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Abstract: In an engineering design context, the process of modeling complex 3D parts with feature-based parametric 
software systems often produces a large number of dependencies between geometric features that are 
difficult to manage. The resulting network of feature interdependencies can be understood as an alternative 
representation of the CAD model that can help identify the most important aspects of the geometry, its 
critical features, and understand the overall complexity and interconnectedness of the model. Being able to 
visualize and process this information efficiently can significantly enhance design activities and facilitate 
model reuse, which can ultimately lead to cost and time savings, and better quality models. In this paper, we 
identify some of the simplifications and elements that are overlooked by current representation techniques 
and describe the negative consequences of not taking these elements into consideration. We describe a new 
method and a software solution to generate a simplified, intuitive, and more accurate visualization of a 
parametric model as an acyclic digraph. Finally, to validate our approach, the proposed representation is 
compared to existing techniques using a group of CAD models. 

1 INTRODUCTION 

Over the years, feature-based parametric Computer-
Aided Design (CAD) technology has steadily 
progressed to become a mature and commonly 
deployed technology for the creation of 3D CAD 
models and assemblies. In a parametric model, a 
series of variable parameters and geometric relations 
control the geometry of the object so it can be 
modified easily to create different design variants. 
These elements can be defined by dimensional, 
geometric, and algebraic constraints (Shah, 1991).  

Feature-based parametric modeling systems rely 
on data structures that maintain geometric 
information of specific aspects of the model 
(features) in an associative manner, specifically in 
the form of parent/child relationships. Therefore, all 
individual features in the CAD model are connected 
hierarchically, creating a network structure where 
every node represents a feature and every connection 
represents a dependency between two features 
(Hanratty, 1995). This structure is commonly known 
as design tree, feature tree, or history tree. 

Because of the adaptable nature of the design 
tree, parametric 3D CAD systems allow the 

incorporation of design semantics to the model, 
which facilitates the modification of the geometry by 
simply changing the values of the parameters and 
dependencies. In this regard, a parametric model can 
be considered an intelligent representation of a part.  

When dependencies are properly defined, 
alterations to a parent node will automatically 
propagate downstream to all its child nodes and the 
CAD model will adjust and react to changes in a 
predictable manner (Bodein, Rose, and Caillaud, 
2014). Therefore, from a designer’s perspective, it is 
important to plan the modeling procedure 
beforehand to determine the most efficient sequence 
of features, as poor modeling strategies often result 
in parts that take longer to create and are more 
difficult or impossible to modify (Hartman, 2005). 

Unfortunately, parent/child interdependencies are 
also the root of many regeneration problems in 
parametric modeling. As the size and complexity of 
a parametric model grows, so do the number of 
dependencies and the degree of interconnectedness 
of its design tree, which can severely impact 
maintainability and model reuse (Salehi and 
McMahon, 2009). 
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From a user’s standpoint, modeling complex 
parts requires using and managing large amounts of 
parametric information and dependencies efficiently, 
which can be overwhelming and confusing, even for 
the most experienced designers (Baxter et al., 2007; 
Mohammed, May, and Alavi, 2008). For this reason, 
many design firms claim they have difficulties 
visualizing parametric information, which often has 
a negative impact on the documentation of design 
knowledge (Myung and Han, 2001).  

Although some tools have been developed to 
improve the visualization of a CAD model structure 
(some of which will be discussed in the next 
section), there are currently no tools that can 
automatically generate a simple and intuitive 
representation of all the dependencies in a 
parametric model for visualization and 
documentation purposes (Marchenko et al., 2011). In 
fact, most commercial CAD tools only provide tree 
views to navigate the model features in a linear 
manner, which often hinders the understanding of 
complex relations. Furthermore, the simplifications 
and assumptions made by these representations are 
frequently inaccurate and ambiguous, making them 
impractical and unreliable in production 
environments. 

In this paper, the problems with current 
representations of parametric model structures are 
identified and discussed. An improved 
representation method based on directed acyclic 
graphs (DAG) is proposed that eliminates ambiguity 
and simplifies inherited dependencies between 
features at multiple levels. Additionally, a prototype 
of our method is presented along with examples of 
achieved results. 

2 RELEVANT LITERATURE 

A general description of the hierarchical structure of 
a parametric CAD model was provided by 
(Marchenko et al., 2011). According to the authors, 
a parametric model can be understood as a mono-
hierarchical, tree-like structure consisting of general 
assemblies, subassemblies, parts, features, 
dependencies, and parameters, where all elements 
stand in relation to exactly one parent.  

