
A Multimodal User Interface using the Webinos Platform to Connect a
Smart Input Device to the Web of Things

E. Baccaglini, M. Gavelli, M. Morello and P. Vergori
Istituto Superiore Mario Boella, Via P. C. Boggio 61, Turin, Italy

Keywords: Speech Recognition, Web-based Applications, Open-source Platforms, Internet of Things, Web of Things.

Abstract: We propose an innovative overlay architecture among heterogeneous devices that works on different operating
systems and an application based on standard web technologies that leverages on such architecture to perform
a broad range of functions using audio commands. To achieve this, a secure web runtime platform allows
connecting different devices such as an Android mobile device, a single board computer and a Web of Things
(WoT) sensor/actuator in a secure and independent manner. Methods and functions have been created in order
to capture the audio from the microphone on personal computers and on mobile phones, and to safely transfer
files to a single board computer, in which a speech recognition engine is embedded. Therefore, by recording
the audio command from one of these devices and performing voice command identification using the speech
engine, it is possible to perform different actions previously defined by the user on one of his devices. This
work demonstrates how open source platforms can interconnect and operate with proprietary architecture in a
complementary and secure manner.

1 INTRODUCTION

Nowadays with the growing presence of persistent in-
teractions among smart devices, users and companies
are exploring different ways to interconnect heteroge-
neous devices. As discussed in (Catania et al., 2012),
smart things and their services can be fully integrated
in the web by reusing and adapting consolidated tech-
nologies and patterns used for traditional web content.
Small web servers are embedded into the objects and
the REST technology (Richardson and Ruby, 2008)
is applied to resources in the physical world. Using
REST, the services exposed on the web by the smart
things usually take the form of a structured XML doc-
ument or a JavaScript Object Notation (JSON) object,
which are directly machine-readable.

One significant rather new development in elec-
tronic devices is the capability to control the devices
by the user’s voice. Each day more and more com-
panies and developers tend to provide devices and
applications which enable the users to control their
electronic devices using voice commands instead of
clicking on a button, dialing, writing a text or doing
any other kind of physical activity. This enables the
users to easily interact with devices when performing
other tasks or simply just for making it more comfort-
able. Voice command recognition started with voice-

activated dialling for mobile phones (Hosn, 1997)
(Tan et al., 1998) evolving to present days in speaker-
independent voice recognition systems capable of re-
spond to multiple voices regardless of accent or di-
alectal influences (Jurafsky and Martin, 2000). These
latter systems usually adopt Hidden Markov Mod-
els (Juang and Rabiner, 1991) or Neural Networks
(Gajecki, 2014) to perform their task. Many com-
panies put lots of effort developing proprietary audio
engines, each with its own strengths and flaws. Of-
ten audio engines are limited to a subset of languages
or even just one. These audio engines can be found
in different products such as computer operating sys-
tems, commercial applications, cars, smartphones or
even Internet search engines. One of those can better
suit specific needs but can only be used on the device
it comes with.

The novelty of this work is the unification of de-
vice capabilities, bringing to a single device new fea-
tures and technologies leveraging on those available
on other interconnected devices. The objective is
to have a set of devices all connected to each other
through the webinos (Vergori et al., 2013) platform.
In this way, instead of having an application running
on a single device to trigger vocal commands, the
user is able to perform a function on one of these de-
vices by recording the audio command and perform

104
Baccaglini E., Gavelli M., Morello M. and Vergori P..
A Multimodal User Interface using the Webinos Platform to Connect a Smart Input Device to the Web of Things.
DOI: 10.5220/0005231001040108
In Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS-2015), pages
104-108
ISBN: 978-989-758-084-0
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



the voice recognition on another connected device.
This distributed capabilities scenario lowers complex-
ity and cuts back device cost. Due to the heteroge-
neous nature of the webinos platform, multiple de-
vices support comes for free. In fact, the same appli-
cation is able to run on Linux, Windows, Android and
other platforms.

The proposed API implementation is based on the
webinos API architecture and it is therefore developed
in node.js. On Android, the API (as also webinos) is
running on anode, an open source porting of node.js
for the Android platform.

The objective of this work is to demonstrate how
webinos can be extended and integrated with existing
technologies such as the STMicroelectronics speech
engine (Kurniawati et al., 2012). This engine inter-
prets the voice command using a speech recognition
algorithm and remotely performs an action or func-
tion for the user. It is desirable to be able to perform
the voice command without the need to be present
next to the device and therefore doing it remotely, us-
ing an application running on another device or smart-
phone. To achieve this, a web application has been
implemented which relies on standard web technolo-
gies only, such as HTML5, JavaScript and CSS3 and
with the ability to leverage on the functionalities in-
troduced by the webinos platform.

