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Abstract: In a scenario where acquisition systems have limited resources or available images do not have good 
quality, super-resolution (SR) techniques are an excellent alternative for improving the image quality. The 
traditional SR methods proposed in the literature are effective in HR image reconstruction to a 
magnification factor up to 2. In recent years, example-based SR methods have shown excellent results in the 
HR image reconstruction to magnification factor 3 or more. In this paper, we propose a scalable and 
iterative algorithm for single-image SR using a two-step strategy with DCT interpolation and the sparse-
based learning method. The method proposed implements some improvements in the dictionary training and 
the reconstruction process. A new dictionary is built by using an unsharp mask technique for feature 
extraction. The idea is to reduce the learning time by using two different small dictionaries. The results were 
compared with others interpolation-based and SR methods and demonstrated the effectiveness of the 
algorithm proposed in terms of PSNR, SSIM and Visual Quality. 

1 INTRODUCTION 

Single-image super-resolution (SISR) method use 
signal processing techniques to reconstruct a high-
resolution (HR) image from a set of low-resolution 
(LR) images. When the acquisition systems have 
limited resources or available images do not have 
good quality, SR techniques are an excellent 
alternative for improving the image quality. 

Many important areas have benefited from SR 
methods so far. In medicine, HR images are used to 
help doctors to perform more accurate image 
diagnosis.  In remote sensing, HR images provide a 
better interpretation and analysis of the sensed areas, 
such as environmental, urban, agriculture, etc. In 
surveillance systems, HR images can help the police 
to identify suspects of vandalism or crimes. Other 
areas that can benefit from high-quality content 
include Digital TV, restoration of old content for 
museums and libraries, etc. 

SR methods adopt an observation model that 
includes the effects of the acquisition process such 
as optical distortion, blurring and noise.  

This model can be described as: ௅ܻ = ுܺܪܵ +  (1)                       ߟ

where ௅ܻ of size ܰ = ଵܰ × ଶܰ pixels, represents the 
observed LR image. ܺு denotes the HR image of 
size ܯ = ଵܯ 	ܯ ଶ pixels, withܯ× > ܰ. Matrix ܪ of 
size ܯ  represents the effects of the imaging ܯ×
system, such as optical distortion and blurring. 
Matrix ܵ represents the downsampling operator, and ߟ is zero-mean white noise with variance ߪఎଶ. The 
fundamental SR problem is the recovery of HR 
image ܺு from the observed LR image ௅ܻ in (1) 
without amplifying the effects of noise or blurring.   

Traditional SR methods proposed in the 
literature, such as interpolation-based (Zhang and 
Xiaoling, 2006; Li and Orchard, 2001; Aly and 
Dubois, 2005) and reconstruction-based (Park et al, 
2003; Zibetti et al, 2011; Baker and Kanade, 2002), 
have shown effective results in the HR image 
reconstruction for magnification factors up to 2. 
However, the image quality degrades rapidly for 
upper magnification factors. One important 
alternative to solve this problem is the use of 
learning-based SR methods (Freeman et al., 2002; 
Elad and Datsenko, 2009; Qiang et al., 2005; Jian et 
al., 2003; Jiji and chaudhuri, 2006), that produce a 
HR image by learning the co-occurrence patterns 
between LR patches and their corresponding HR 
patches.  
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In the last years, many works have addressed the 
learning-based methods based on the sparse 
representation of signals. In these methods, each LR 
image patch can be represented using a linear 
combination of atoms from an overcomplete 
dictionary. One of the pioneering works in this 
direction was proposed by (Yang et al., 2010). Their 
algorithm is divided into two main steps: a first step 
of the Dictionary learning using LASSO and OMP 
algorithms, and a second step of HR image 
reconstruction.  (Zeyde et al., 2010) also considered 
a similar approach, but with some important 
modifications. Their method adopted the use of the 
k-SVD algorithm for dictionary learning and used a 
pseudo-inverse expression for the HR dictionary 
construction.  

