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Abstract: Our work focuses on Extreme Sensitive Robotic that is on multi-robot applications that are in strong 
interaction with humans and their integration in a highly connected world. Because human-robots 
interactions have to be as natural as possible, we propose an approach where robots Learn from 
Demonstrations, memorize contexts of learning and self-organize their parts to adapt themselves to new 
contexts. To deal with Extreme Sensitive Robotic, we propose to use both an Adaptive Multi-Agent System 
(AMAS) approach and a Context-Learning pattern in order to build a multi-agent system ALEX (Adaptive 
Learner by Experiments) for contextual learning from demonstrations. 

1 INTRODUCTION 

The drastic reduction in the cost of electronic 
equipment allows populating our environment with a 
multitude of devices and functions of rich interaction 
capabilities. Information technologies, formerly 
confined inside computers, are now distributed in 
our homes, factories and companies. Those ambient 
systems (also called ubiquitous systems) are 
characterised by their dynamic and their complexity: 
a huge number of heterogeneous devices evolves 
autonomously and new devices can appear or 
disappear at any time (Perera, 2014). One of the 
desired properties for such systems is the ability to 
self-adapt to the specific and changing needs of its 
users. Nevertheless, such adaptation is complex 
since we can make no a priori supposition on the 
task to perform or on the entities composing the 
system. Furthermore, users in these systems can 
interact in several ways and this interaction brings 
both new challenges and new solutions.  

More and more works among the robotic 
community focus on the design of physically 
distributed applications where autonomous robots 
interact with other systems to perform complex and 
changing tasks in interaction with humans 
(Brambilla, 2013). Factories of Future (FoF) are a 
good illustration of this as they involve multiple 

entities evolving in a complex and highly dynamical 
environment with a need for sustainability and 
adaptability to end-users (Siciliano, 2014). Hyper-
connectivity of FoF offers a new challenge to their 
designers: how to handle the complexity and 
dynamic brought by the affluence of data coming 
from electronic systems and human activity. 

In this paper, we propose an approach named 
Extreme Sensitive Robotic to use the inherent 
interactivity of ambient systems as the motor of self-
adaptation. The system learns the way users interact 
with it. With this approach, the design is not guided 
by the finality, but by the system’s functionalities. 
Each functionality is then seen as an autonomous 
system having the capacity to self-adapt its 
behaviour to what it can perceive from its 
environment (including human activity). Self-
observation capacities allow each functionality to 
correlate its own activity to the observation it makes 
from its environment. 

First, we consider the use of Learning from 
Demonstration, a paradigm to dynamically learn 
new behaviours (Argall, 2009), mainly studied in the 
robotic field. Next, we will dress our vision of 
Extreme Sensitive Robotic and propose the use of the 
Adaptive Multi-Agent Systems (AMAS) to achieve 
this vision. 
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2 LEARNING FROM 
DEMONSTRATIONS 

Since we consider exploiting the interactivity of 
ambient systems, we need a user-centred approach. 
Observing the field of application made in robotic, 
one approach has retained our attention. Learning 
from Demonstrations (LfD, also called Imitation 
Learning or Programming by Demonstrations) is a 
paradigm to allow a system to autonomously learn 
new behaviours from demonstrations (Argall, 2009). 
The hypothesis is that a system can learn its 
behaviour from the observation of a human’s 
activity. To adapt behaviour to specific needs, the 
classical approach is to decompose the task to realise 
into sub-tasks and to manually program the 
resolution of each sub-task. At the opposite, the LfD 
approach proposes that a new task can be derived 
from the observation of human activity (Calinon, 
2008). As it is a social learning that requires for the 
user no expertise on the system (Dautenhahn, 2003), 
LfD seems to be a good paradigm when the task to 
perform is not a priori known. 

The idea of LfD took its origins in the 80s, thus 
there has been a resurgent work on the subject 
(Argall, 2009) (Calinon, 2008). Applications of LfD 
are various, like learning to fly (Sammut, 2002), 
learning to react to an artefact (Knox, 2013) or 
learning manipulation task in an industrial 
environment (Tosello, 2014). 