The scenarios defined for the project can be ex-
tended to perform more complex functions requir-
ing minor changes to the webinos APIs’ code (e.g.
controlling a smart TV from mobile devices). The
proposed domotic controller is a proof-of-concept
to represent the link between the conventional ar-
chitectural models and the Web of Things (WoT)
world as an evolution of Internet of Things (IoT)
smart devices and RESTful interfaces web connected
(Guinard et al., 2011).

The rest of the paper is organized as follows. In
Sec.2 we describe the proposed architecture, in Sec.3
we sketch a use case in which the architecture can be
applied and in Sec.4 we describe the on-going work.
Sec.5 concludes the paper describing future work.

2 PROPOSED ARCHITECTURE

Webinos is a EU co-funded project, started in 2010
and ended in 2013, aiming to deliver a platform for
web applications across mobile, PC, home media and
in-car devices. The webinos project consists of over
twenty partners from across Europe spanning aca-
demic institutions, industry research firms, software
firms, handset manufacturers and automotive manu-
facturers. Webinos is a ’Service Platform’ project un-

der the EU FP7 ICT Programme (Vergori et al., 2013).
The webinos platform is based on open-source

software. Its objective is to enable web applications
and services to be used and shared consistently and
securely over a broad spectrum of converged and con-
nected devices, including mobile, PC, tablet, home
media and in-car units. The webinos technology has
been built on HTML5, widgets and device API stan-
dards.

Webinos presents many cloud architectural com-
ponents. These components aim to enable cross-
device services in heterogeneous inter and intra-user
scenarios, thus fading out the physical boundaries of
devices. This seamless device interconnection mech-
anism can be described by the Personal Zone concept
(Botsikas et al., 2013). In Figure 1 an example of
the webinos architecture is depicted. The Personal
Zone is the predominantly concept introduced by the
webinos architecture and three different entities are
its main actors namely the Personal Zone Area, the
Personal Zone Hub and the Personal Zone proxy.
The Personal Zone Area (PZA) is representable as
an overlay network whose perimeter is delimited and
defined by the ownership of devices. Each webinos-
enabled device that belongs to the same user is con-
sidered to be inside this perimeter (Vergori et al.,
2013). Moreover, every PZA is considered by defini-
tion a single point of synchronization and all the de-
vices within this area must be authenticated against.
The authentication point is represented by the sec-
ond entity, i.e. the Personal Zone Hub (PZH) that
is the entity in charge of providing functionality to
the webinos ecosystem, such as attestation, authenti-
cation and act as privacy/policy control point. These
assets are provided through OpenID authentication
flows (Recordon and Reed, 2006) and X509 certifi-
cates’ exchange. The PZHs are, in turn, connected
at their edges in order to extend the overlay network
described above, federating multiple PZH entities and
creating a multi-user cross device environment. The
third entity is represented by the Personal Zone Proxy
and is deployed on every webinos-enabled device in
order to manage interconnections with the PZH. It
also keeps all preferences synchronized across per-
sonal devices and exposes available services across
the PZA. Local caching mechanisms are in charge of
making these services available and even maintaining
consistency among already authenticated PZPs when
Internet connection is not available.

The webinos end-to-end communication system is
complemented with an API set that is based on both
standard and non-standard specifications. The testbed
foresees the use of the webinos W3C File API1 that

1http://www.w3.org/TR/FileAPI/

A�Multimodal�User�Interface�using�the�Webinos�Platform�to�Connect�a�Smart�Input�Device�to�the�Web�of�Things

105



Figure 1: The webinos framework.

is a standard implementation of the namesake W3C
API and the webinos IoT Sensors - Actuators API2.
The latter is a container for multiple IoT sensors con-
nected to the PZA.

Every webinos API has a logical separation be-
tween the server side and the client side. The former is
represented by the actual implementation of the API;
the latter contains all methods exposed by the API’s
server side.

Webinos bundles alongside with its platform a
chromium-based browser for running application in a
secure manner called Webinos RunTime (WRT). The
WRT is a sandboxed environment where webinos ap-
plications are able to be installed, updated and con-
sumed. The benefits of using this approach are the
possibility to:
• Assign unique application-IDs to each installed

application and therefore apply customize settings
and preferences;

• Synchronize preferences across the Personal
Zone;

• Enforce privacy preferences for each application
leveraging on the client side of the webinos policy
enforcement point;

• Package the web application as a standard W3C
widget3.

