniques that we have used as the base models in 
the ensembles. Section 3 discusses some important 
aspects of ensemble learning and motivates the 
importance of ensemble optimization. Section 4 
describes our ensemble optimization approach. 
Section 5 presents and discusses the results of the 

optimized ensembles. Section 6 concludes the paper 
and suggests further works. 

2 VESSEL SEGMNATION 
METHODS 

The large numbers of vessel segmentation 
approaches available in the literature makes the 
process of choosing base models to construct 
ensemble systems more complex and challenging. In 
spite of this fact, we evaluated several methods 
available from the literature found to achieve good 
performance. Moreover, we developed a new fast 
and efficient classifier model. All these methods 
were used in constructing different ensemble 
structures. In the following, we describe each type of 
the base models used in constructing ensembles used 
in this paper for vessel segmentation.  

In (Soares, Leandro, Cesar Júnior, Jelinek, and 
Cree, 2006) Bayesian classifier is applied with class-
conditional probability density distribution (PDF) 
defined as a linear combination of Gaussian models. 
The feature set consists of two-dimensional Gabor 
wavelet transform responses taken at different 
scales, augmented with pixels intensity. The method 
is called Gaussian Mixture Model (GMM). The 
number of Gaussian models k varies in each 
experiment. The approach was trained and tested on 
DRIVE and STARE publically available datasets. 
The training phase was performed on both datasets. 
The resulted classifiers were also tested on both 
datasets.  

We also developed a simple and fast vessel 
segmentation algorithm based on pixel 
classification. Linear discriminant classifier (LDC) 
(Richard O. Duda , Peter E. Hart, 2000) is used with 
Principle Component Analysis (PCA) a classical 
dimension reduction method to select different 
number of features. The feature set consists of the 
output of Gaussian filters and its derivatives up to 
order 2 taken at multiple variances and the green 
channel intensity of the original image. Features 
were normalized to zero mean and unit variance. 
DRIVE training set was used for training the 
classifier. This approach is similar to the one used in 
(Niemeijer, 2006) in which kNN (k=30) is used to 
obtain the vessel non-vessel probability map and 
then thresholding is performed to get the binary 
segmentation. However, LDC shows extremely fast 
and efficient training and testing phases compared to 
the kNN classifier. This efficiency is crucial in 
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constructing ensembles as many models should be 
trained and used for classification.  
However, when using LDC for pixel classification, 
we have noticed that the boundary between the field 
of view (FOV) and the black background result in 
many false positives (FP) on the boundary. Thus, we 
enhanced the result of the LDC classifier by 
adopting the diffusion approach used in (Huynh, 
2013). The process starts by relabeling five pixels on 
the boundary as background then diffuse the colour 
in FOV through the background by using the heat 
equation. After the diffusion, the features are 
extracted and tested using the LDC classifier in a 
space reduced by PCA.   

We also tested an algorithm called Multi Scale 
Line Tracking Algorithm (MSLTA) (Vlachos and 
Dermatas, 2010).  The algorithm starts by extracting 
a set of pixels, called seeds from the image 
histogram. The histogram is divided into three 
sections by two threshold values T_low and T_high. 
The threshold T_low is estimated by the percentage 
of pixels belonging to background, while the 
threshold T_high is estimated by the percentage of 
pixels belonging to bright structure. Pixels with 
intensity between these two values are expected to 
be blood vessel and extracted as seeds for line 
tracking algorithm. All seed pixels are evaluated 
using five different scales to construct a confidence 
matrix used to get the initial candidate blood vessels. 
Then a 3×3 median filter is applied to remove FP 
pixels and to fill gaps in some blood vessels lines. 
Finally, morphological directional filtering and 
morphological reconstruction are applied to further 
enhance the result.   