Despite its variety, LfD suffers from some 
limitations in term of genericity. Indeed, in the 
variety of LfD applications, we can distinguish two 
families of algorithms: those using supervised 
learning and those using reinforcement learning. 
Both technics have their pros and cons.  

Supervised learning algorithms use labelled data 
to construct a decision model. Once this model is 
constructed, the system is able to autonomously 
follow a decision process. These algorithms include 
the notion of demonstration, each labelled data 
acting as a demonstration and seem relevant in the 
LfD context. However, they are not robust to new 
demonstrations. Indeed, the two-step operating mode 
separating learning phase from behavioural phase 
restricts the use of these algorithms for real-time 
learning. A new demonstration implies to repeat the 
complete learning phase. 

Reinforcement learning algorithms use a 
feedback function associating the performance of an 
action to a utility value. A reinforcement learning 
algorithm tries to establish an optimal control of its 
environment in order to maximise this utility value. 
The main advantage of these algorithms is that they 

explore autonomously and in real-time the possible 
states to find an optimal control policy. 
Nevertheless, this advantage can also become a 
default since to learn not to destroy itself, a robot 
needs to experiment its destruction and receive a 
negative feedback in response. Furthermore, those 
algorithms suffer from a lack of genericity, since the 
design of the feedback function requires knowledge 
on the task to perform and the environment. 

Some hybrid techniques try to use both 
algorithms in the same approach. For example, 
(Knox, 2013) infers a feedback function from 
feedbacks coming from the user and then uses this 
learned function to make reinforcement learning. 
However, these approaches, which attempt to 
remove limitations by combining reinforcement 
learning and supervised learning, often simply 
combine their limitations. 

One of the current challenge in this domain is 
then to propose a generic approach, independent to 
the task to perform and able to self-adapt in real time 
both to the specific needs of its users and to the 
dynamic of its environment. However, we see that 
LfD is an interesting paradigm for service robotics 
as it is user-centred and allows day-to-day 
interactions.  
(Nehaniv, 2001) postulates that LfD has to answer 
the following key questions: 
- What to imitate? 
- How to imitate? 
- When to imitate? 
- Whom to imitate? 
On the next section, we propose to answer to those 
questions with an approach that is not guided by the 
goal to achieve, but by the functionalities composing 
the system. 

3 EXTREME SENSITIVE 
ROBOTIC 

Since their beginning, robots become ever more 
elaborated in terms of both hardware and software. It 
may be considered that these systems will be truly 
complex, complexity increased by their necessary 
adaptation to the high dynamic of their environment 
(including humans) and a dynamical coordination 
with other robots or artificial ambient systems. This 
is the presupposition made by Extreme Sensitive 
Robotic where the system’s design should be made 
bottom-up rather than top-down. We have at our 
disposal libraries of various components realising 
functions rather than objectives. Thus, a robot 
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consists of the aggregation of necessary functions to 
satisfy user’s needs, but a group of robots has to be 
considered exactly in the same way: a set of macro-
functions (each robot) working in coordination. An 
Extreme Sensitive Robot is made of simpler Extreme 
Sensitive Functions, each of these functions having 
the ability to self-adapt to what it can perceive from 
its environment. Thereby, the overall activity results 
from local interactions between Extreme Sensitive 
Functions and the environment. Such adaptation 
requires both openness and self-observation 
capacities, well known in the multi-agent field.   