Some works have practiced the idea of using the 
learning dictionary process according to the 
structural content of LR and HR patches. In (Dong 
et al, 2011), the Adaptive Sparse Domain Selection 
– ASDS algorithm is used for selecting the patches. 
In (Yang et al., 2012), the patches are grouped into 
three different sets: soft patches, dominant 
orientation patches and stochastic patches. In (Zhou 
et al., 2012), the patches are divided using a Weber 
Local Descriptor – WLD algorithm.  The idea of 
using a strategy of coupled dictionary training, is 
presented in (Jia et al., 2013). The coupling is 
carried out by forcing the sparse HR and LR patches 
coefficients to have the same number of elements 
different from zero.  

Another emerging approach that has been 
drawing research in recent years is image 
interpolation based on DCT transform. (Wu et al., 
2010) proposed an Interpolation method for LR 
video using a hybrid scheme with DCT transform 
and Wiener filtering. The low frequency coefficients 
are obtained by the DCT transform and the high 
frequency coefficients by Wiener Filtering used in 
the H.264/AVC standard. In this method, the filter 
coefficients are calculated according to the images 
of the training set. The SR method proposed in 
(Garcia et al., 2012), applies DCT interpolation in 
mixed-resolution videos based on multiple views of 
the same scene. In (Hung et al., 2011) is proposed 
the SR method, which the high-frequency 
coefficients are retrieved using the adjacent high-
resolution frames (key-frames). 

In this paper, we propose a scalable and iterative 
single-image SR method. The algorithm is based on 
a two-step strategy that uses the DCT interpolation 
and sparse representation of signals.  

The aim is to improve the high-resolution

reconstruction process, including the following 
contributions: 
• A new feature extraction step using an Unsharp 
Mask in order to construct a new LR dictionary; 
• Implementation of a scalable and iterative SR 
process with the HR image obtained from the first 
iteration, for a news two-step training and HR 
reconstruction. 

The remainder of this paper is organized as 
follows. In section 2, sparse representation model 
and DCT interpolation methods are revised. In 
section 3, we detail the method proposed, composed 
of two main steps. Experimental results are 
presented in section 4 and we conclude this paper in 
section 5. 

2 BACKGROUND 

2.1 Sparse Representation of Signals 

In the sparse representation model, a natural signal 
can be described as a sparse combination of atoms 
with respect to an overcomplete dictionary, (Aharon 
and Bruckstein, 2006). Given a signal ݔ	 ∈ ℛ௡	 and a 
dictionary ܦ	 ∈ ℛ௡×௞	 that contains k prototype 
signal-atoms in columns, the sparsity-based 
minimization problem is given by: min஽,ఈ ‖ܺ − ௜‖଴ߙ‖				to	subject				ଶଶ‖ܣܦ ≤ ଴ܶ  (2) 

where ‖. ‖଴ is the ݈଴ norm,  ‖. ‖ଶ is the ݈ଶ norm, ܺ is 
a set of training signals, ߙ௜ is a sparse vector and ଴ܶ 
is target sparsity. Dictionary ܦ can be constructed 
using a training process from a set of samples, or by 
prespecified set of functions such as Fourier, 
Wavelets and Curvelets (Aharon and Bruckstein, 
2006).  In the SR context, given a set of LR image 
patches ௅ܲ = ௜ୀଵ௞	{௅݌} , it can be represented as a 
sparse combination with respect to LR dictionary ܦ௅. In this case, the optimization problem is given 
by: arg݉݅݊‖ ௅ܲ − ௜‖ଶଶߙ‖		to	subject			଴‖ܣ௅ܦ ≤ ଴ܶ (3) 

where (3) is minimized iteratively. First, we fix ܦ௅ 
and aim to find the best coefficients of matrix ܣ 
according to the number of nonzero entries ଴ܶ. The 
second step, the algorithm to search for a better 
dictionary, according to updated sparse vectors 
(Aharon and Bruckstein, 2006). An important 
feature of the sparse representation model is the 
possibility of using a reduced set of images 
compared with traditional methods based on 
learning examples. 
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2.2 Image Interpolation in the DCT 
Domain 

Image interpolation using DCT transform upscale 
the image by adding coefficients of zero amplitude 
in high frequency components of a block (Wu et al, 
2010; Hung et al, 2011; Zhang and Chang, 2011; 
Sun and Cham, 2007). The interpolation process 
takes an important advantage of DCT domain, that 
is, to concentrate the frequency coefficients values 
in regions near the DC components.  

