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Abstract: Over the last years a great number of bacterial genomes were sequenced. Now one of the most important 
challenges of computational genomics is the functional annotation of nucleic acid sequences. In this study 
we presented the computational method and the annotation system for predicting biological functions using 
phylogenetic profiles. The phylogenetic profile of a gene was created by way of searching for similarities 
between the nucleotide sequence of the gene and 1204 reference genomes, with further estimation of the 
statistical significance of found similarities. The profiles of the genes with known functions were used for 
prediction of possible functions and functional groups for the new genes.We conducted the functional 
annotation for genes from 104 bacterial genomes and compared the functions predicted by our system with 
the already known functions. For the genes that have already been annotated, the known function matched 
the function we predicted in 63% of the time, and in 86% of the time the known function was found within 
the top five predicted functions. Besides, our system increased the share of annotated genes by 19%. The 
developed system may be used as an alternative or complementary system to the current annotation systems. 

1 INTRODUCTION 

Recent advances in genome sequencing have 
provided access to a wide variety of nucleic acid 
sequences (Eisenhaber, 2012). Thousands of 
complete bacterial genomes, as well as numerous 
eukaryotic genomes are now available for use. But 
to effectively apply this knowledge, we must 
understand the functions of genes in cells, which 
makes functional characterization, i. e. annotation of 
the already sequenced genes, our top priority (Janitz, 
2007). There are two methods to solve this task. The 
first one is in vitro – the experimental biological 
approach, which allows us to receive the most 
reliable information about the functions of genes and 
other sequences (Saghatelian and Cravatt 2005). 
However, these researches are quite time-consuming 
and expensive. In silico approach is the other option: 
computer-based annotation is rather low-cost and the 
results can be obtained much faster. Yet, the 
reliability is not high compared to the experimental 
approach. Besides, there are genes which cannot be 
annotated with the computer approach, and their 

share in bacterial genomes, though varying for 
different genomes, averages 45% (Galperin and 
Koonin 2010). Our purpose is to develop new 
mathematical and computational techniques in order 
to increase the share of annotated genomes and 
improve the annotation reliability (Richardson and 
Watson 2013). The bacterial genes computer 
annotation is based on one main principle: if two 
sequences are similar, the probability of their 
biological functions being similar is very high. This 
idea underlies all of the currently used mathematical 
annotation methods (Pandit et al., 2004; Friedberg 
2006) of which the most widespread are those based 
on the heuristic similarity search algorithm, multiple 
sequence alignment, hidden Markov model (HMM) 
and complex systems combining several methods. 
These methods were used to assign functions to 
nearly 60% of sequenced bacterial genes, while 
around 40% are not yet characterized. Let’s examine 
the main computer annotation methods in more 
detail.  
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1.1 Dynamic Programming and 
Heuristic Algorithms 

The main principle behind the annotation is as 
follows: if a known sequence in a database is similar 
to the one under study, their functions are likely to 
be similar too. Methods used to detect similarities 
between nucleotide sequences include global and 
local alignment, both of which are based on dynamic 
programming (Needleman & Wunsch 1970),(Smith 
& Waterman 1981). These methods are the most 
precise ones, but are not very efficient due to their 
extensive computational complexity. Therefore, the 
heuristic programming tools for pairwise alignment 
such as BLAST (Altschul et al. 1990) and FASTA 
(Pearson & Lipman 1988) with various Expect value 
thresholds, and others are more widespread. As a 
source of sequences with known functions they use 
the following databases: RefSeq (Pruitt et al. 2005), 
GenBank (Benson et al. 2013), KEGG Genes 
(Kanehisa et al. 2004), UniProt (The UniProt 
Consortium 2011), Swiss-Prot (Bairoch & Apweiler 
1999). Compared to the dynamic programming, 
however, the heuristic algorithms discover much 
fewer significant alignments. At the same time, this 
is the only approach allowing us to analyze all the 
gene sequences available so far.  