In (Goh, 2011), adaptive thresholding is used on 
the contrast-enhanced image to get candidate blood 
vessel objects. Then two kinds of detectors are used 
to make the final decision. In the first detector, the 
linear properties of the detected objects are 
evaluated to filter out non-blood vessel objects.  In 
the second detector, features of the obtained objects 
are extracted and used by the classifier ensemble. 
The ensemble consists of an optimized set of neural 
networks trained using different training sets or 
different subsets of features. The base models are 
generated using different neural networks, different 
initial weights and different number of hidden units. 
This results in 270 base models. These base models 
are optimized by using Genetic Algorithm. The 
probability of each base model to be selected is 
proportional to its accuracy compared to the sum of 
all ensemble models accuracies. 

3 ENSEMBLE LEARNING  

We constructed five non-optimized ensemble 
models using the methods described previously. 
Ensemble A is constructed based on GMM methods 
trained and tested on DRIVE using different number 
of Gaussian models (k=1, 5, 10, 15, 20). As all of 
these methods are similar except in one parameter, 
the diversity is not expected to be high. Ensemble B 
is also constructed using GMM methods however, 
STARE dataset is used to train some of the 
classifiers which are then tested on DRIVE. Thus, 
we expect the diversity of ensemble B is higher than 
that of ensemble A, as different training sets are 
used.  

Ensemble C was constructed by using different 
LDC-PCA methods with different number of 
features. Ensemble D was formed by all GMM and 
LDC-PCA methods. MSLTA, the adaptive 
thresholding approach, kNN classifier and all of the 
GMM and LDC-PCA methods were combined 
together to form ensemble E. Therefore, as different 
training datasets, features, methods and parameters 
are used in this case. Thus the diversity of this 
ensemble is expected to be the highest.  

We evaluated the performance of all models on 
DRIVE testing dataset. The evaluation is performed 
quantitatively by comparing classification 
performance in terms of accuracy, sensitivity and 
specificity. The results are shown in Table 1. 

We also estimate the diversity of the five 
ensembles by calculating the diversity disagreement 
measure (Schapire, 2003) and relate this to the 
improved ensembles’ performances. The greater the 
disagreement measure, the higher the ensemble 
diversity.  Figure 2 shows an example of the visual 
results of the five non-optimized ensembles 
compared to the gold standard and to an expert 
human observer.   
The results in Table 1 highlight some interesting 
aspects of ensemble learning. First, we can see that 
as the diversity increases, the improvement of the 
ensemble performance becomes more evident. For 
instance, the least diverse ensemble is C which 
consists of the same models trained on the same 
features and only the number of features is different 
in each model. Ensemble C manifests the lowest 
improvement in accuracy and no improvement in 
specificity. On the other hand, the greatest diversity 
is manifested in ensemble E where different 
algorithms, different classifier parameters, different 
features and different training sets where used. This 
indeed accompanies with the greatest improvement 
in ensemble accuracy and specificity which is indeed  
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Table 1: Performance evaluation of non-optimized ensembles. 

Ensemble 
Disagreement 

Diversity Measure 

Accuracy Specificity Sensitivity 
Base Model 

Average 
Ensemble 

Base Model 
Average 

Ensemble 
Base Model 

Average 
Ensemble 

Human Observer - 94.72 97.25 77.60 
A 0.0234 94.00 94.43 97.08 96.89 73.13 77.86 
B 0.0260 93.75 94.52 97.66 98.34 67.13 68.57 
C 0.0094 91.33 91.44 98.50 98.21 41.69 44.55 
D 0.0348 92.94 94.46 97.94 98.68 58.65 65.68 
E 0.0385 92.58 94.22 97.97 99.09 55.53 60.89 

 

 
Gold Standard    Human Observer   

 
A B 

 
C D 

 
E 

Figure 2: Example of Vessel Segmentation Results of non-
optimized ensembles. 

higher than the specificity achieved by the expert 
human observer. 

Consequently, we assume that this relationship 
between the diversity and the improvement of the 
ensemble performance can be utilized to construct a 
better performance ensemble. 

However, ensemble E achieved highest specificity 
but has lowest sensitivity compared to other 
ensembles. Thus, we assume that when increasing 
the number of base models, the overall performance 
may not be improved and the sensitivity in particular 
may be decreased significantly. Thus it is more 
desirable to construct ensemble with a small number 
of models not only to reduce the complexity but also 
to obtain an ensemble that outperforms its best 
models. At the same time to achieve better 
specificity we should maximize this number as much 
as possible.  