First, a LR input image is divided into non-
overlapping blocks ܾ௅ of size ݊ × ݊. Then, for each 
block	ܾ௅, a type II DCT transform is applied 
resulting in a transformed block ܤ௅(஽஼்) as follows:  ܤ௅(஽஼்) = ܥܦ ூܶூ{ܾ௅}                      (4) 

Then, ܤ௅(஽஼்) is resized according to upscale 
factor ݏ, by adding zeroes to high frequency 
components, resulting in a ܤ෠௅(஽஼்) block as follows:  

෠௅(஽஼்)ܤ = ቎൛ܤ௅(஽஼்)ൟ௡×௡ ⋯ 0⋮ ⋱ ⋮0 ⋯ 0቏௦௡×௦௡											(5) 

Next, the inverse type III DCT transform is 
applied to the resized block: ෠ܾ௅ = ܥܦܫ ூܶூூ{ܤ෠௅(஽஼்)}               (6) 

where ෠ܾ௅ is the resulting interpolated block of size ݊ݏ ×    .݊ݏ

3 PROPOSED SR METHOD 

The proposed SR method is divided into two main 
steps: a first step for training and construction of two 
LR and HR dictionaries and a second step for 
reconstructing the HR image, which will be detailed 
in the sections 3.1 and 3.2.  

In addition, we include a new section 3.3, which 
addresses the iterative and scalable implementation 
of the proposed method.  

3.1 Step 1: Training and Dictionary 
Construction 

First, let a set of HR images of different features in a 
set be blurred and downsampled, according to 
equation (1), resulting in an equivalent set of LR 
images.  

For the construction of the LR dictionary ܦ௅ଵ	, 
we used a set of four Laplacian and Gradient filters, 

with the coefficients given by:  ܨଵ = ሾ−1,0,1ሿ, ܨଶ ଵ்ܨ= ଷܨ , = ሾ1,0, −2,0,1ሿ and   ܨସ = ଷ்ܨ . These filters 
are the same used in (Yang et al., 2010; Zeyde et al., 
2010). The feature extraction is performed according 
to the following equation: ݌෤௅ଵ௜ = ௥௜ܨ ∗  ௅                         (7)ܫ

where “ * ” denotes convolution operator,  ݌෤௅ଵ௜  is the 
LR patch after the feature extraction process, ܫ௅	denotes the LR image of the training set and ܨ௥	(ݎ = 1,2,3,4) represents the four Laplacian and 
Gradient filters.  

For dictionary ܦ௅ଶ	, we used an Unsharp Mask 
(Gonzalez and Woods, 2010), as follows: ܫ௠௔௦௞ = ௅ܫ −   ௅(௅௉)                 (8)ܫ

with, ܫ௅(௅௉) = ௅௉ܪ ∗  ௅                   (9)ܫ

where ܪ௅௉	 is low-pass filter and ܫ௅(௅௉) is the 
smoothed LR image. The idea of using the Unsharp 
Mask  is to extract features not present in dictionary ܦ௅ଵ. The feature extraction with the unsharp mask 
produces a new LR patch, given by: ݌෤௅ଶ௜ = ௥௜ܨ ∗ ሾܫ௅ + ݇.  ௠௔௦௞ሿ                   (10)ܫ

where ܫ௠௔௦௞ represents an unsharp mask image and ݇ is a weight to emphasize the contribution of the 
unsharp mask. We adopt ݇ = 1. 