1.2 HMM-based Systems 

PFAM (Finn et al. 2010) and TIGRfam (Haft 2003) 
– these are both protein families databases 
containing multiple alignments, HMM models, and 
related information for automatic classification and 
annotation of new proteins. The search for the most 
probable models is carried out with HMMER3 (Finn 
et al. 2010) or PSI-BLAST (Altschul et al. 1997) 
software tools. To annotate genes using HMM, it is 
necessary to form the training and validation gene 
sets, train the HMM models and conduct cross-
validation. Then the best match between the HMM 
and the gene under study is used for functional 
annotation. This approach inherits all of the features, 
advantages and disadvantages of machine learning: 
importance of forming original samples correctly, 
avoiding system retraining, etc. At the same time, 
the quality of functions prediction with HMM is 
much higher than in some machine learning 
algorithms (Ali 2004). 

1.3 Phylogeny-based Methods 

One of these methods uses the COG database 
(Tatusov et al. 2000), which contains clusters of 

orthologous genes. Three or more genes are grouped 
into one cluster if they are found in different 
genomes and are more similar to each other than to 
other genes in these genomes. Currently there are 
about five thousand COG clusters with known 
biological functions. The main idea is that 
orthologous genes are likely to have the same 
biological functions. The method used to define such 
functions is similar to the methods described above. 
To annotate a gene, initially there is a database 
created containing clusters of orthologs of known 
genes. Further, the functions of the gene under study 
as well as its COG cluster are defined by way of 
searching for similarities between this gene and the 
known genes from the database. The sequences are 
compared by searching for significant alignments 
with the BLAST software. One of the disadvantages 
of the approach is the need to analyze a significant 
number of organisms before a phylogenetic tree and 
COG clusters can be created; the other one is that to 
conduct the search for significant alignments the 
heuristic tools are used, and they cannot guarantee 
that all statistically significant alignments are 
discovered. 

1.4 Pipelines 

InterPro (Hunter et al. 2012) is a system that uses the 
protein families database with known functions, 
signatures and GeneOntology (Ashburner et al. 
2000) terms (GO) to determine features of new 
proteins. InterPro contains 11 different databases: 
Pfam, TIGRfam, SUPERFAMILY, and others. For 
search and annotation the InterProScan tool is used 
(Quevillon et al. 2005). 

IMG(-ER) (Markowitz et al. 2012) is a system 
for automatic annotation of new genomes and expert 
functions review. It includes native IMG terms 
derived from Pfam, TIGRfam, COG, SWISS-PROT, 
GO, KEGG, and is used for annotation of 
completely new genomes and for complementation 
of existing annotations. The database contains more 
than four thousand various gene functions; about 
20% of all genes are covered by IMG terms. 

J.Craig Venter Institute metagenomics analysis 
pipeline (Tanenbaum et al. 2010) is a system for 
structural and functional annotation of genes. 
Functional annotation is based on BLAST, RPS-
BLAST, HMM, and other systems for homology 
search between nucleotide sequences. As a result of 
annotation, the gene is assigned a name, symbol, GO 
terms, EC number, and JCVI functional role 
categories. 

RAST (Aziz et al. 2008) is a fully automated 
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service for annotating bacterial and archaeal 
genomes. It uses manually curated subsystems of 
functional roles and protein families (FIGfams) 
largely derived from the subsystems. This service is 
developed by the SEED project, which also provides 
convenient tools for viewing and analyzing results of 
the annotations. 

GenDB (Meyer et al. 2003) is an open source 
project that provides a web interface and API for 
gene annotation. For functional annotation it uses 
BLAST, HMMER, InterProScan, and other 
prediction tools. 

Although by using several annotation methods 
we can increase the number of genes with predicted 
functions, complex systems inherit features and 
drawbacks of their subsystems. Besides, it is 
sometimes difficult to choose between the results 
from different algorithms. 