Kaminka's previous work focused on the 
necessity to roboticists and Multi-Agent System 
community to work together as they share same 
interests into autonomous decisions in complex 
environment (Kaminka, 2012). As a matter of fact, 
there has been an increasing work considering robots 
as agents into multi-robot application for complex 
tasks such as collective rescue (Lacouture, 2012) 
(Couceiro, 2013), collective exploration or tasks 
allocation (Navarro, 2012). A new challenge that 
rises among robotic applications is the integration of 
robots into smart environments where many 
heterogeneous devices are in hyper-interactivity with 
other systems and humans (Broxvall, 2006). In these 
systems, robots have the challenging task to use this 
hyper-connectivity to adapt their behaviour to 
achieve complex and changing goals. The traditional 
reductionist approach is not relevant for such 
systems where no assumption can be made on goals 
to achieve or the dynamic of the environment. 
Extreme Sensitive Robotic proposes that interactivity 
of such systems is more related to an autonomous 
observation of the dynamic of the surrounding 
environment (including the consequences of its own 
mobility) than the explicit communication between 
system entities. The absence of this explicit 
communication reduces the need for a priori 
knowledge on the system and allows each 
functionality to be designed separately. Self-
observation capacities make the system extremely 
sensitive to its environment allowing it to integrate 
changes in its environment into its decision process. 
In the remainder of this section, we focus on 
important features that should be taken into account 
within Extreme Sensitive Robotic. 

The architecture of a robot is globally composed 
of functions of perception, action and decision. A 
robot that performs well has to permanently make 
cooperate these three functions in association with a 
loop-back correlating the consequences of its own 
actions with the observation of changes on its 
surrounding environment. This is what Brooks 

(Brooks, 1990) expressed as the physical grounding 
hypothesis. In opposition to the classical reductionist 
approach, the physical grounding hypothesis 
postulates that physical interactions with the 
environment are the primary source of constraints 
for the design of intelligent systems. Thus, there is 
no need of symbolic representation of the 
environment leading to a complex decision making. 
On the contrary, the system's behaviour is a reaction 
to a stimulus coming from its environment. Brooks’s 
subsumption architecture (Brooks, 1987) is the 
origin of behaviour-based robotics. In Brooks's 
architecture, a robot controller is built layer by layer, 
each layer responsible for one behaviour. The 
subsumption architecture enables the robot to select 
the most adequate layer in reaction to what it 
perceives from its surrounding environment. The 
postulate that can be made of Brooks's work is that 
direct interactions with the environment have a 
strong influence on the robot's decision process. 
Making an Extreme Sensitive Robotic consists in 
making it sensible to variations in the perception of 
its surrounding environment and not to an internal 
state representation. Extreme Sensitive Robotic is all 
about to sense, not to model. Pioneering work of 
Walter Grey (Walter, 1950) (Walter, 1951) in early 
50s has shown that even without any form of 
computational intelligence, a machine can produce a 
behaviour that one can consider as a smart 
behaviour, even showing some learning skills. In 
Grey's robots, an active interaction between sensors 
and actuators allows a strong interaction with the 
surrounding environment and the emergence of a 
behaviour. Braitenberg (Braitenberg, 1986) 
proposed a set of vehicles where sensors are in direct 
interaction with actuators. The sensors could have an 
exciting or inhibitory influence on the actuators. 
With an exciting influence, more the sensor is 
excited more the actuator is excited. On the contrary, 
with an inhibitory influence, more the sensor is 
excited, less the actuator is excited. Depending of 
the type of influence and how sensors and actuators 
are connected, the same robot (same actuators and 
same sensors) could perform radically different 
behaviours. The only difference lies in how sensors 
and actuators are connected. It results that the 
robotic entity is not only influenced by its 
surrounding environment but also by the nature of 
the influence between sensors and actuators. Making 
an Extreme Sensitive Robotic is then considering 
what occurs both outside and inside the robot's body. 
Pfeifer (Pfeifer, 2002) has named the relation 
between an entity and its environment as the 
embodiment relation. Pfeifer postulates that the 
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behaviour of an entity is highly influenced by the 
environment in which it is immersed but also by its 
own body. To illustrate this phenomenon, Pfeifer 
proposed the following experiment: looking at the 
trajectory of an ant walking on rocks, one could say 
that the behaviour of the ant is smart. Indeed, as the 
ant is avoiding obstacles, the trajectory appears to be 
complex. However, if this ant were a thousand times 
larger, the ant would not be blocked by stones 
anymore and would then walk in a straight line. The 
same observer would then say that the ant behaviour 
is not smart any more. Whereas there has been no 
change on the ant's mind or on the environment, the 
observed behaviour differs. A change in the ant body 
has changed the effect its body produces on the 
environment. This philosophical experiment shows 
that any changes in the body could radically change 
the relation between an entity and its environment. 
The same idea has to be applied to robotic because 
some part of a robot could disappear (for example, a 
sensor failure) or functionalities added during robot's 
activity. Even two robots with the same architecture 
can have electronic differences such as a motor 
rotating faster than the other does. These 
modifications of robot's body could have a strong 
impact on consequences of robot actions on the 
environment. Making an Extreme Sensitive Robotic 
consists in making it sensitive to the effects that their 
actions have on the environment. 
Thus, building an extremely sensitive robot is then 
to make it sensitive and adaptive to: 
- How its environment evolves, 
- How its functionalities interact, 
- Appearance or disappearance of functionalities 