3 USE CASE

In the following, we propose a use case which
shows how different technologies can be integrated

2http://docs.webinos,org/#/APIs
3http://www.w3.org/TR/widgets/

in the webinos infrastructure and made usable to any
webinos-enabled device. In this use case, we have a
domotic controller, a speech recognition engine and a
tablet. All of those have proprietary technologies, and
with a webinos PZP running on each of these devices,
these features are easily accessible from the others. In
the presented scenario, a tablet has no speech recog-
nition engine but leveraging on webinos cross device
sharing features, the tablet can use the one provided
by a single-board PC (here a Snowball SKY-S9500-
ULP-CXX). In the same way, the tablet is not capable
of directly activate the door opening, but is able to use
the service exposed by the webinos-enabled domotic
controller.

The presented use case is based on the described
architecture and focus on interconnecting the STMi-
croelectronics proprietary speech engine running on
the single-board PC with a webinos ecosystem. As
a proof-of-concept, we developed an API to wrap and
then expose the speech recognition engine. Moreover,
a frontend application to demonstrate the capabilities
of the aforementioned API has been integrated in the
testbed.

In the presented testbed a door actuator has been
also interfaced with the webinos IoT API, in order to
be able to control it remotely. The architecture de-
scription foresees the domotic controller as a single
entity, whereas in the actual implementation, the door
actuator has been connected to a Raspberry PI that is
the webinos PZP real host.

In Figure 2 we show the application flow that al-
lows using the remote door locking as a service for
opening a door from the tablet with a speech com-
mand. Before starting the whole process, each device
connects to a webinos PZH (cloud hosted in this case)

PECCS�2015�-�5th�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

106



Figure 2: The application flow for the proposed use case.

and exchanges the list of exposed services [steps 0a,
0b, and 0c]. When all devices have completed this
pre-enrolment stage, they can discover each other and
therefore they become aware of all available services.
The first step of the process is the recording of the
audio command [step 1]. Having no direct access to
the microphone the application leverages on the func-
tionality exposed by the PZP through a native imple-
mentation of a wrapped API in order to accomplish
this task. The reason why the application cannot di-
rectly connect to the microphone is because it runs in
a sandboxed environment such as the WRT.

Once the command is recorded, the application
sends it to the single-board PC using the exposed ser-
vice that corresponds to the webinos implementation
of the W3C File API [step 2a]. A response is then
sent back to the tablet confirming that the transfer is
correctly completed [step 2b]. After this success call-
back is sent from the Snowball, the tablet proceeds
triggering the SID audio engine to perform the speech
to text recognition on the Snowball [step 3a]. When
completed, the recognized command is sent back to
the application [step 3b]. The application has a series
of pre-mapped commands and each of them triggers
a different action. In this case the received command
matches with the openDoor case. The tablet then calls
the IoT API to activate the door actuator on the do-
motic controller [step 4]. When the webinos PZP on
the door receives the call for the IoT API, the request
is intercepted from the policy manager and it proceeds
verifying if the caller has the rights to access the API.
If the permission is granted, then it forwards the com-
mand [step 5]. The last step [step 6] is the call-back,
called from the webinos domotic controller informing
the tablet that the door has been opened.

4 ONGOING WORK

Whilst analyzing and extending the webinos ecosys-
tem some criticalities have been spotted.

The main issue is related to the absence of a mech-
anism that leverages on smart objects. At the mo-
ment the webinos discovery dance provides only a list
of APIs that a certain device exposes. It is then de-
manded to the requestor to have knowledge on how to
call the APIs’ methods. This assumption makes com-
pulsory for the requestor to have the API installed on
the webinos device. Therefore, in the proposed use
case, the tablet is required to have installed the webi-
nos IoT API implementation of the specific door un-
locker, although the tablet would never be able to use
its implementation itself because it is not interfaced
with the actuator. The only useful part for the request-
ing device is the webinos client side API. In fact, we-
binos APIs list separately callable methods in a dif-
ferent location from the actual implementation, but at
the moment the only way to host this list of capabil-
ities on-board is to install the full API. To solve this
issue Personal Zone Proxies may be completely fea-
ture agnostic about what are the capabilities of other
webinos-enabled devices. The main idea is to trans-
mit the API’s client side to the requestor of a specific
feature as part of the discovery dance, in respect of
Personal Zone privacy/policy settings. Thus, the re-
questor does not need to have any knowledge of the
API that it is going to use, since this API’s client side
is going to be received from the API client end. In
fact, in the client side of the APIs there are listed all
the methods required to call API methods, omitting
the actual implementation. The described scenario
introduces a certain degree of complexity in the we-
binos discovery, but the improvement that would be
achieved is remarkable.