1.5 Phylogenetic Profiles 

When the similarity between two nucleic or amino 
acid sequences is not strong (usually that means 
below 70%), we cannot be sure that these sequences 
have the same biological roles notwithstanding the 
number of similarities found. However, we shall 
consider the fact that not a separate gene, but a 
combination of genes involved in a genetic process 
is relevant for the viability of bacteria. This means 
that genes found in one and the same combination in 
different bacterial genomes are most probably 
involved in the same genetic process. Hence, the 
information about the gene under study being 
involved in a group of genes present in genomes of 
different bacteria may be critically important for 
prediction of its function. 

To obtain this information, we form the so called 
phylogenetic profiles (Gaasterland and Ragan, 1998; 
Weiller 1998). They are created for every gene of 
the bacterial genome using the following method. 
First, certain genome sequences are selected, which 
we will call the reference group. Then a 
phylogenetic profile is built for every gene in these 
sequences; this profile is a vector of ones and zeros 
with the length equaling the size of the reference 
group. Thus, every gene from the group matches "0" 
or "1" in the corresponding phylogenetic profile: a 
zero means the bacterial genome contains no 
homolog for the gene under study; if a similar gene 
is found, the entry is a one. 

After constructing profiles for the reference 
group, we build one for the gene under study. Using 
a similarity metric we can now compare the profiles. 
If the gene under study is part of a combination 

involved in one genetic process, its profile will be 
similar to one or several profiles in the reference 
group. Otherwise no similarities will be found. 

This approach was first used by (Gaasterland and 
Ragan 1998) and than M.Pellegrini for protein 
sequences (Pellegrini et al. 1999) and was 
sufficiently developed over the last ten years in 
terms of the creation, comparison and analysis of 
phylogenetic profiles. Particularly, the concept of 
using real vectors or matrices instead of binary 
vectors was developed. Also, various approaches to 
comparison of phylogenetic profiles were suggested, 
such as the mutual information approach, Jaccard 
coefficient, Pearson correlation, hypergeometric 
distribution and others. The detailed review of the 
approaches was given in studies (Pellegrini 2012; 
Kensche et al. 2008). 

However, the results very much depend on the 
similarity search method used. In this study, we used 
the phylogeny-based method, though a little 
amended. Firstly, with the help of BLAST we 
searched for homologs with different values of 
reward and penalty, which ensured the reasonable 
search speed and allowed us to find a large number 
of local alignments. Secondly, we used the dynamic 
programming algorithm (Needleman & Wunsch 
1970) with the PuPy substitution matrix (Rastogi et 
al. 2006) to see if a statistically significant global 
alignment could be found where BLAST had 
discovered a local one. The reason we looked for 
global alignments only was that local alignments 
often indicate partial similarities, not the whole gene 
homologs. To define statistical significance of a 
global alignment, the Monte Carlo method was used 
(Raeside 1976). Thirdly, we compared the annotated 
gene to the bacterial genomes, not to single genes, 
which saved us from mistakes associated with the 
structural annotation of bacteria, i. e. with genes 
demarcation. Following this analysis, a phylogenetic 
profile was built for every gene under study, which 
was then compared to the profiles of the reference 
group genes. Our study resulted in annotation of an 
additional 19% of genes which couldn’t be 
annotated with any of the previously used methods. 
At the same time, we were unable to assign 
statistically valid functions to 9% of the genes. 

2 MATERIALS AND METHODS 

2.1 Phylogenetic Profiles 

Phylogenetic profiles are used to create sets of genes 
that are involved in the same genetic process. This 

BIOINFORMATICS�2015�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

136



approach was first applied in 1998 by M. Pellegrini 
and his colleagues (Pellegrini et al. 1999). To create 
a phylogenetic profile of a gene, it is necessary to 
form a binary vector as follows: if a gene has been 
detected in the i-th genome, the i-th position of the 
vector contains 1; if there is no gene found, it is 0. 
We assume that the genes involved in the same 
genetic process will have similar phylogenetic 
profiles constructed from the same set of reference 
genomes. The assumption is derived from the fact 
that the gene normally performs its function not 
alone, but in conjunction with other genes as part of 
one metabolic pathway. In the course of evolution 
this process is inherited by different organisms; as a 
result, more functional groups emerge containing 
genes of similar profiles (Eisen 1998). 