and their effects on the environment.  
Unlike traditional robotic approach, which consists 
in building robust controllers for robotic platforms, 
the Extreme Sensitive Robotic approach deals with 
functionalities. Each functionality is designed to be 
self-adaptive, as self-adaptation is driven by a local 
observation of the environment. Thus, a robot is a 
set of functionalities interacting through the 
environment.  
As each functionality has to correlate its own 
activity to both users and the observation of the 
environment, the use of LfD seems here relevant. 
Thus, answering (Nehaniv, 2001) questions would 
be: 
- What: how users use system functionalities. 
- How: by correlating the performance of an 

action to the observation of the environment. 
- When: each time a user uses a functionality. 
- Who: whoever has to act on a functionality. 
To enable these functionalities to self-adapt, we 

propose to use the Adaptive Multi-Agent System 
theory, which is presented now. 

4 AMAS THEORY 

4.1 Landscape 

The Adaptive Multi-Agent System theory (Capera, 
2003) addresses the problematic of complex systems 
with a bottom-up approach where the concept of 
cooperation is the core of self-organisation. The 
theorem of functional adequacy (Camps, 1998) 
states that for all functionally adequate systems, 
there is at least one system with a cooperative 
internal state that realizes the same function in the 
same environment. A general definition of 
cooperation could be the golden mean between 
altruism and selfishness (Picard, 2005). Three 
mechanisms allow repairing an uncooperative state 
(Capera, 2003): 
- Tuning: the agent adjusts its internal state to 

modify its behaviour, 
- Reorganisation: the agent modifies the way it 

interacts with its neighbourhood, 
- Evolution: the agent can create other agents or 

self-suppress when there is no other agent to 
produce a functionality or when a functionality is 
useless.  

The system will then self-organise to stay in a 
cooperative state. From cooperative interactions 
between the system's entities emerges a global 
function that is more than the sum of the parts. This 
theory is applied in Extreme Sensitive Robotic with 
the Context-Learning pattern. 

4.2 Context-learning Pattern 

The term context refers to all information external to 
the activity of an entity that affects its activity. This 
set of information describes the environment as the 
entity sees it (Guivarch, 2012). Context-Learning is 
based on the idea that the activity of an entity is 
correlated with the observation made by the entity of 
its own context. Thus, when an action is performed 
on (or by) an entity, this entity can make a 
correlation between the performance of this action in 
the current context and the effects of this action and 
then, learns the relevance of this action in this 
particular context. So the entity becomes able to 
correlate what it feels to what it does and to reuse its 
knowledge when it is confronted to an already 
known context. The entity is then called context-
aware, which means that it is able to perceive, 

Extreme�Sensitive�Robotic�-�A�Context-Aware�Ubiquitous�Learning

245



interpret and use the information from its current 
context in order to dynamically adapt its 
functionality. 

The Context-Learning pattern has been applied 
to the control of bioprocess (Videau, 2011), the 
control of engine and energy (Boes, 2013) and the 
observation of users activity (Guivarch, 2012). In the 
next section, we will present general principles of 
the Context-Learning approach, based on an 
Adaptive Multi-Agent System (AMAS). 