The use of the Laplacian and Gradient filters 
produce LR patches ݌෤௅ଵ௜  and ݌෤௅ଶ௜ 	with high 
dimensionality. In order to reduce the 
dimensionality, the Principal Analysis Components 
(PCA) algorithm is applied, using a projection 
operator denoted by B. The resulting patches are 
given by: 

௅ଵ௜݌  = ෤௅ଵ௜݌ܤ ௅ଶ௜݌ (11)                        = ෤௅ଶ௜݌ܤ                        (12) 

Considering LR patches ݌௅ଵ௜  and ݌௅ଶ௜ , the 
dictionaries ܦ௅ଵ and ܦ௅ଶ are constructed using the 
learning  k-SVD and OMP algorithms (Aharon et 
al., 2006), according to the following equations: arg݉݅݊ฮ݌௅ଵ௜ − ‖ଵ௜ߙ‖			to	subject			ଵ௜ฮଶଶߙ௅ଵܦ ≤ ଴ܶ	 (13) arg݉݅݊ฮ݌௅ଶ௜ − ‖ଶ௜ߙ‖	to	subject		ଶ௜ฮଶଶߙ௅ଶܦ ≤ ଴ܶ    (14) 

where 1݅ߙ and 2݅ߙ represent the sparse vectors with 

respect to 1ܮܦ and 2ܮܦ and ଴ܶ is the target sparsity. 
In order to reduce the learning time, dictionaries ܦுଵ 
and ܦுଶ are obtained by pseudo-inverse expression: ܦுଵ = ுܲଵܳଵ்൫ܳଵܳଵ்൯ିଵ               (15) ܦுଶ = ுܲଶܳଶ்൫ܳଶܳଶ்൯ିଵ               (16) 
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Figure 1: Overview of the Training and dictionary construction step described in section 3.1. 

1iα

2iα
 

Figure 2: Framework of Iterative and scalable single-image SR method. In Both SR-1 and SR-2 implementation, The 
(IHRF)1 image is inserted in the training set for a new scalable and iterative process. 

where ுܲ௜		݅ = 1,2, represents the matrices built with 
the HR patches extracted from the training set by  
using (7) and (10). ܳଵ and ܳଶ are the matrices that 
include all the vectors obtained in the sparse coding 
process.  Figure 1 shows an overall framework of 
the proposed training and dictionary construction 
step. 

3.2 Step 2: HR Image Reconstruction 

The HR image is reconstructed with the DCT-based 
interpolated LR image and the other two images 
obtained by sparse representation.  

First, the input LR image ௅ܻ of size ଵܰ × ଶܰ 
pixels is interpolated with upscale factor ݏ using 
DCT transform: ஽ܻ஼்௅ோ = ܳ஽஼் ௅ܻ                        (17) 

where ܳܶܥܦ represents the interpolation operator in 
the DCT domain described in section 2.2. Also, the 
LR image ௅ܻ undergoes a feature extraction process 
by high-pass filtering, using the same process 
described in section 3.1. By applying this feature 
extraction process, we get two different types of LR 
patches, representing different features of the LR 
image: ݌෤௒ಽଵ௜ = ௥ܨ ∗ ௅ܻ		                               (18) ݌෤௒ಽଶ௜ = ௥ܨ ∗ ሾ ௅ܻ + ݇. ௅ܻ௠௔௦௞ሿ            (19) 

Whereas ݌෤௒ಽଵ௜  and ݌෤௒ಽଶ௜  have high 
dimensionality, we also used the PCA algorithm to 
reduce the dimensionality, resulting in ݌௒ಽଵ௜  and ݌௒ಽଶ௜  
patches. Given 	݌௒ಽଵ௜ , ௒ಽଶ௜݌  ௅ଶ, theܦ  and	௅ଵܦ ,
proposed algorithm uses a sparse coding algorithm 
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OMP to calculate the sparse coefficients ߙ௒ಽଵ௜  and ߙ௒ಽଶ௜ , according to equations (13) and (14). 
Considering sparse coefficients ߙ௒ಽଵ௜  and ߙ௒ಽଶ௜ , the 
HR patches are obtained by: ݌ுଵ௜ = ௒ಽଵ௜ߙுଵܦ ுଶ௜݌ (20)                      = ௒ಽଶ௜ߙுଶܦ                      (21) 