If individual CAD elements are isolated and 
studied independently, additional dependencies can 
be added on separate hierarchical layers, resulting in 
a directed acyclic graph structure, also called poly-
hierarchy, in which multiple parents are possible for 
any given node. Consequently, a more complex 
network structure is produced (Marchenko et al., 

2011). 
Visualizing the CAD model structure is 

problematic, particularly for complex models. 
Efforts include the use of modeling languages such 
as UML (Wang and Li, 2012) and SysML (Peak et 
al., 2007; Wölkl and Shea, 2009) to help designers 
define structures that can be implemented in a CAD 
model, or the application of entity-relationship 
diagrams borrowed from database technologies 
(Zhou, 2011). These methods, however, were 
developed to describe models during the early stages 
of the design process, not as tools to generate 
visualizations of existing structures. 

The standard method to visualize the model 
structure implemented by most commercial systems 
such as SolidWorks®, Catia®, or PTC Creo®, is the 
design tree (see Figure 1). 

 

 

Figure 1: Sample design tree in SolidWorks®. 

The design tree is not a tool itself, but a 
chronological representation of all the steps and 
operations performed to create a specific model. As 
new features are created, they are sequentially 
inserted at the bottom of the model’s design tree. 
The design tree allows the user to go back to any 
specific point in the design and edit a particular 
feature or sketch. Nevertheless, it is difficult to 
visualize and analyze feature interdependencies. 
Although CAD packages allow designers to select 
node from the design tree and query their 
dependencies (the result is typically two lists of 
nodes with parent and child features), an overall 
view of the model’s structure is often not available. 

Various methods for modeling dependencies in 
engineering processes have been applied to the 
visualization of parametric models. For example, 
feature dependencies can be represented as design 
structure matrices. A Design Structure Matrix, or 
Dependency Structure Matrix, (DSM), is a method 
originally introduced by Steward (1981) for 
representing and analyzing interdependencies 
between elements and has become a common 
modeling tool in a variety of application areas 
(Eppinger, 1991).   
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A DSM is a square matrix (i.e., it has an equal 
number of rows and columns) that shows 
relationships between elements in a system.  In the 
context of parametric models, a binary matrix is 
used because it can represent the presence or 
absence of a relationship between pairs of features in 
a model. This matrix is described as follows: 
 Features of the model are placed down the left 

side of the matrix as row headings and across 
the top as column headings in the same order.  

 If there exists a parent-child relation from 
node i to node j, then the value of element i,j 
(row i, column j) is 1. Otherwise, the value of 
the element is zero.  

 

The diagonal elements of the matrix do not have 
any interpretation in describing the system, so they 
are usually either left empty or blacked out. An 
example of a DSM is shown in Figure 2. 

 

 

Figure 2: DSM showing model dependencies. 

Authors Tang et al. (2010) used DSM structures to 
capture and reuse past design knowledge. 
Specifically, they use DSM to record information 
such as interaction levels and design parameters. 
Researchers Lai and Gershenson (2008) applied 
DSM techniques based on design features to the 
representation of dependencies for assembly 
modularity. Karniel, Belsky, and Reich (2005) used 
DSM to decompose complex 3D-surface fitting 
reengineering problems from geometry constraints. 
In terms of CAD model visualization, Bhaskara 
(2011) suggested a novel approach to analyze and 
restructure complex CAD models using DSM 
techniques. In his work, once all the dependencies 
were identified and represented as a DSM, he 
applied partitioning and clustering algorithms to 
restructure and optimize the final matrix (and, thus, 
the original model structure). For instance, heavily 
used features and their closely related dependencies 
were automatically moved to the bottom of the 
DSM, and closely connected features were grouped 
together to form clusters. For his study, he 
developed the DSMs manually, but he recognized 

the need for software systems that can automatically 
generate accurate DSMs for large and complex CAD 
models. He also acknowledged the need to represent 
dependencies from auxiliary features and sketches 
(Bhaskara, 2011). 

A more visual, intuitive, and common method to 
represent dependencies in parametric models is 
provided by graph-based tools. Generally speaking, 
a graph G can be defined as a pair G = (V, E) where 
V is a set of nodes (or vertices) and E, the links (or 
edges) between two connected nodes. When the 
edges have a direction associated with them, then the 
graph is called a directed graph, or digraph. 

Graphs have been used to model a variety of 
problems in many disciplines such as mathematics 
(Bondy and Murty, 1976), engineering and computer 
science (Deo, 2004), and economics (Michael and 
Battiston, 2009). In the context of parametric CAD, 
models can be understood as directed graph 
structures where every feature is represented as a 
node, and every parent-child relation is represented 
with a directed edge from the parent to the child 
node, as shown in Figure 3. Furthermore, because 
the nature of parent-child relations prevents the 
appearance of directed cycles of loops in the 
structure, the directed graph is always acyclic.  