In this paper, for the predicted function we take 
one of the most probable predicted functions from 
the gene’s functional group. As you can see, the 
phylogenetic approach does not use direct 
comparison of the coding sequences of genes against 
each other, but takes into account the co-occurrence 
of certain genes in the genomes. So, this approach 
can supplement the annotation methods discussed in 
the previous section and predict functions for those 
genes, for which the best similarity is significantly 
lower than 70%. 

2.2 The Method Description 

Our work in this study had two stages: creation of a 
database containing phylogenetic profiles of genes 
with known functions and prediction of the functions 
for genes using the previously created database 
(Figure 1). 

 

Figure 1: Creation of the phylogenetic profiles database 
for genes with known functions. Function prediction for a 
new gene. 

To create a phylogenetic profile of a gene, it is 
necessary to determine a set of reference genomes. 
As of this writing, there were more than 2,100 
bacterial genomes sequenced; however, using close 
genomes, for example strains of one organism, 
impairs precision of predictions because occurrences 
of the gene in such genomes are not independent. 
And we also could not use all available genomes, as 
the algorithm used for creating profiles for all genes 
has O(n2) time complexity. Since we had to find all 
genes in all of the selected genomes, the number of 
comparisons made was N2, where N is the number of 
all genes. So from all bacterial genomes we only 
selected 1,204 as reference genomes. To create the 
database of phylogenetic profiles, we used all the 
genes with known functions from the 1,204 
reference genomes: 3.7 million genes in total. 

The major task in the database creation process 
was to determine the similarity significance for each 
pair of genes and genomes. First, we used BLAST 
with different options to search for significant local 
alignments. After that we extended the found local 
alignments to global alignments and for each global 
alignment we calculated scores F of dynamic 
programming (Needleman-Wunsch algorithm 
(Needleman & Wunsch 1970)) using the PuPy 
matrix. Using the Monte Carlo method and Equation 
1, we calculated statistical significance for each 
global alignment on the assumption that the 
distribution of the score F was normal (Feller 1968): 

( )

( )

F M F
Z

D F


  (1)

where F is the score of alignment, M(F) and 
D(F) are the sample mean and sample variance of 
the random value F. The sequences sample was 
created from the original sequence by randomly 
shuffling its symbols. M(F) and D(F) were 
calculated on the samples with size 1000. 

Further, we created binary vectors for each gene 
by the following rule: we assigned "1" to the i-th 
element of the vector if the statistical significance of 
the global alignment between the gene and the i-th 
genome exceeded the chosen minimal value, and "0" 
if no similarity was found or if its significance did 
not exceed the chosen minimal value. Therefore, for 
each gene we created a binary vector with length N, 
where N is the number of referent genomes. We 
chose the minimal value of statistical significance 
Z=5.0, so that the probability to find more than one 
1 for random sequences was 5%. 

Since the names of the same functions may vary 
in different annotation systems, we unified them by 
using the Gene Ontology terms (GO). As a result, 
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the predicted functions in our system are represented 
as GO terms. 

To predict a function, we first create a binary 
vector for the gene in the same manner as when 
creating the database of known functions, after 
which we search for similar vectors in this database 
using the probability measure that will be described 
below. Let N be the size of the reference group and 
the vector length, n1 be the number of "1" in the 
vector (i. e. in the phylogenetic profile) of the first 
gene, n2 be the number of "1" in the vector of the 
second gene, n12 be the number of common "1" (i. e. 
placed in the same positions) in the first and second 
genes. As measure of similarity between two 
vectors, we chose the probability P of observing n12 
or greater co-occurrences between two profiles 
purely by chance. As is known, the random variable 
of common "1" follows the hypergeometric 
distribution (Shuster 2005), hence the probability P 
can be calculated by Equation 2: 

21 2
1 1
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n kkn n

n N n

n
k n N

C C
P n n

C







    (2)

where 
 

!

