In Silico Analysis of Interactions Between NFkB and HSF Pathways

Jaroslaw Smieja, Malgorzata Kardynska, Anna Naumowicz, Patryk Janus, Piotr Widlak, Marek Kimmel

2015

Abstract

Motivation: Inhibition of NFkB pathway is known to promote apoptosis and therefore may constitute one of the goals in anticancer therapies. Experimental results show that heat shock induces such inhibition in cancer cells. However, the mechanisms of interactions between heat shock and NFkB pathways are not fully understood yet. Development of a combined mathematical model of these pathways and its subsequent computational analysis should help to uncover these mechanisms and determine the time window in which heat shock treatment preceding chemotherapy would be the most efficient. Results: An original mathematical model has been developed, allowing for computational testing of various hypotheses concerning main sources of interplay between HSF and NFkB pathways. Computational analysis strongly suggests that the competition for IKK, known from literature, cannot be the only mechanism. Two plausible hypotheses are that either a kinase activating IKK can misfold due to heat shock or that heat shock affects TNF receptors, blocking activation of NFkB pathway at the cell membrane.

References

  1. Amman J. U., Haag C., Kasperczyk H., Debatin K. M., Fuld S. (2009) Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NFkB inhibition, Int. J. Cancer, 124, 1301-1311.
  2. Ciocca D. R., Calderwood S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86-103.
  3. Daugaard M., Rohde M, Jaattela M. (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett. 581, 3702-3710.
  4. Domingo-Domènech J., Pippa R., Tápia M., Gascón P., Bachs O, Bosch M (2008) Inactivation of NF-?B by proteasome inhibition contributes to increased apoptosis induced by histone deacetylase inhibitors in human breast cancer cells, Breast Cancer Research and Treatment, 112(1), 53-62.
  5. Fujimoto M., Nakai A. (2010) The heat shock factor family and adaptation to proteotoxic stress, FEBS Journal, 277, 4112-4125.
  6. Janus P., Pakula-Cis M., Kalinowska-Herok M., Kashchak N., Szoltysek K., Piglowski W., Widlak W., Kimmel M., Widlak P. (2011), NF-kB signaling pathway is inhibied by heat shock independently of active transcription factor HSF1 and increased levels of inducible heat shock proteins, Genes to Cells, 16, 1168-1175.
  7. Lee Titsworth W., Murad G. J., Hoh B. L., Rahman M (2014) Fighting fire with fire: the revival of thermotherapy for gliomas. Anticancer Res. 34(2), 565-574.
  8. Lipniacki T., Paszek P., Brasier A. R., Luxon B., Kimmel M (2004) Mathematical model of NF-kB regulatory module. J Theor Biol, 228, 195-215.
  9. Morimoto R. I. (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 76, 91-99.
  10. Neznanov N., Komarov A. P., Neznanova L., StanhopeBaker P., Gudkov A. V. (2011) Proteotoxic stress targeted therapy (PSTT): induction of protein misfolding enhances the antitumor effect of the proteasome inhibitor bortezomib. Oncotarget 2, 209- 221.
  11. Peper A., Grimbergen C. A., Spaan J. A. E., Souren J. E. M., van Wijk R. (1997) A mathematical model of the hsp70 regulation in the cell. Int J Hyperth 14(1), 97- 124.
  12. Petre I., Mizera A., Hyder C. L., Meinander A., Mikhailov A., Morimoto R. I., Sistonen L., Eriksson J. E., Back R. (2011) A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Nat. Comp. 10, 595-612.
  13. Ran R., Lu A., Zhang L., Tang Y., Zhu H., Xu H., Feng Y., Han C., Zhou G., Rigby A. C., Sharp F. R. (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev. 18, 1466-1481.
  14. Rieger T. R., Morimoto R. I., HatzimanikatisV. (2005) Mathematical Modeling of the Eukaryotic Heat-Shock Response: Dynamics of the hsp70 Promoter, Biophysical Journal, 88, 1646-1658.
  15. Rybinski M., Szymanska Z., Lasota S., Gambin A. (2013) Modelling the efficacy of hyperthermia treatment, J. R. Soc. Interface, 10: 20130527.
  16. Sheppard P. W., Sun X., Khammash M., Giffard R. G. (2014) Overexpression of Heat Shock Protein 72 Attenuates NF-kB Activation Using a Combination of Regulatory Mechanisms in Microglia. PLoS Comput Biol 10(2): e1003471.
  17. Sung M. H., Simon R. (2004) In silico simulation of inhibitor drug effects on nuclear factor-kB pathway dynamics. Mol. Pharmacol. 66, 70-75.
  18. Szymanska Z., Zylicz M (2009) Mathematical modeling of heat shock protein synthesis in response to temperature change, J Theor Biol, 259, 562-569.
  19. Wang Y., Paszek P., Horton C. A., Kell D. B., White M. R. H., Broomhead DS, Muldoon MR (2011) Interactions among oscillatory pathways in NF-kappa B signaling, BMC Sys Biol, 5:23.
  20. Wang Y., Paszek P., Horton C. A., Yue H., White M. R. H., Kell D. B., Muldoon M. R., Broomhead D. S (2012) A systematic survey of the response of a model NF- signalling pathway to stimulation, J Theor Biol, 297, 137-147.
  21. Westerheide S. D, Raynes R., Powell C., Xue B., Uversky V. N. (2012) HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci. 13(1), 86-103.
  22. Yamamoto Y., Gaynor R. B. (2001) Therapeutic potential of inhibition of the NF-?B pathway in the treatment of inflammation and cancer, J Clin Invest. 107(2), 135- 142.
  23. Yang P., Zhou T. (2013) Receptor-dependent sensitivity of NF-?B to low physiological level, J Biol Sys, 21(3): 1350018.
  24. Zambrano S., Bianchi M. E., Agresti A. (2014), A simple model of dynamics reproduces experimental observations, J Theor Biol, 347, 44-53.
  25. Zanotto-Filho A., Braganhol E., Schröder R., de Souza L. H. T., Dalmolin R. J. S., Bittencourt Pasquali M. A., Gelain D. P., Battastini A. M. O., Moreira J. C. F. (2011) NF?B inhibitors induce cell death in glioblastomas, Biochemical Pharmacology, 81(3), 412-424.
Download


Paper Citation


in Harvard Style

Smieja J., Kardynska M., Naumowicz A., Janus P., Widlak P. and Kimmel M. (2015). In Silico Analysis of Interactions Between NFkB and HSF Pathways . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2015) ISBN 978-989-758-070-3, pages 201-206. DOI: 10.5220/0005256602010206


in Bibtex Style

@conference{bioinformatics15,
author={Jaroslaw Smieja and Malgorzata Kardynska and Anna Naumowicz and Patryk Janus and Piotr Widlak and Marek Kimmel},
title={In Silico Analysis of Interactions Between NFkB and HSF Pathways},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2015)},
year={2015},
pages={201-206},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005256602010206},
isbn={978-989-758-070-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2015)
TI - In Silico Analysis of Interactions Between NFkB and HSF Pathways
SN - 978-989-758-070-3
AU - Smieja J.
AU - Kardynska M.
AU - Naumowicz A.
AU - Janus P.
AU - Widlak P.
AU - Kimmel M.
PY - 2015
SP - 201
EP - 206
DO - 10.5220/0005256602010206