Patches ݌ுଵ௜  and ݌ுଶ௜  are combined with a least 
squares solution to obtain partial images ܫுோଵ and  ܫுோଶ: ܫுோଵ = ቂ∑ ௥௜௜ܨ௥௜்ܨ ቃିଵ ∑ ௥௜்௜ܨ ுଵ௜݌ ுோଶܫ (22)              = ቂ∑ ௥௜௜ܨ௥௜்ܨ ቃିଵ ∑ ௥௜்௜ܨ ுଶ௜݌             (23) 

The HR final image consists in the interpolated 
image DCT 	 ஽ܻ஼்௅ோ   and the two images obtained by 
the learning process ܫுோଵ and ܫுோଶ : 

ுோி(ி)ܫ  = ஽ܻ஼்௅ோ + ுோଵܫ)ߛ +  ுோଶ)          (24)ܫ

where ߛ is a factor that represents the contribution of 
learning Images. In this paper, we adopt ߛ = 1/2. A 
framework of the proposed SR method is presented 
in Figure 2. 

3.3 Scalable and Iterative 
Implementation 

An important contribution of the proposed method is 
to combine step 1 and step 2 in a scalable and 

iterative way. The partial HR image ܫுோி(ଵ)  obtained in 
the first iteration is inserted into the training set to 
run a new training step.  In this case, the final HR 
image is given by:   ܫுோி(௡) = ுோி(௡ିଵ)ܫ + ଵଶ ൫ܫுோଵ(௡) + ுோଶ(௡)ܫ ൯,		n=2,…,	N   (25) 

where ܰ is the number of iterations of the algorithm. 
The HR image of the first iteration can be inserted in 
the training set of two ways:  

• In the first case, the ܫுோி(ଵ)  image is constructed 
with the same upscale factor of the final HR 
image. This image is inserted in the training set 
for a new step of dictionary training. This case 
was tested for upscale factor up to 2. 

• In the second case, the	ܫுோி(ଵ)  image is constructed 
with an upscale factor smaller than final HR 
image. This image is inserted in the training set 
for a new of dictionary training. The high 

frequency coefficients recovered in (1)ܨܴܪܫ
  image 

are transformed into low frequency coefficients  
in the next iteration of algorithm. For the 

simulations tests in section 4, we used an upscale 
factor 3 to final HR image. 

4 EXPERIMENTAL RESULTS 

4.1 Simulations Settings 

To illustrate the performance of the proposed 
algorithm, computer simulations were performed in 
MATLAB®  using a computer with Intel Dual Core 
T4300 2.10 GHz, 3 GB RAM. The images used for 
the tests were Cameraman, Jetplane, Lake, Lenna 
and Living Room. These images were degraded by 
blurring and subsampling and then upscaled using 
factors equal to 3. For training and construction of 
the LR dictionaries, we used 20 iterations of k-SVD 
and OMP algorithms. The training set used for the 
training step, was the same used in (Yang et al, 
2010; Zeyde et al, 2010), composed by 92 images 
that include flowers, landscapes, faces, buildings, in 
order to extract different features such as edges and 
textures. However, for the proposed SR algorithm 
was used only 5 images of the training set.  

Apart from inclusion of the HR image in the 
training set as described in section 3.3, in all 
simulations, we adopted two configurations for the 
reconstruction step: 

a) SR-1 algorithm: the intermediate image ܫுோி(ଵ)  was 

replaced by the interpolated image ܻܴܮܶܥܦ  to perform 
one more iteration of algorithm. This configuration 
is denoted in Table 1 as SR-1.  

b) SR-2 algorithm: the intermediate image ܫுோி(ଵ)  is 
updated for each iteration of algorithm. This 
configuration is denoted in Table 1 as SR-2.  

The proposed algorithms SR-1 and SR-2 was 
compared with interpolation-based methods such as 
bicubic and DCT interpolation, and SR methods 
proposed in (Yang et al, 2010) and (Zeyde et al, 
2010). 

4.2 Results 

Table 1 shows the results in terms of PSNR and 
SSIM of proposed SR-1 and SR-2 algorithms 
compared with others SR methods. We can observe 
that the SR-2 algorithm produced superior results 
than all others methods. The results indicate that the 
scalable and iterative strategy using few images of 
the training set was efficient in the process of 
reconstruction of HR final image 

Figures 3 and 4 show the results of the SR-1 
and SR-2 algorithms, considering the quality visual 
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of the HR image obtained by the methods. We can 
observe in figures 3(g) and 4(g), that the proposed 
algorithm SR-2 has recovered more details than 
others methods. In addition, we observe a 
minimization of the blocking effects caused by DCT 
interpolation in the proposed method SR-2. 