4.3 Context-learning Principle 

The Context-Learning process is the result of two 
kinds of agents, each one being responsible for a 
particular activity in the system: 

- A Context Agent associates a low-level 
context description (See section 4.4) to an action 
proposal. It receives signals from the environment 
and uses them to characterize the context. When the 
current context belongs to the context description of 
a Context Agent, this agent considers itself as valid, 
which means the current context is relevant to make 
an action proposal to its associated Controller Agent. 
The action proposition is composed of the action 
description itself, and information about the 
relevance level to perform this action. After each 
proposal, it receives a positive feedback from its 
associated controller if the action is selected or a 
negative one if the action is not selected. The role of 
the Context Agent is then to self-adapt to feedbacks 
from its associated Controller Agent by modifying 
its situation description or by adjusting the 
information of its action proposition. 

- A Controller Agent is associated with each 
controllable variable of the environment and 
controls the modification of this variable to produce 
an adequate behaviour. In order to do this, it receives 
action proposals from Context Agents. Then, it 
selects the best action proposal, performs this action 
and observes the impact of this action (this 
observation is domain dependant) to send feedbacks 
to Context Agents. It is also responsible of Context 
Agents creation when there is no relevant Context 
Agent. (See section 4.4).  

Learning is then the result of a self-organisation 
process inside Context Agents as each Context 
Agent dynamically adjusts its validity domain in 
reaction to feedbacks from the Controller Agent. 

4.4 Context-learning Formalism 

A Context Agent receives signals from its 
environment and uses these signals to describe the 

current context. 
Definition 1: Let ݏ	 ∈ ܵ where ܵ is a set of 
signals and ݏ	 ⊂ ሾݏ௠௜௡,  ௠௔௫ሿ a signal such asݏ
,௠௜௡ݏ ௠௔௫ݏ 	∈ Թ . 

A low-level context description of a Context Agent 
is made with validity ranges. 

Definition 2: A validity range ݒ௦ associated to a 
value ݏ	 ∈ ܵ is a range ሾݒ௠௜௡ೞ,  ௠௔௫ೞሿݒ
where	ൣݏ݊݅݉ݒ , ൧ݏݔܽ݉ݒ ⊂ 	 ሾݏ௠௜௡,  .௠௔௫ሿݏ

A validity range allows the Context Agent to 
compare the current signal value to its associated 
validity range and to decide if it is relevant to send 
an action proposal. 

Definition 3: A validity range ݒ௦ is ݈݀݅ܽݒ if and 
only if	ݏ	 ∈ ݏ݊݅݉ݒൣ ,  .൧ݏݔܽ݉ݒ

For each received signal, a Context Agent creates an 
associated validity range. The set of validity ranges 
is then called a validity domain. 

Definition 4: Let ܿ	 ∈  a Context Agent. Let ௖ܸ ܥ
a validity domain associated to a Context 
Agent	ܿ. ௖ܸ is a set of validity range such 
as	∀ݏ ∈ ܵ, ௦߳ݒ∃ ௖ܸ. 

To determine its validity state, a Context Agent 
verifies each validity range of its validity domain.  

Definition 5: ܿ	 ∈  if and only if ݈݀݅ܽݒ is ܥ
௦߳ݒ∀ ௖ܸ, ,݈݀݅ܽݒ ௦ isݒ  .otherwise ݈݀݅ܽݒ݊݅

The role of the Context Agent is then to dynamically 
adjust its validity domain to feedbacks from its 
Controller Agent in order to be valid when its 
associated action is relevant. The main advantage of 
this context description is that it uses no semantic: 
only variations of signal value are observed and no a 
priori is made on signal value meaning. 

