
stroke onset, varies significantly among the three 
clusters. This provides additional evidence that 
further thorough analysis of these clusters from a 
medical point of view may lead to better 
understanding of stroke physiology and more 
informed management of stroke patients. 
Furthermore, the information from these clusters 
may be utilized to address other research problems, 
such as the construction of computational models for 
identifying people at risk of stroke, and for 
predicting the outcome of patients after stroke. 
REFERENCES 
Aluru, V., Lu, Y., Leung, A., Verghese, J. and Raghavan, 
P., 2014. Effect of auditory constraints on motor 
performance depends on stage of recovery post-stroke. 
Frontiers in neurology, 5. 
Banfield, J. D. and Raftery, A. E., 1993. Model-based 
Gaussian and non-Gaussian clustering. Biometrics, 
pp.803-821. 
Baumgartner, C., Gautsch, K., Böhm, C. and Felber, S., 
2005. Functional cluster analysis of CT perfusion 
maps: a new tool for diagnosis of acute stroke?. 
Journal of digital imaging, 18(3), pp.219-226. 
Benjamini, Y. and Hochberg, Y., 1995. Controlling the 
false discovery rate: a practical and powerful approach 
to multiple testing. Journal of the Royal Statistical 
Society. Series B (Methodological), pp. 289-300. 
Brott, T., Adams, H. P., Olinger, C. P., Marler, J. R., 
Barsan, W. G., Biller, J., Spilker, J., Holleran, R., 
Eberle, R. and Hertzberg, V., 1989. Measurements of 
acute cerebral infarction: a clinical examination 
scale. Stroke, 20(7), pp.864-870. 
Bruehl, S., Lofland, K. R., Semenchuk, E. M., Rokicki, L. 
A. and Penzien, D. B., 1999. Use of Cluster Analysis 
to Validate IHS Diagnostic Criteria for Migraine and 
Tension Type Headache. Headache: The Journal of 
Head and Face Pain, 39(3), pp.181-189. 
De Haan, R. J., Limburg, M., Van der Meulen, J. H. P., 
Jacobs, H. M. and Aaronson, N. K., 1995. Quality of 
life after stroke impact of stroke type and lesion 
location. Stroke, 26(3), pp.402-408. 
Dempster, A. P., Laird, N. M. and Rubin, D. B., 1977. 
Maximum likelihood from incomplete data via the EM 
algorithm. Journal of the Royal Statistical Society. 
Series B (Methodological), pp.1-38. 
Donnan, G. A., Fisher, M., Macleod M., Davis, S.M., 
2008, Stroke, The Lancet 371 (9624). 
Dyken, M. L., 1991. Stroke risk factors. In Prevention of 
stroke, pp. 83-101. Springer New York. 
Fraley, C. and Raftery, A. E., 2006. MCLUST version 3: 
an R package for normal mixture modeling and 
model-based clustering. Washington Univ Seattle Dept 
of Statistics. 
Haldar, P., Pavord, I. D., Shaw, D. E., Berry, M. A., 
Thomas, M., Brightling, C. E., Wardlaw, A. J. and 
Green, R. H., 2008. Cluster analysis and clinical 
asthma phenotypes. American journal of respiratory 
and critical care medicine, 178(3), pp.218-224. 
Hirano, S., Sun, X. and Tsumoto, S., 2004. Comparison of 
clustering methods for clinical databases. Information 
Sciences, 159(3), pp.155-165. 
Jain, A. K., 2010. Data clustering: 50 years beyond K-
means.  Pattern Recognition Letters, 
31(8), pp.651-
666. 
Jain, A. K. and Maheswari, S., 2012. Survey of recent 
clustering techniques in data mining. Int. J. Comput. 
Sci. Manage. Res, 1, pp.72-78. 
Kruskal, W. H. and Wallis, W. A., 1952. Use of ranks in 
one-criterion variance analysis. Journal of the 
American statistical Association, 47(260), pp.583-621. 
MacQueen, J., 1967. Some methods for classification and 
analysis of multivariate observations. In Proceedings 
of the fifth Berkeley symposium on mathematical 
statistics and probability (Vol. 1, No. 14, pp. 281-
297). 
Moore, W. C., Meyers, D. A., Wenzel, S. E., Teague, W. 
G., Li, H., Li, X., ... and Bleecker, E. R., 2010. 
Identification of asthma phenotypes using cluster 
analysis in the Severe Asthma Research 
Program. American journal of respiratory and critical 
care medicine, 181(4), pp.315-323. 
Mulroy, S., Gronley, J., Weiss, W., Newsam, C. and 
Perry, J., 2003. Use of cluster analysis for gait pattern 
classification of patients in the early and late recovery 
phases following stroke. Gait & posture, 18(1), 
pp.114-125. 
Neal, R. M. and Hinton, G. E., 1998. A view of the EM 
algorithm that justifies incremental, sparse, and other 
variants.  Learning in graphical models. Springer 
Netherlands, pp.355-368. 
Omar, W. R. W., Taib, M. N., Jailani, R., Fuad, N., Isa, R. 
M., Jahidin, A. H. and Sharif, Z., 2013. Acute 
Ischemic Stroke Brainwave Classification Using 
Relative Power Ratio Cluster Analysis. Procedia-
Social and Behavioral Sciences, 97, pp.546-552. 
Pang-Ning, T., Steinbach, M. and Kumar, V., 2005. 
Introduction to data mining. Addison-Wesley. 2
nd
 
edition. 
Quinlan, J. R., 1996, Improved use of continuous 
attributes in C4.5. Journal of Artificial Intelligence 
Research, 4:77-90. 
Rankin, J., 1957. Cerebral vascular accidents in patients 
over the age of 60. II. Prognosis. Scottish medical 
journal, 2(5), pp.200-215. 
Schwarz, G., 1978. Estimating the dimension of a model. 
The annals of statistics, 6(2), pp.461-464. 
Shapiro, S.S. and Wilk, M.B., 1965. An analysis of 
variance test for normality (complete samples). 
Biometrika, pp.591-611. 
Witten, I. H., Frank, E. and Hall, M. A., 2011. Data 
Mining: Practical Machine Learning Tools and 
Techniques. Morgan Kaufmann. 3
rd
 edition. 
Model-basedClusteringofIschemicStrokePatients
181