
Architecture Framework for Modeling the Deployment of Parallel
Applications on Parallel Computing Platforms

Bedir Tekinerdogan1 and Ethem Arkin2
1Information Technology Group, Wageningen University, Wageningen, Netherlands

2Aselsan A.Ş., Ankara, Turkey

Keywords: Parallel Computing, Architecture Modeling, Architecture Viewpoint.

Abstract: To increase the computing performance the current trend is towards applying parallel computing in which the
tasks are run in parallel on multiple nodes. Current approaches in parallel computing tend to focus on mapping
parallel algorithms to parallel computing platforms. However, the complexity and variety of current software
systems goes beyond the notion of algorithms only, and needs to consider the design from a broader
application perspective that requires explicit design abstractions. For this purpose, we propose an architecture
framework for modeling parallel applications to support the communication among the stakeholders, to reason
about the design decisions and to support the analysis of the architectural design. The architecture framework
consists of six coherent set of viewpoints which addresses different concerns in the design of parallel
applications. The architecture framework is based on a metamodel that is derived after a thorough domain
analysis on parallel computing. To support the architecture design process we have also developed the
corresponding tool set that implements the architecture framework. The application of the architecture
framework is illustrated for an order management application.

1 INTRODUCTION

It is now increasingly acknowledged that the
processing power of a single processor has reached
the physical limitations and likewise serial computing
has reached its limits. To increase the performance of
computing approaches the current trend is towards
applying parallel computing on multiple nodes
typically including many CPUs. In contrast to serial
computing in which instructions are executed serially,
in parallel computing multiple processing elements
are used to execute the program instructions
simultaneously. To benefit from the parallel
computing power, usually parallel algorithms are
defined that can be executed simultaneously on
multiple nodes. As such, increasing the processing
nodes will increase the performance of the parallel
programs.

Different studies have been carried out on the
design and analysis of parallel algorithms to support
parallel computing (Amdahl, 2007) (Frank, 2002)
(Pllana and Fahringer, 2002). These studies have
provided useful results and further increased the
performance of parallel computing. Several important
challenges have been identified and tackled in parallel
computing related to activities such as the analysis of

the parallel algorithm, the definition of the logical
configuration of the platform, and the mapping of the
algorithm to the logical configuration platform. The
research on parallel algorithms and its mapping to
parallel computing platforms is still ongoing.

Together with the overall developments in
parallel computing we can also observe the increasing
complexity and variety of current software systems.
Here the design problem goes beyond the notion of
algorithms and data structures of the computation,
and the design of the overall system structure of the
parallel computing systems emerges as an important
problem. In this context in particular the architecture
design and modeling of parallel computing systems is
important to support the communication among the
stakeholders, to reason about the design decisions
during the mapping process and to analyze the
eventual design. In current parallel computing
approaches, however, there do not seem to be
architectural modeling approaches for supporting the
design and analysis of parallel computing systems.
Most approaches seem either to adopt conceptual
modeling approaches in which the parallel computing
elements are represented using idiosyncratic models
or are generally low level and machine specific
(Patyart et. al., 2012). A few approaches borrow for

185Tekinerdogan B. and Arkin E..
Architecture Framework for Modeling the Deployment of Parallel Applications on Parallel Computing Platforms.
DOI: 10.5220/0005229301850192
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 185-192
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

example models from embedded and real time
systems and try to adapt these for parallel computing
but do not provide dedicated modeling support for
communication and analysis of the concerns of
parallel computing architectures. The lack of a clear
and precise modeling approach with first class
abstractions for parallel computing obviously
impedes the solutions for analyzing, designing and
communicating the decisions on parallel computing.

Our focus in this paper is on architectural
modeling in the context of parallel computing. In the
architecture design community broad knowledge has
now been gained on modeling the systemic structure
and behavior of systems. An important practice is to
model and document different architectural views for
describing the architecture according to the
stakeholders’ concerns. An architectural view is a
representation of a set of system elements and
relations associated with them to support a particular
concern. Having multiple views helps to separate the
concerns and as such support the modeling,
understanding, communication and analysis of the
software architecture for different stakeholders.

To provide dedicated support for parallel
computing concerns we propose an architecture
framework for supporting the modeling of parallel
computing architectures. For this, we first provide the
overall metamodel that defines the concepts required
in modeling parallel computing system architectures.
The metamodel is derived after a thorough domain
analysis to parallel computing and the related
problems. Based on this metamodel we introduce six
coherent set of architecture viewpoints each of which
focuses on a particular concern in parallel computing.
The architecture framework is supported by the
corresponding tool workbench that can be used by
parallel computing architects to design the parallel
computing system.

The remainder of the paper is organized as
follows. In section 2, we describe the background on
parallel computing and software architecture
viewpoints, and describe the problem statement.
Section 3 presents the metamodel for parallel
applications. Section 4 describes the viewpoints and
the approach for using these viewpoints. In section 5,
we present the implementation and the toolset for the
architecture framework. Section 6 presents the related
work and finally we conclude the paper in section 7.

2 BACKGROUND AND
PROBLEM STATEMENT

To increase the performance of computing the current

trend is towards applying parallel computing on
multiple nodes. Unlike serial computing in which
instructions are executed serially, multiple processing
elements are used to execute the program instructions
simultaneously. To benefit from the parallel
computing power usually parallel algorithms are
defined that can be executed simultaneously on
multiple nodes. Hereby, increasing the number of
processing nodes usually increases the performance
of the parallel programs (Amdahl, 2007)(Gustafson,
1988)(Hill and Marty, 2008). In general, a parallel
algorithm can be mapped in different alternative ways
to the processing nodes and research has been carried
out to optimize the algorithm and the mapping
process. This problem has gained even more attention
with the dramatic increase of the processing nodes to
tens and hundreds of thousands of nodes providing
processing performance from petascale to exascale
levels (Kogge et. al., 2008). Once a feasible mapping
is selected the parallel algorithm needs to be
transformed to the target parallel computing platform
such as MPI, OpenMP, MPL, and CILK (Talia,
2001).