 

 

Figure 3: Directed graph showing model dependencies. 

Graph-based tools have been used to define the 
relationships and dependencies among the geometric 
features of parts in mechanical assemblies (Srikanth 
and Turner, 1990) and more recently, to check   
tolerance specifications assigned to a CAD model 
(Franciosa, Patalano, and Riviere, 2010).  
Researchers Marchenko et al. (2011) proposed a 
method that uses graphs to visualize and document 
parametric information of 3D CAD models. Their 
system is limited to assemblies in the area of sheet 
metal forming tools, although the authors claim that 
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their visualizations and tools can be generalized for 
design tasks in other branches.  

More recently, Patalano, Vitolo, and Lanzotti 
(2013) presented a software tool that uses graph 
theory to generate the geometric modeling of 
mechanical assemblies. Similarly to the previous 
authors, Patalano, Vitolo, and Lanzotti (2013) also 
limited their study to assemblies and did not 
consider the representation of individual parts. 

Graphs are also used by Owensby and Summers 
(2014) to estimate assembly times of products. In 
their work, the authors generate the connectivity 
graph of an assembly from assembly constraint 
information and analyze the structural complexity of 
the graph using a variety of metrics. Once again, 
only assemblies are considered. 

Some high-end commercial CAD packages such 
as Catia® and UG-NX® provide tools to explore the 
structure of CAD models and the links between 
assembled parts in the form of graphs (Tickoo, 
2014). 

In the next section, some of the visualization 
problems with current representation tools are 
discussed, focusing on the ambiguity of the 
representations when certain simplifications are 
made. 

3 PROBLEMS WITH CURRENT 
GRAPH-BASED 
VISUALIZATION METHODS 

Some of the problems with current graph 
visualization techniques in the area of parametric 
modeling were identified by Marchenko et al. 
(2011). The problems described by the authors, 
however, are mainly concerned with the 
descriptiveness, readability, and clarity of the graph, 
i.e., the challenges that need to be overcome to make 
the graph representation more expressive and 
understandable. The problems they identified as well 
as some of their recommendations can be 
summarized as the following: 
 In many models, especially those with a large 

number of relations, some dependencies 
cannot be drawn without intersections, which 
can result in a confusing visualization. Objects 
and lines in the graph should be drawn 
without overlapping. 

 In large graphs, it is often difficult to track 
down the hierarchy of individual CAD 
elements, particularly if the graph is not 
clearly organized by levels. Connections 

should be easy to follow, with minimum 
crossings and bends. 

 The designation of certain parameters is not 
unique. In some cases, to reduce the number 
of intersections, some graph representations 
show the same feature as multiple nodes.  

 The representation of specific input and output 
parameters related to a dependency is not 
shown, which hinders the tracking of 
information flows. In fact, these specific 
elements cannot be efficiently displayed by a 
static visualization, as the large number of 
dependencies would overwhelm the viewer. 
Instead, an interactive approach is needed to 
control the number of elements that are 
displayed at any given time. 

 There is a lack of standardization in terms of 
the graphical language (icons) used to 
represent individual CAD elements, which can 
be confusing due to the abundance of CAD 
elements and the variety of CAD systems. 

 

Although the previous recommendations can 
certainly improve the graph representation of the 
parametric CAD model, they do not consider some 
of the specific relations that may result in ambiguous 
representations or incorrect graphs. In the following 
subsections, two of these specific problems are 
described. 

3.1 Multi-level Relations 

An ambiguous graph can be generated if multi-level 
relations (grandparent-parent-child) are ignored, 
simplified, or not carefully analyzed. As part of this 
research, the authors of this paper evaluated this 
situation using two popular parametric modeling 
packages, SolidWorks® and Autodesk Inventor®. 

To illustrate the problem, two versions (A and B) 
of a CAD model were used. Both versions are 
identical in terms of geometry, but different in terms 
of the parameters used to control the features. The 
geometry of the models is shown in Figure 4. 

The two models differ slightly in the way step 6 
(“cut hole”) was performed. This 3D operation takes 
the two-dimensional profile of the circle as input and 
removes material up to a specified depth, which can 
be parameterized.  Since the design of the part 
requires the hole to pierce through the top horizontal 
block, which is 0.5” thick, the depth of the hole must 
also be 0.5” deep.  