4 ENSEMBLE LEARNING 
OPTIMIZATION 

A direct approach of selecting a subset of base 
models to construct an ensemble is to select models 
which have the highest performance. This approach 
has several weaknesses, including over-fitting, 
sensitivity to the noise and possible selection of 
identical base models.  

Since the success of ensemble learning is largely 
related to the base models performance as well as 
the diversity among these models, these aspects 
should all incorporated into the selection of base 
models process. Moreover, the performance of any 
base model should be evaluated based on its 
individual performance as well as its performance 
within the ensemble. In other words, selecting high 
performance base models is not sufficient to ensure 
the constructing of better ensemble. The base 
models should be diverse and each base model 
should contribute to enhance the overall ensemble 
performance. 

Motivated by the above reasons, in this research 
we propose an ACO-Based algorithm to search and 
select the base models in an attempt to construct 
better performance ensemble to support DR 
automatic detection.  

By employing the ACO algorithm in optimizing 
ensemble learning we aim to select the base models 
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which perform well as individual and contribute well 
to the overall ensemble performance. The main 
advantages of this approach are to alleviate over-
fitting by reducing the number of models, thus 
reducing the model complexity. The standard ACO 
algorithm is used in this research to optimize the 20 
base classifier models presented in Table 1 based on 
different heuristics.  

The problem of optimizing classifier ensemble 
can be described as an ACO problem. The base 
classifiers can be represented as vertices in a graph 
with edges representing the next classifier to be 
selected to construct the ensemble.  Heuristic 
desirability and pheromone trail intensity are 
associated with each classifier.  Each ant will select 
randomly the first classifier to construct its 
ensemble. Several measures were used to evaluate 
the constructed solutions as ensemble accuracy, 
sensitivity and specificity. Updating pheromones 
phase is achieved by decreasing all the pheromone 
values associated with all classifiers through 
pheromone evaporation and by increasing the 
pheromone values associated with best so far 
ensemble. For example if sensitivity is employed 
then that means the more sensitive the ensemble is, 
the more pheromone quantity will be added to 
classifiers used in that ensemble.  The ACO-
ensemble optimization algorithm proposed in this 
study is illustrated in  

5 RESULTS AND DISCUSSIONS 

Several experiments were conducted to optimize the 
ensemble. First, accuracy, sensitivity and specificity 
of the base models are used in each ensemble as 
heuristics to guide the ACO search. These measures 
are also used to evaluate the ants’ constructed 
solutions. This results in three different optimized 
ensembles shown in Table 3. The results show that 
optimizing ensembles based on accuracy or 
sensitivity results in much higher sensitivity, higher 
accuracy and comparable specificity compared with 
ensembles optimized by specificity. Thus, in the 
subsequent experiments, accuracy and sensitivity are 
used to evaluate the ant’s candidate solution. 
Diversity is incorporated into the optimization 
process of ensembles. ACO search is guided by 
seven diversity measures available from the 
literature (Brown, Wyatt, Harris, and Yao, 2005). 
Results are shown in Table 4 and Table 5. 

Table 4 and Table 5, show that using 
disagreement diversity measures to select the base 
models during the ACO optimization, lead to the 

best accuracy compared to all other diversity 
measures. 

The specificity and sensitivity achieved by 
employing disagreement and Q-static however, are 
 

Table 2: ACO proposed algorithm for ensemble 
optimization. 