4.5 Context-learning Properties 

The Context-Learning pattern presents interesting 
properties:  
- On-line learning: the process of self-

organisation (especially the creation and tuning 
of the Context Agents) is performed at runtime 
on the fly without necessity to stop it or reboot it; 

- Openness: new variables can easily be added in 
the system thanks to the low-level description of 
situations in the Context Agents. Moreover, new 
functionalities can also be easily added because 
of the independence between the learning 
processes of each controllable variable; 

- Generic: the Context-Learning pattern uses no 
semantic on the signals perceived neither on the 
controlled system, making it highly generic.  
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4.6 Context-learning Modes 

The Controller Agent in charge of the Context 
Agents creation can apply either a supervised 
strategy, either a reinforcement strategy to explore 
the possible states. 
- Supervised strategy: the Controller Agent bases 

its Context Agents creation on the observation of 
the actions performed by an entity (for example, 
a user). When this entity performs an action 
whereas there was no Context Agent that 
proposed this action, the Controller Agent 
observes it and creates a Context Agent in order 
to represent this action associated with the 
current situation. With this strategy, the system 
only performs actions previously observed; 

- Reinforcement strategy: the Controller Agent 
generates Context Agents by itself for each 
situation where the current set of valid Context 
Agents is empty or composed of unsatisfying 
Context Agents. In this case, the Controller 
Agent applies different strategies in order to 
evaluate what seems to be the correct action to 
perform (for example, the same action as that of 
the previously selected Context Agent if it was a 
satisfying action, or else the opposite action). 

In both case, self-observation is the engine of 
learning. These two strategies differ in the way they 
explore the possibilities space. In supervised 
learning, exploration is guided by an external entity 
whereas in reinforcement learning, exploration is 
guided by a trial/error process. 

For more information on Context-Learning 
pattern, the reader can refer to previous works of 
(Guivarch, 2012) and (Boes, 2013). 

5 ALEX: AN ADAPTIVE MULTI-
AGENT SYSTEM FOR 
CONTEXTUAL-LEARNING 
FROM DEMONSTRATION 

ALEX (Adaptive Learner by EXperiments) is an 
AMAS based on the Context-Learning pattern in 
respect with the Extreme Sensitive Robotic vision. It 
allows a real-time learning from the observation of 
user’s activity in distributed applications. ALEX is 
able to control a device or a functionality by 
correlating actions performed by a tutor to the 
observations it makes of its own environment. 

The main hypothesis made by ALEX is that 
when a user has to act on it, it is because the ongoing 
behaviour is not satisfying the user anymore. Thus, 

the system has to self-organise to reach a 
functionally adequate behaviour. The actions 
performed by the user will be relevant under the 
same context. Then, ALEX tries to learn all 
contextual actions performed by a tutor and to 
reproduce them. 

An ALEX is an Extreme Sensitive Function. Its 
functionality could be the control of a high-level 
function (such as "Go back", "Turn left") or a low-
level control on an effector (such as the rotating 
speed of a motor or its angular position). It receives 
signals from its surrounding environment that could 
come from sensors, other Extreme Sensitive 
Functions, or even humans. A signal is composed of 
a unique identifier and a value. The identifier has no 
specific significance and by consequence, it has no 
semantic. These signals are used to determine 
contexts. 

When a user acts on it, the ALEX system 
analyses all signals to discover the current context. 
Then, it determines what action should have been 
performed if the user did not act and adapts the 
behaviour in response. Every time an ALEX 
performs an action, it communicates its new state as 
a new signal. Thus, each Extreme Sensitive Function 
can sense the activity of other within a 
communication range. An ALEX is then an 
autonomous controller trying to correlate the user 
activity to the observation of its own environment, 
including other ALEX. 

ALEX is currently used and tested on multi-
robot and multi-user ambient applications. Some 
examples of experiments can be viewed on one of 
the author’s website (www.irit.fr/ 
~Nicolas.Verstaevel/ALEX). 

6 CONCLUSIONS 

This paper presents Extreme Sensitive Robotic, an 
approach where the design is not guided by the goal 
to achieve but by the functionalities composing the 
system. The overall activity results from local 
interactions between each functionality.   

It also presents ongoing work on Learning by 
Demonstration. More precisely, it illustrates how we 
are combining the Extreme Sensitive Robotic 
approach and the AMAS approach. We propose the 
use of the Context-Learning pattern to enable self-
observation capacities in each system’s 
functionality. It results in ALEX, a multi-agent 
system for contextual learning by demonstration that 
brings Context-Awareness in ambient systems. 
Functional prototypes have been developed and we 
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now consider the application of our approach on 
concrete problems coming from industry.  
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