In version A of the model, the depth of the cut 
operation was indicated as a fixed value of 0.5” 
which goes through the entire top block. In version 
B,  however,  the  depth  of the  cut was indicated by 
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Figure 4. Modeling steps to create sample part. 

using an existing point as a reference (one of the 
corners on the base block). This way, if the thickness 
of the horizontal block needs to be increased, the 
depth of the cut does not have to be manually 
adjusted. The two approaches are shown in Figure 5. 
Both of them will successfully perform the cut and 
deliver the desired result. 

 

Figure 5. Versions of CAD model based on different 
parameters for the depth of the cut. 

When asked to display the feature dependencies for 
both models, the CAD packages return the exact 
same information. The dependency graph for both 
versions of the model is shown in Figure 6. The 
node “Extrude1” represents the first extrusion of the 
original sketch (step 2), node “Extrude2” represents 
the extrusion of the horizontal block (step 4), and 
node “Cut” represents the circular hole (step 6). 

The dependency between the first node 
(“Extrude1”) and the third (“Cut”) is problematic. 
Even though the dependency is displayed in the 
graph in both versions of the model, its meaning 
differs greatly. 

In the first case (version A), the link between 
“Extrude1” and “Cut” represents an inherited 
dependency. “Cut” depends on “Extrude2” and 
“Extrude2” depends on “Extrude1”, therefore “Cut” 
depends on “Extrude 1.” In other words, “Extrude1” 
is the grandparent node of “Cut.” This relation 
indicates that the node “Cut” will be affected by 

changes in either “Extrude1” or “Extrude2.” 
In the second case (version B), the same link 

represents a direct dependency between “Extrude1” 
and “Cut.” The geometry of the cut is partially 
dictated by a geometric element (point P1) that 
belongs to the feature “Extrude1.” 

 

 

Figure 6: Dependency graph for both versions of the CAD 
model according to the parent/child relationships 
displayed by SolidWorks®. 

This inherited dependency occurs naturally in single 
body parts as a by-product of the Boolean operations 
that are performed internally to manipulate 
geometric bodies. As new features are created and 
added to the model, they are automatically merged 
or combined with existing features to create one 
single block of geometry. As a result, all new 
features will depend, one way or another, on 
previous geometry. However, from a practical 
modeling standpoint, these dependencies do not add 
value to the visualization. The fact that all features 
are merged together in one single body implies that 
these types of dependencies exist and that the chain 
of dependencies always flows from the feature that 
is created first to the feature that is created last. 

To illustrate the situations discussed earlier, we 
can analyze how the two models react to changes 
when the geometry is modified by adding a new 
feature (a third extrusion that passes through point 
P1)  before  the  hole  is  cut.  While  version  A  will 
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Figure 7: Model behavior after geometry modifications. 

update correctly, version B will return a rebuild error 
because point P1 will no longer available after the 
third extrusion is created. The sequences of changes 
are shown in Figure 7. 

This example demonstrates how current graph-
based representation methods for parametric models, 
even those implemented by commercial systems, are 
imprecise when dealing with multi-level or inherited 
dependencies in single body parts. When such 
relations are displayed, the resulting graph becomes 
ambiguous, as it allows for multiple interpretations, 
each of which represents a different CAD model. 

As a solution to this problem, we suggest 
labelling or marking the inherited dependencies, or 
using a different color, line type, or symbol for the 
connector. In certain cases, inherited dependencies 
can even be eliminated, especially in multi-level 
relations (such as great-grandparent, grandparent, 
parent, child) that involve single-body parts with 
features that already share a different type of 
dependency. These simplifications can significantly 
reduce the visual complexity of the graph and help 
users easily determine the most relevant parametric 
constraints. This statement reinforces the position of 
authors Marchenko et al. (2011), whose research 
pointed out the problem of visually overwhelming 
users with unnecessary dependencies. 

3.2 The Role of Sketches 

Although certain 3D features do not require the use 
of two-dimensional sketches (fillets and chamfers, 
for example, only consume existing 3D edges, and 
mirror creates a symmetrical copy of a set of 
features about a face or a plane), most 3D operations 
that are used to define the building blocks of a 
feature-based parametric 3D model require prior 
definition of one or more sketches as input to 
generate the desired volume. From a purely 
functional point of view, however, the vast majority 
of 2D sketches are used only once (and almost 
exclusively by one feature). Only occasionally are 
sketches shared among multiple features to define 
different geometric elements (a situation that 
translates into a graph with one parent sketch node 
and multiple child feature nodes) or used as 
connecting nodes of a sketch-to-sketch dependency 
(which is represented as a parent sketch node with a 
child sketch node). 