5 CONCLUSIONS 

In this paper, we proposed a novel scalable and 
iterative single-image SR method using DCT 
interpolation and sparse representation. The 
proposed method uses a training strategy of two 
dictionaries with different high-pass filters to feature 
extraction and a reduced training set. 

Computer simulations demonstrated the 
effectiveness of the proposed method in terms of 
PSNR, SSIM and visual quality.  

REFERENCES 

Aharon, M., Elad, M., Bruckstein, A., 2006. K-SVD: An 
algorithm for designing overcomplete dictionaries for 
sparse representation. IEEE Transactions on Signal 
Processing, vol. 54, no. 11, pp. 4311-4322. 

Aly H. A., Dubois E., 2005. Image Up-Sampling Using 
Total-Variation Regularization with a New 
Observation Model. IEEE Transactions on Image 
Processing, vol. 14, no. 10, pp. 1647-1659. 

Baker, S.,  Kanade, T., 2002. Limits on super-resolution 
and how to break them.  IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 24, 
no. 9, pp. 1167-1183. 

Dong, W., Zhang, L., Shi, G., 2011. Image Deblurring and 
Super-Resolution by Adaptive Sparse Domain 
Selection and Adaptive Regularization. IEEE 
Transactions on Image Processing, vol. 20, no. 7, pp. 
1838-1857, Jul, 2011. 

Elad, M., Datsenko, D., 2009. Example-Based 
Regularization Deployed to Super-Resolution 
Reconstruction of a Single Image.  Computer Journal, 
vol. 52, no. 1, pp. 15-30. 

Freeman, W. T., Jones, T. R., Pasztor, E. C., 2002. 
Example-based super-resolution. IEEE Computer 
Graphics and Applications, vol. 22, no. 2, pp. 56-65, 
Mar-Apr. 

Garcia, D. C., Dorea, C., Queiroz, R. L., 2012. Super 
Resolution for Multiview Images Using Depth 
Information. IEEE Transactions on Circuits and 
Systems for Video Technology, vol. 22, no. 9, pp. 
1249-1256. 

Gonzalez, R. C., Woods, R. E., 2010. Digital Image 
Processing, Pearson, Third Edition. 

Hung, E. M., Garcia, D.C., Queiroz, R.L.D., 2011.  
Transform domain semi-super resolution.  in ICIP'11, 
pp. 1193-1196. 

Jia, K. , Wang, X. , Tang, X., 2013. Image Transformation 
Based on Learning Dictionaries across Image Spaces.  
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 35, no. 2, pp. 367-380. 

Jian, S., Nan-Ning, Z., Hai, T., 2003. Image hallucination 
with primal sketch priors. Proceedings. 2003 IEEE 
Computer Society Conference on Computer Vision 
and Pattern Recognition.  pp. II-729-36 vol.2. 

Jiji, C. V. Chaudhuri, S., 2006. Single-frame image super-
resolution through contourlet learning.  Eurasip 
Journal on Applied Signal Processing, 2006. 

Li X., Orchard M., 2001. New Edge-Directed 
Interpolation.  IEEE Transactions on Image 
Processing.  vol. 10, no. 10, pp. 1521-1527. 

Park, S. C., Park, M. K., Kang, M. G., 2003. Super-
resolution image reconstruction: A technical overview. 
IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 
21-36. 

Qiang, W., Xiaoou, T., Shum, H., 2005. Patch based blind 
image super resolution. Tenth IEEE International 
Conference on Computer Vision, 2005. ICCV 2005, 
pp. 709-716 Vol. 1. 

Sun, D., Cham, W. K., 2007. Postprocessing of low bit-
rate block DCT coded images based on a fields of 
experts prior. IEEE Transactions on Image 
Processing, vol. 16, no. 11, pp. 2743-2751. 

