
the aim to get closer to real-life implementation, a 
thorough ecological task battery setup should be 
designed to better ascertain workload modulation in 
work settings.  
REFERENCES 
Allison, B. Z., and Polich, J. (2008). Workload assessment 
of computer gaming using a single stimulus event-
related potential paradigm. Biological Psychology, 
77(3), pp. 277-283. 
Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., 
Davis, G., Zivkovic, V. T., Olmstead, R. E., et al. 
(2007). EEG correlates of task engagement and mental 
workload in vigilance, learning, and memory tasks. 
Aviation, Space, and Environmental Medicine, 78, 
231-244. 
Blankertz, B., Tangermann, M., Vidaurre, C., Fazli, S., 
Sannelli, C., Haufe, S., Maeder, C., Ramsey, L., 
Sturm, I., Curio, G., and Müller, K.-R.. (2010). The 
Berlin Brain–Computer Interface: Non-Medical Uses 
of BCI Technology. Frontiers in Neuroscience, vol. 4. 
Brouwer, A.-M., Hogervorst, M. A. , van Erp, J. B. F., 
Heffelaar, T., Zimmerman, P. H. and Oostenveld, R. 
(2012). Estimating workload using EEG spectral 
power and ERPs in the n-back task. Journal of Neural. 
Enineering, 9(4). 
Cain, B. (2007). A review of the mental workload 
literature. Defense Research and Development, 
Toronto, Canada, [Online]. Available: 
http://ftp.rta.nato.int/public//PubFullText/RTO/TR/RT
O-TR-HFM-121-PART-II///TR-HFM-121-Part-II-
04.pdf. 
Chen, D. and Vertegaal, R.(2004). Using mental load for 
managing interruptions in physiologically attentive 
user interfaces. In Human factors in computing 
systems, pp. 1513-1516. 
van Erp,, J., Lotte, F., and Tangermann, M. (2012). Brain-
Computer-Interfaces: Beyond Medical Applications. 
Computer, vol. 45, pp.26-34. 
Filipe, S., Charvet, G., Foerster, M., Porcherot, J., Bêche, 
J.-F., Bonnet, S., Audebert, P., Régis, G., Zongo, B., 
Robinet, S., Condemine, C., Mestais, C., Guillemaud, 
R. (2011). A wireless multichannel EEG recording 
platform. In  Conf. Proc. of the IEEE Eng. in Med. and 
Biol. Soc., Boston, Massachusetts USA, pp. 6319-
6322. 
Gevins, A., and Smith, M. E. (2003). Neurophysiological 
measures of cognitive workload during human-
computer interaction. Theoretical Issues in 
Ergonomics Science, 1, 113-131. 
Gevins, A., and Smith, M. E. (2007). 
Electroencephalography (EEG) in Neuroergnomics. In 
Neuroergonomics: The brain at work, R. Parasuraman, 
R and M. Rizzo Eds. New York, NY: Oxford. 
Gomarus, H. K., Althaus, M., Wijers, A. A., and 
Minderaa, R. B. (2006). The effects of memory load 
and stimulus relevance on the EEG during a visual 
selective memory search task: An ERP and ERD/ERS 
study. Clinical Neurophysiology, 117, 871-884.  
Halgren, E., Marinkovic, K., and Chauvel, P. (1998). 
Generators of the late cognitive potentials in auditory 
and visual oddball tasks. Electroencephalography and 
clinical Neurophysiology. 106, pp. 156-164. 
Holm, A., Lukander, K., Korpela, J., Sallinen, M. and 
Müller, K. M. I. (2009). Estimating Brain Load from 
the EEG. TheScientificWorldJOURNAL, vol. 9, pp. 
639-651. 
Kok, A. (2001). On the utility of P3 amplitude as a 
measure of processing capacity. Psychophysiology, 38, 
557–577. 
Miller, M. W., Rietschel, J. C., McDonald, C. G., and 
Hatfield, B. D. (2011). A novel approach to the 
physiological measurement of mental workload. 
International Journal of Psychophysiology, 80, 75-78. 
Näätänen, R. Gaillard, A. W. K., and Varey, C. A. (1981). 
Attention effects on auditory EPs as a function of 
inter-stimulus interval. Biological Psychology, 13, pp. 
173-187. 
Natani, K., and Gomer, F. E. (1981). Electrocortical 
activity and operator workload: A comparison of 
changes in the electroencephalogram and in event-
related potentials. (McDonnell Douglas Technical 
Report E2427). Long Beach, CA: McDonnell Douglas 
Corporation. 
Roy, R. N., Bonnet, S., Charbonnier, S. and Campagne, A. 
(2013). Mental fatigue and working memory load 
estimation: Interaction and implications for EEG-
based passive BCI. In Conf. Proc. of the IEEE Eng. 
Med. Biol. Soc., Osaka, Japan, pp. 6607-6610. 
Schultheis, H. and Jameson, A. (2004) Assessing 
Cognitive Load in Adaptive Hypermedia Systems: 
Physiological and Behavioral Methods. Lecture Notes 
in Computer Science, 313, 225-234. 
Smith, M. E., Halgren, E., Sokolik, M., Baudena, P., 
Musolino, A., Liegeois-Chauvel, C., and Chauvel, P. 
(1990). The intracranial topography of the P3 event-
related potential elicited during auditory oddball. 
Electroencephalography  and clinical neuro-
physiology, 76, pp. 235-248.  
Squires, N. K., Squires, K. C., and Hillyard, S. A. (1975). 
Two varieties of long-latency positive waves evoked 
by unpredictable auditory stimuli in man. 
Electroencephalography  and clinical neuro-
physiology, 38, pp. 987-401. 
Sternberg, S. (1966). High-speed scanning in human 
memory. Science, vol. 153, pp. 652-654. 
Strobel, A., Debener, S., Sorger, B., Peters, J. C., 
Kranczioch, C., Hoechstetter, K., Engel, A. K., 
Brocke, B., and Goebel, R. (2008). Novelty and target 
processing during an auditory novelty oddball: A 
simultaneous event-related potential and functional 
magnetic resonance imaging study. NeuroImage, 40, 
869-883. 
Sugimoto, F. and Katayama, J. (2013). Somatosensory P2 
reflects resource allocation in a game task: assessment 
with an irrelevant probe technique using electrical 
probe stimuli to shoulders. International Journal of
PhyCS2015-2ndInternationalConferenceonPhysiologicalComputingSystems
110