! !
k
n

n
С

k n k



  – is the number of k-

combinations from the given set of n elements. 
Vectors of the genes, the probability P for which 

didn’t exceed the chosen threshold, participate in 
determining the potential function of the annotated 
gene. The result of the prediction is a list of possible 
functions, sorted by the probability P. For 
phylogenetic profiles filtering, we chose the P0 

threshold of 10-7. The vector pairs with P > P0 are 
considered different. We tested the selected 
threshold on a set of random vectors: the selected P0 
value provides such level of significance, in which 
of 107 comparisons of two random phylogenetic 
profiles no more than one has the level of P < P0.  

We tested how many phylogenetic profiles can 
be created from "random genes" which have at least 
one "1". For this purpose we mixed gene sequences 
from referenced genomes and than created 
phylogenetic profile for each mixed sequence using 
the reference genomes. Only 0.4% sequences 
contain at least one "1". The remaining profiles 
contain only zeros. After that, we compared the 
profiles of “random genes” which have at least one 
"1" with profiles of genes from referenced genomes. 
Only 39 “random genes” have profiles with P < P0.  

 

2.3 Comparison of the Current Work 
to Previously Conducted 
Annotations 

To evaluate the quality of the developed method, we 
used it to predict possible functions for the genomes 
which had already been annotated. Since the system 
database already contained genes from these 
genomes, for testing purposes we excluded them 
from the reference group. The method detects a 
functionally linked group of genes rather than the 
one most probable function. That is why we 
compare the known function not to the single 
predicted one, but to the first K of more probable 
functions. Below we describe the approach in more 
detail. 

Of 1204 reference genomes we selected at 
random 104 bacterial genomes from various 
families. For every genome, we defined the method 
it was formerly annotated with and then grouped the 
genomes accordingly (Table 1). It was essential so 
that we could afterwards compare our results to the 
results obtained from the previous annotations based 
on different methods. 

Table 1: Bacterial genomes grouped by annotation 
method. 

Annotation 
methods 

Number of 
genomes 

Group ID 

NCBI, UniProt, 
TIGRFam, Pfam, 
PRIAM, KEGG, 
COG, InterPro, 

IMG-ER 

38 GRP_1 

BLAST, 
homology 

28 GRP_2 

GenDB, BLAST, 
COG, COGnitor 

7 GRP_3 

InterPro(Scan) 5 GRP_4 
Total 104 GRP_ALL 

The system presents the predicted function as a 
set of GeneOntology terms. Let’s see what the GO 
terms are in more detail. Each term may belong to 
one of the three domains: cellular component (C), 
molecular function (F), and biological process (P). 
Hence, every function may be presented as a set of 
terms from these domains, though not necessarily 
from all three of them at once. It is worth noting that 
GO terms in each domain are structured as a tree, 
where each term is a leaf or an internal vertex. 

We were mostly interested in molecular 
functions of genes, therefore in this study we will 
only cover results for terms of this type (F); 
however, similar results were obtained for every 
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type (C, F, P) separately and for the combination of 
all three together. To compare sets of terms, we used 
two approaches: perfect match, when all the terms 
should match for the sets to be equal, and fuzzy 
match, when the sets are considered equal if at least 
one pair of terms match one another. 

By the known function we will mean the 
previously annotated function, and by the predicted 
function, the one obtained in this study. To define 
the system characteristics, we introduced subsets, 
which are displayed in Figure 2 and described in 
detail in Table 2. Since the annotation results are 
presented as a list of possible functions, we consider 
the functions equal if the known function is found 
within the first N most probable predicted functions. 
The list was arranged by probability P (see Equation 
2 below); for this study we take N=5. 

To evaluate the precision of predictions, we split 
the C5 set into two subsets. Let the C6 set be a 
subset of genes for which the known function was 
found within the top five (N=5) predicted functions. 
Therefore, C7=C5−C6 is a subset of those genes 
from C5 for which the known function differs from 
the predicted function (the known function was not 
found within the top five predicted functions). 