In this regard, most sketches are shown as 
intermediate elements in the dependency graph 
linking two feature nodes, which results in an extra 
level of connectors that add unnecessary clutter to 
the graph but no added value in terms of 
visualization of the parametric relations. To simplify 
the overall graph, these sketch nodes can be 
represented with distinctive styles or even 
eliminated from the graph. 
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Figure 8: Modeling steps (top) and three visualizations of the model structure (bottom). The classic design tree 
representation (bottom left) does not provide information on interdependencies. Notice the reduction of nodes in the 
simplified graph (bottom right) when compared to the full graph (middle) when connecting sketches in single body parts are 
not shown. 

An example of a CAD model (displayed as the 
sequence of sketching and modeling steps require to 
build the geometry) along with its corresponding full 
graph (including all sketch nodes) and the simplified 
version of the graph according to the criteria 
discussed in this section are shown in Figure 8. 

4 IMPROVED GRAPH 
VISUALIZATION 

Based on the discussion from previous sections, we 
propose a simplified representation of a dependency 
graph for parametric CAD models that is more 
readable, less cluttered, and reduces ambiguity. Our 

representation is built by reducing the number of 
nodes in the graph according to the following 
criteria: 
 Connecting sketches used to create a feature 

that will be merged with previous geometry do 
not provide value to the user in terms of 
visualizing and understanding the graph 
complexity. Therefore, sketch nodes are not 
displayed, unless they are explicitly used as 
part of a constraint. Connecting sketch nodes 
can be identified easily as sketch elements 
with only one child node (the 3D feature they 
generate). 

 Inherited dependencies are not displayed. 
Multi-level relations (grandparent-parent-
child) are only displayed if there is a specific 
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constraint that relates the grandparent node to 
the child node. Otherwise, the dependencies 
can be implied and therefore, there is no need 
to make them visible. 

 

The pseudo code for a simplification algorithm 
to reduce the node and dependency count in the 
model graph can be written as:  

 

TraverseModel() 
For each node n 

{ 
If n is a Sketch and has  
  only one child node then 
  { 
  //Reconnect dependencies 
  For each Parent(n) 

Reconnect to Child(n); 
  Remove(n); 
  } 
Else If n is a Feature then 
  { 
  For each Child(n) 
 Check constraints; 
 If there is only one  

constraint and constraint is 
‘Merge geometry’ then 
 //multi-level 
 delete dependency; 

  } 
} 

Using two CAD models, a side-by-side 
comparison of the full graph and our simplified 
version of the graph according to the criteria 
discussed in this paper is provided in Figure 9. Node 
names have been omitted for clarity.  

5 CONCLUSIONS 

The constant need for tools and methods to support 
design activities and reuse increasingly complex 
CAD models naturally demands the development of 
efficient visualization systems to manage parametric 
model geometry.  
In this paper, we have reviewed some of the most 
common representation and visualization methods 
for parametric 3D CAD models, particularly 
focusing on dependency graphs. Our work describes 
a series of problems with current graph 
representation techniques and analyzes the 
consequences of certain dependencies and CAD 
elements, and the effects of representing relations 
that have not been rigorously examined. In both 
cases, a considerable level of ambiguity is 
introduced to the graph, resulting in an imprecise  or 
cluttered representation of the model. 

 
Figure 9: Comparison of the full graph and simplified version for two CAD models (A and B). Node names have been 
omitted for clarity. 
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We have proposed a simplified representation of 
the dependency graph by eliminating sketch nodes 
that do not add value to the overall visualization and 
only showing the multilevel dependencies 
(grandparent-child) that are explicitly defined by 
geometric and dimensional constraints. The result is 
a clearer and more intuitive representation of the 
internal structure of the parametric model. While the 
system need to be tested on a large, "real-world" 
example with a more extensive group of models, in 
many cases the number of nodes can be reduced by 
at least half, which contributes to a more effective 
visualization. 

Although the algorithm presented in this paper 
was implemented as an add-in for the CAD package 
SolidWorks, further developments are planned for 
the near future. At the present time, the software 
prototype can extract model information and export 
it to a graph structure (which is visualized by an 
external application), but a complete interactive 
solution that is fully integrated within the CAD 
environment would be beneficial. In addition, the 
simplified model representation can be analyzed, 
restructured, and optimized by applying clustering 
and partitioning algorithms, which have the potential 
to make models more flexible and reusable. 
Furthermore, comparative studies of the graph 
structures can be performed and assessed using 
complexity metrics. 
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