Wu, Z., Yu, H., Chen, C. W., 2010. A New Hybrid DCT-
Wiener-Based Interpolation Scheme for Video Intra 
Frame Up-Sampling. IEEE Signal Processing Letters, 
vol. 17, no. 10. 

Yang, J., Wright, J., Huang, T. S., 2010.  Image Super-
Resolution Via Sparse Representation. IEEE 
Transactions on Image Processing, vol. 19, no. 11. 

Yang, S., Wang M., Chen Y., 2012. Single-Image Super-
Resolution Reconstruction via Learned Geometric 
Dictionaries and Clustered Sparse Coding. IEEE 
Transactions on Image Processing, vol. 21, no. 9, pp. 
4016-4028. 

Zeyde R., Elad, M., Protter, and M. 2010. On single image 
scale-up using sparse-representations.   Proceedings of 
the 7th international conference on Curves and 
Surfaces.   pp 711-730. 

Zhang, W., Cham, W. K., 2011. Hallucinating Face in the 
DCT Domain. IEEE Transactions on Image 
Processing, vol. 20, no. 10, pp 2769-2779. 

Zhang L., Xiaoling W., 2006. An Edge-Guided Image 
Interpolation Algorithm via Directional Filtering and 
Data Fusion.  IEEE Transactions on Image 
Processing, vol. 15, no. 8, pp. 2226-2238. 

Zhou F., Yang, W. Liao, Q., 2012. Single Image Super-
Resolution Using Incoherent Sub-dictionaries 
Learning. IEEE Transactions on Consumer 
Electronics, vol. 58, no. 3, pp. 891-897. 

Zibetti, M. V. W., Bazan, F. S. V.  Mayer, J., 2011, 
Estimation of the parameters in regularized 
simultaneous super-resolution. Pattern Recognition 
Letters, vol. 32, no. 1, pp. 69-78. 

VISAPP�2015�-�International�Conference�on�Computer�Vision�Theory�and�Applications

468



APPENDIX 

Table 1: PSNR and SSIM Results for upscale 3 and 20 iterations of k-SVD and OMP algorithms. 

Image Metric 
Bicubic 

Interpolation 
DCT 

Interpolation 

SR Method 
(YANG et al., 

2010) 

SR Method 
(ZEYDE et al., 2010)

Proposed 
Method SR-1 

Proposed 
Method SR-2 

Cameraman 
PSNR 30.367  30.299 32.018 32.620 32.0563  33.987 

SSIM 0.9587  0.9640 0.959 0.974 0.969  0.984 

Jetplane 
PSNR 29.429  29.313 30.383 30.980 29.976  31.311 

SSIM 0.957  0.961 0.956 0.971 0.965  0.968 

Lake 
PSNR 27.419  27.414 28.063 28.556 27.917  29.599 

SSIM 0.938  0.937 0.944 0.956 0.949  0.971 

Lenna 
PSNR 31.704  31.622 32.668 33.029 33.436  33.565 

SSIM 0.953  0.958 0.956 0.966 0.970  0.977 

Living Room 
PSNR 26.840  26.834 27.441 27.608 27.327  28.537 

SSIM 0.893  0.904 0.912 0.920 0.914  0.956 

 

  
 

              

 
 

Figure 3: Visual quality results for Lake Image (512 × 512) pixels, considering upscale factor of 3 and dictionary size of 
512. (a) Original image,  (b) Bicubic interpolation,  (c) DCT interpolation,  (d) SR method proposed in Yang et al (2010) (e) 
SR method proposed Zeyde et al (2010),  (f)  Our method SR-1 and  (g) Our method SR-2. 

(a)

(b) (c) (d)

(e) (f) (g)
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Figure 4: Visual quality results of Jet plane image (512 × 512) pixels, considering upscale factor of 3 and dictionary size 
of 512. (a) Original Image,   (b) Bicubic interpolation,  (c) DCT interpolation,  (d) SR method  Yang et al (2010) (e) SR 
method  Zeyde et al (2010),  (f)  Our method SR-1 and  (g) Our method SR-2. 

(a)

(b) (c) (d)

(e) (f) (g)
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