 

Figure 2: Subsets of genes under study. 

In Table 2, we would like to highlight the two 
sets and two subsets of genes which are essential for 
estimating the quality characteristics of our 
annotation system in comparison with the 
annotations that have been made previously. These 
are sets C3 and C4, and subsets C6 and C7. The C3 
set contains the genes that have predicted functions, 
but no known functions. The C4 set contains the 
genes that have known functions, but no predicted 
functions. The C6 and C7 subsets were defined in 
the previous paragraph.  

 

Table 2: Subsets of genes used to compare the current and 
previous annotations. 

Name Description 
С0 All genes under study 

С1 
The subset of genes from the С0 set that have 

known functions 

С2 
The subset of genes from the С0 set that have 

predicted functions 

С3 
The subset of genes from the C2 set that have 

predicted functions, but no known functions. С3 
= С2 − С1 

С4 
The subset of genes from the C1 set that have 
known functions, but no predicted functions.  

C4= С1 − С2 

С5 
The subset of genes from the C0 set that have 

both known and predicted functions. C5 = C1 ∩ 
C2 

С6 
The subset of genes from the C5 set for which 
the known function was found within the top 

five predicted functions. 

С7 
The subset of genes from the C5 set for which 
the known function was not found within the 
top five predicted functions. C7 = С5 – С6 

This section contains prediction results grouped 
by method of their original annotation and by 
method of comparison of their known function with 
the predicted ones. In all tables we define the size of 
the Ci sets as Ni. Tables 3 and 4 show the share of 
various gene sets in the total number of genes: these 
are the set of previously annotated genes, the set of 
genes annotated with our system, as well as their 
intersections and subsets. The obtained results can 
be visualized with the diagram in Figure 3 (the 
perfect match method of functions comparison is 
used).  

It is clear that the share of genes from the C3 set 
varies from 16.9% to 21.4% and averages 19% 
(Table 3). The share of genes from the C4 set varies 
from 6.8% to 11.3% and averages 9%. To determine 
the equality of known and predicted functions, we 
used the two above-described ways, perfect match 
and fuzzy match (Table 4). The share of genes from 
the C6 set varies from 37.7% to 44.4% and averages 
40% (Table 4). The share of genes from the C7 set 
varies from 3.8% to 8.5% and averages 7%. As you 
can see from Table 4, these results vary slightly 
depending on the comparison approach (perfect 
match or fuzzy match). The major difference 
between the known and predicted functions (i. e. the 
maximum ratio of N7/N6) is observed for the group 
of genes defined in Table 1 as GRP_4. 
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Figure 3: Visualization of annotation results. 

Table 3: Shares of C1–C5 subsets in the total number of 
genes (N0). N1/N0 is the share of genes from the С1 set; 
N2/N0 is the share of genes from the С2 set; N3/N0 is the 
share of genes from the С3 set; N4/N0 is the share of 
genes from the С4 set; N5/N0 is the share of genes from 
the С5 set. 

Group 
ID 

N0 
(number of 

genes) 

N1N0 N2/N0 N3/N0 N4/N0 N5/N0

С1 С2 С3 С4 С5 

GRP_1 144157 0.551 0.613 0.169 0.113 0.444
GRP_2 82170 0.573 0.668 0.186 0.091 0.482
GRP_3 24657 0.568 0.714 0.214 0.068 0.500
GRP_4 20592 0.549 0.663 0.194 0.080 0.469
GRP_
ALL 

375151 0.563 0.658 0.186 0.091 0.472

It is also interesting to estimate the precision of 
predictions for the top one (N=1) function of the 
genes from the C3 set. For this purpose we analyzed 
the genes from the C5 set (which consists of the 
genes that have both known and predicted functions) 
and found for each gene the minimum size of the 
predicted functions list so that it contained the 
known function. This dependence in terms of 
percentage points is presented in Table 5. The size 
of the C5 set is designated as 100%; each row shows 
the share of each place in the list where the known 
function was found. As can be seen from Table 5, 
the known function was found on the top of the 
predicted functions list in 63% of the time and in 
Positions 2 to 5 in 23% of the time; 13% of cases 
accrued to Position 6 and higher. These results show 
that when we use the most probable predicted 
function, the precision to predict the known function 
is 63%. Therefore, we can conclude that precision 
for genes from the C3 set may be the same.  