Another relevant aspect is related to the capabil-
ities of the WRT. The first downside of running the
web based application in the WRT is that there are
no HTML5 primitives to access the hardware com-
ponents, such as the microphone. From a developer
point of view, it would be desirable to have con-
sistency between HTML5 prototypes and WRT ex-
posed functions. In our testbed, this issue could be
overtaken by running the application on a traditional
browser. Nevertheless, the problem of storing the file
would remain unsolved since this choice would limit
the application to access only the local web storage,
making not best practice for the webinos File API to
be configured to access a specific browser folder.

A�Multimodal�User�Interface�using�the�Webinos�Platform�to�Connect�a�Smart�Input�Device�to�the�Web�of�Things

107



5 CONCLUSIONS

In this work we presented a platform-independent
system based on the webinos architecture which is
able to deliver audio commands to remotely drive the
behaviour of different components. We described the
implemented functions in order to capture an audio
command recorded from a microphone on an Android
mobile device. This audio file is sent to a single-board
PC in a secure and reliable way through the webi-
nos platform end-to-end system. We showed how we
achieved this objective by extending webinos APIs
pool, implementing a novel API in node.js and ex-
ploiting native code bindings to record the audio com-
mand.

Future work will be devoted to expand the func-
tionalities of the current setup in order to extend the
set of possible actions. As an example, by connect-
ing the Snowball board to a smart TV, it would be
possible to use the application to seamlessly control
this device from an Android device or from the PC.
In addition, the application can be extended adding
support for different voice recognition mechanisms
such as Google speech-to-text API to perform user-
independent command recognition.

REFERENCES

Botsikas, C., Lasak, M., and Vergori, P. (2013). webinosTV:
the multi-screen switchboard for seamless interaction
with distributed content. InProceedings of EuroITV.

Catania, V., Torre, G. L., Monteleone, S., Patti, D., Ver-
celli, S., and Ricciato, F. (2012). A novel approach
to Web of Things: M2M and enhanced Javascript
technologies. InGreen Computing and Communica-
tions (GreenCom), 2012 IEEE International Confer-
ence on, pages 726–730.

Gajecki, L. (2014). Architectures of neural networks ap-
plied for LVCSR language modeling.Neurocomput-
ing, pages 46–53.

Guinard, D., Trifa, V., Mattern, F., and Wilde, E. (2011).
From the internet of things to the web of things:
Resource-oriented architecture and best practices. In
Architecting the Internet of Things, pages 97–129.
Springer Berlin Heidelberg.

Hosn, R. (1997). Key challenges in deploying a voice
activated premier dialing application. InAutomatic
Speech Recognition and Understanding, IEEE Work-
shop on, pages 575–582. IEEE.

Juang, B. H. and Rabiner, L. R. (1991). Hidden Markov
models for speech recognition. InTechnometrics, vol-
ume 3, pages 251–272.

Jurafsky, D. and Martin, J. H. (2000).Speech and language
processing. Pearson Education India.

Kurniawati, E., Celetto, L., Capovilla, N., and George, S.
(2012). Personalized voice command systems in multi

modal user interface. InEmerging Signal Processing
Applications (ESPA), 2012 IEEE International Con-
ference on, pages 45–47. IEEE.

Recordon, D. and Reed, D. (2006). OpenID 2.0: a platform
for user-centric identity management. InProceedings
of the 2nd ACM workshop on Digital identity manage-
ment, pages 11–16. ACM.

Richardson, L. and Ruby, S. (2008).RESTful web services.
O’Reilly Media, Inc.

Tan, B. T., Gu, Y., and Thomas, T. (1998). Implementation
and evaluation of a voice-activated dialling system. In
Interactive Voice Technology for Telecommunications
Applications, 4th Workshop on, pages 83–86. IEEE.

Vergori, P., Ntanos, C., Gavelli, M., and Askounis, D.
(2013). The webinos architecture: a developer’s point
of view. In Mobile Computing, Applications, and Ser-
vices, pages 391–399. Springer Berlin Heidelberg.

PECCS�2015�-�5th�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

108