Input: classifiers oracle outputs for some training data 
samples  

  O = ( o1 , o2 , …,  on )  
Output: base model classifiers for ensemble  

1. Initialize ACO Parameters 
2. Initialize Pheromone;  
3. Determine the population of ants (m); 
4. For each ant k do 

Repeat  
Choose in probability the classifier 

to include;                                                
Use the heuristic to adjust the 

probability selection; 
Append the partial solution with the 

candidate classifier 
Until ant k has chosen p classifiers 

 
     Evaluate the constructed ensemble ; 

Use ensemble performance to 
evaluate the constructed ensemble  

  
If (termination condition not met) do 

  For each classifier  used in ensemble  
Update Pheromone  

based on the solution quality,  
 

  End for 
For each classifier  do 

Evaporate Pheromone  
  End for 

 Else terminate;  

Table 3: Vessel segmentation optimized ensembles guided 
by ensemble accuracy, specificity and sensitivity. 

Ensemble  
Accuracy Specificity Sensitivity 

# ACO Heuristic  
1 Accuracy 94.72  97.75   74.10 
2 Specificity 92.46   98.57   50.52  
3 Sensitivity 94.27  96.46   79.48 

Table 4: Vessel segmentation optimized ensembles guided 
by diversity and ensemble accuracy. 

Experiment Settings  
Accuracy Specificity Sensitivity 

# Diversity Measure 
1 Q-statistic 94.73  97.85   73.59 
2 Disagreement 94.75   97.93   73.17  
3 Double-fault 94.60  97.56   74.50 
4 Kappa-statistic 94.66   98.00   71.91  
5 Entropy 94.69  97.61     74.86 
6 Generalized diversity 94.70   97.71   74.24  

7 Coincident failure 
diversity 94.66   97.83   73.15  
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Table 5: Vessel segmentation optimized ensembles guided 
by diversity and ensemble sensitivity. 

Experiment Settings  
Accuracy Specificity Sensitivity 

# Diversity Measure  
1 Q-statistic 94.12  96.50   77.88 
2 Disagreement 94.66  97.33   76.52 
3 Double-fault 94.15  96.97   74.94 
4 Kappa-statistic 94.61  97.22   76.88 
5 Entropy 94.56  97.26   76.29 
6 Generalized diversity 94.56  97.10   77.36 

7 Coincident failure 
diversity 94.62   97.22   76.96  

comparable to the other measures. In Table 6, the 
best sensitivity achieved is due to incorporating the 
Q-statistic diversity measure into the ACO 
optimization. Although in this case Q-statistic results 
in low specificity, when looking at the visual 
segmentation result, we assume that these errors can 
be reduced by excluding the OD and FOV 
boundaries from the image before the segmentation.  
In order to compare the performance of non-
optimized and optimized ensembles, their 
performance is graphically illustrated in Figure 3.  

The result of Q-statistic is used in this figure for 
the Accuracy-Diversity and Sensitivity-Diversity 
optimized ensembles. The reason of this is that Q-
statistic gives the highest performance ensembles 
compared to other diversity measures.  As shown in 
the figure, ensembles optimized by sensitivity 
resulting in highest sensitivity and very comparable 
results in specificity and accuracy compared to the 
best ensemble. Based on these findings, we propose 
to adopt the sensitivity optimized ensembles for 

blood vessel segmentation in the DR diagnosis 
system.  

6 CONCLUSIONS AND FUTURE 
WORKS 

In this paper several optimized and non-optimized 
ensemble structures used for vessel segmentation 
have been evaluated. All of the developed ensembles 
were evaluated with multiple performance 
indicators, i.e., accuracy, sensitivity and specificity 
as well as the diversity aspect of these ensembles. 
The diversity was evaluated using different 
statistical diversity measures. The relationship 
between the performance measurers and the 
diversity measures were analysed. 

Based on the findings in this work, we aim to 
further study the development and evaluation of a 
fully optimized ensemble learning model to support 
the DR related signs detection. This model is 
expected to enhance several DR system components 
such as blood vessel detector, optic disc detector, red 
lesion detector and bright lesion detector. Moreover, 
as the model is of a generic form, it should also be 
applicable to other complex pattern recognition 
problems. 

The optimization should be performed to learn 
the parameters of the base model, select the base 
models; optimize the number of the base models and 
to learn the features used for each model. Moreover, 
the optimization should also employ the diversity 
measures and the performance of base models. 

 
Figure 3: Comparisons of different ensembles structures performance. 
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