These results also justify the choice of N=5 for 
comparing the biological functions for the C5 set 
genes (C6+C7). As you can see from Table 5, the 

share of exactly predicted functions stops increasing 
notably at N=3 and reaches saturation at N=5.  

Table 4: Comparison of original and predicted functions. 
N5/N0 is the share of genes from the С5 set (these genes 
have both known and predicted functions), N6/N0 is the 
share of genes from the С7 set (genes from C5 for which 
the known function and the predicted function are equal), 
N7/N0 is the share of genes from the С7 set (genes from 
C5 for which the known function differs from the 
predicted function). 

Group ID N5/N0 
Perfect match Fuzzy match 
С6 С7 С6 С7 

GRP_1 0.444 0.377 0.067 0.401 0.043 

GRP_2 0.482 0.420 0.062 0.444 0.038 

GRP_3 0.500 0.432 0.068 0.460 0.040 

GRP_4 0.469 0.384 0.085 0.419 0.050 

GRP_ALL 0.472 0.407 0.065 0.432 0.040 

Table 5: Distribution of places in the list of predicted 
functions where know function was found. 

Position 
of the 
known 

function 
in the 

list

Cumulative 
percentage of 

genes 

Percentage of 
genes 

Number of 
genes 

1 63.23 63.23 108806 
2 77.12 13.89 23894 
3 82.06 4.94 8498 
4 84.64 2.58 4446 
5 86.23 1.59 2743 
6 87.36 1.13 1949 
7 88.19 0.83 1433 
8 88.84 0.65 1127 
9 89.40 0.56 962 

10 89.87 0.47 783 
The results of annotations for genes under study can 
be freely accessed at 
http://genefunction.ru/public_results/ . 

3 DISCUSSION 

First of all, it is interesting to consider the genes for 
which functions predicted in our study differ from 
the known functions. They fall into the subset of 
genes which we defined as C7 in Table 2 and Figure 
2. The share of this set is 7% from the total number 
of the genes under study (Figure 3). The difference 
can be explained by the fixed size of the top 
predicted functions for each gene. To compare them 
with the known functions we use the top five 
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predicted functions sorted by probability P. As you 
can see from Table 5, a known function was found 
within the top five predicted functions for 86% of 
the genes. For 14% the five best predicted 
candidates did not contain an already known 
function. This may occur in three cases. Firstly, the 
genes may be involved in several metabolic 
pathways with different functions (i. e. functions of 
the gene in these pathways are different). If one of 
these metabolic pathways is more widespread in 
genomes under study, than the others, the function 
of the gene in this pathway may be predicted as 
more probable, thus the previously predicted 
(known) function may not be found among the top 
five predicted functions. Secondly, the gene may 
have a mutated copy (paralog), which takes part in a 
different genetic process. Such paralog may 
participate in a metabolic process that can be found 
in a greater number of reference bacterial genomes 
than the metabolic process in which the original 
gene we study participates. Thirdly, there might be 
an mistake made in previous annotations, but the 
probability of that to happen is very small, which 
may be explained by the high level of similarity 
between sequences in the previous annotations. 

It is also interesting to consider the C4 set which 
contains genes for which no predicted functions 
were found in the present work. The share of such 
genes is 9% of the total number of analyzed genes. 
There are two reasons to explain the absence of 
predicted functions for these genes. The first is that 
the search for similarities in this work was 
performed by comparing the nucleotide sequences 
rather than the amino acid sequences. Some 
significant similarities of the amino acid sequences 
may appear insignificant on the nucleotide level, and 
their statistical value will be below the threshold 
level. Secondly, this may be explained by the 
specific feature of the approach: to create a group of 
related genes it is necessary to find similar vectors 
with a sufficient number of 1, i. e. the gene must be 
found in sufficient number of different genomes. In 
most cases when a group cannot be created, it is 
because of few "1" in the profile of the gene rather 
than due to the absence of similar vectors. 

The most successful result of our work is the C3 
subset of genes for which there were no previously 
predicted functions before our study; the share of 
this set is 19% of all genes that have been examined 
in the present work. The fact that these functions 
have never been predicted before can be explained 
by the difference of approaches. The vast majority of 
the existing annotation methods identifying 
orthologs use amino acid sequences with the 

sufficiently high level of similarity only, which 
allows to predict the equality of their biological 
functions with great probability: the higher the 
similarity, the stronger the indication that these 
sequences are exact orthologs. When the similarity 
level is lower (though still statistically significant), 
more potential homologs can be found: the greater 
part of them are paralogs (mutated copies with 
unrelated functions), but it is entirely possible that 
orthologs may also be found among these 
similarities. To separate one from another, some 
additional information must be used. In this work, 
such information is the similarity of phylogenetic 
profiles. The similarity between the profiles will be 
significant for orthologs and either missing or 
statistically less significant for paralogs. Therefore, 
this additional filtering by phylogenetic profiles 
allows us to sort out paralogs and to predict 
biological functions for genes using the similarities 
not accounted by the existing annotation methods. 
We also increased the number of significant 
similarities by using several cycles of local 
alignments search with different parameters, 
including the purine-pyrimidine weight matrix for 
global alignment. Besides, we compared each gene 
with whole bacterial genomes rather than with sets 
of previously selected genes from these genomes. It 
allowed us to avoid errors during structural 
annotations, i. e. when identifying the gene 
sequences in the bacterial genomes. To sum it all up, 
our success in annotating new genes is based on the 
phylogenetic profiles comparison method, which 
allowed us to find additional orthologs among a 
great number of paralogs. 

Let us also estimate the precision of biological 
function predictions for genes from the C3 set. For 
this estimation, we use as the prediction result the 
first function in the list sorted by probability P. As 
you can see in Table 5, the predicted biological 
functions of 63% of all genes examined in the 
present work coincide with known functions. It can 
be expected that the precision of predictions for the 
C3 genes will be the same (about 63%). The 
obtained results looks reasonably better in 
comparison to the similar studies; for instance, in a 
previous study for the E.coli genome the known 
function was found on the top of the predicted 
functions list in 43% of the time and within the top 
ten in 60% of the time; and for the S.cerevisiae 
genome the known function was found within the 
top fifty predicted functions in 60% of the time 
(Kharchenko et al. 2006). However, in our study the 
known function was on average found within the top 
five predicted functions in 86% of the time. 
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Although the developed system doesn’t make 
exact predictions of gene functions (the precision is 
about 63%, see Table 5), it may be used as an 
alternative or complementation to the existing 
annotation systems: the existing systems predict 
functions for genes from sets C4 and C5, and our 
system covers functions for genes from sets C3 and 
C5. Therefore, the use of our system can increase the 
share of annotated bacterial genes by 19% (by the 
size of the C3 set).  

63% predictions of gene functions was received 
for P0=10-7 and Z=5.0 (see 2.1). P0 and Z was chosen 
with a large margin. It is possible to define an upper 
limit for the number of false positives in C2 set. For 
this purpose we can use the number of profiles 
which have at least one "1" received for mixed genes 
(see 2.1). The number of these profiles was 0.4 % 
and other profiles contain only zeros. Profiles with 
zeros have P>P0 and automatically eliminated from 
our consideration. But 39 “random genes” which 
have at least one "1" received profiles with P < P0. It 
means that less than 0.01% is upper limit of false 
positives for N2 (C2 set). Thus, false positives have 
a small effect on our results. 
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