Despite of the interesting development the
challenges in parallel computing are still active. In
this paper we focus on the challenges with respect to
software architecture modeling. A close analysis of
parallel computing research shows that the well-
defined concept of algorithm is prevailing and the
broader consideration of software application and its
mapping to parallel computing platform does not
seem to have got much attention. To illustrate the
problem we will use the Order Management
Application architecture as an example. The Order
Management application is typically a critical part of
commercial systems including, for example,
packages like Order Entry, Financial and Inventory.
To increase the performance of such a system several
modules need to be run in parallel. Here we can
already observe that the parallel modules are not just
well-defined algorithms but can also consist of
domain-specific modules of the application. For
example, it might be decided that modules such as
Order Change and Order Validation in the example
should run in parallel over multiple nodes. Obviously
for modeling the mapping of parallel applications to
parallel computing platforms we need to address
more than the mapping of a parallel algorithm to a
selected computer architecture. Given the current
architectural modeling approaches no direct and
integrated support is provided to model the above
concerns. Some approaches focus on a particular
concern but to the best of our knowledge none of the
approaches provide an integrated approach for

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

186

architectural modeling of the mapping of parallel
applications to parallel computing platforms. In the
subsequent sections we will describe the architecture
framework for addressing each of these concerns.

3 ARCHITECTURE
VIEWPOINTS

To explicitly address the concerns related to the
design of parallel computing systems we present an
architecture framework that defines a coherent set of
viewpoints. An architecture framework organizes
and structures the proposed architectural viewpoints.
To define the viewpoints we will adopt the
recommended standard for architecture description as
it is defined in (ISO/IEC 42010:2011). Figure 1
shows the metamodel on which the architecture
framework and the corresponding viewpoints will be
based. Based on the metamodel of Figure 1 we define
the architecture framework consisting of a coherent
set of viewpoints for parallel computing systems. The
viewpoints aim to address the concerns of parallel
applications in particular.

ComponentApplication Module Element
1..n

Interface

Provides
Interface

Requires
Interface

1..n

Parallel
Algorithm
Module

Section

SerialSection ParallelSection Operation
maps on

PackageModule

Serial
Module

Parallel
Module

PhysicalConfiguration

Node BusNetwork

Memory

Processing
Unit

compiled to

LogicalConfiguration

Tile

CorePattern

Communication
from to

Data

deployed on

maps to

realize

1..n1..n

1..n

1..n 1..n

1..n

1..n

dominating

Serial Algorithm
Module

maps to

maps to

Figure 1: Metamodel for the parallel computing system.

3.1 Application Decomposition
Viewpoint

The application decomposition viewpoint is shown in
Table 1.

Table 1: Application Decomposition Viewpoint.

Section Description
«Viewpoint
Name»

Application Decomposition Viewpoint

«Overview» The decomposition of the application to modules
«Concerns» What is the decomposition of the application?

How much of the application can be parallel?
«Typical
Stakeholders»

Software Architect

«Constraints » A module can be either serial or parallel

«Model types
and notation»

Package
Parallel
Module

Serial
Module Parallel

Algorithm

Name

Name

Name

<<Algorithm>>
Name

Serial
Algorithm

<<Algorithm>>
Name

part-of

Relations

(decomposition can also be shown using nesting)

The viewpoint is used to indicate the modules from
which the application is composed, and on the other
hand defines the parallelism property for each
module. In alignment with the metamodel the
application can consist of modules or algorithms
which can be serial or parallel. Each module can be
either serial or parallel. Hence we have defined four
different types of modules, Serial Module, Parallel
Module, Serial Algorithm, and Parallel Algorithm.
Package is the conventional grouping module for
grouping a set of modules together. Based on the
metamodel we have defined the Application
Decomposition Viewpoint as shown in Table 1.

Using the viewpoint we can now model the
application decomposition view for the given
example. Figure 2 shows an example Order
Management Application Decomposition view that
includes three packages.

In the example, the Order Entry package consists
of seven modules, a serial module for Exception
Management, a parallel algorithm module Shipping
Calculations and five other parallel modules Initiate
Order, Modify Order, Order Validation. Order
Notification and Order Creation. The Financial
package has a parallel module Payment Engine, two
serial modules Account Management and Fraud
Detection, and an algorithm module Tax
Calculations. The Inventory package has the serial
modules Inventory Management and Loss
Management, and a parallel module Inventory
Planning.

Note that this is an example decomposition that is
decided by the architect. In principle other
decomposition might be possible based on different

Architecture�Framework�for�Modeling�the�Deployment�of�Parallel�Applications�on�Parallel�Computing�Platforms

187

Figure 2: Order Management Application Decomposition
View.

design heuristics as discussed in the parallel
computing literature (Foster, 1995). Before
decomposing the system it will be important to
determine whether or not the considered modules can
actually be parallelized and where most of the real
work is being done. Hereby, the module that account
for little computing power could be decided as serial.
Using such different design heuristics other
decompositions could be investigated to find feasible
alternatives. In fact, by providing an explicit view for
this we aim to support this design process.

3.2 Algorithm Decomposition
Viewpoint

Parallel modules are run in parallel as one unit on
multiple nodes and as such will be integrated in a
SIMD architecture. Since parallel algorithms are
considered as consisting of multiple instructions it is
important to analyze the algorithm first and define the
serial and parallel sections. To support this we have
defined the Algorithm Decomposition Viewpoint that
is shown in Table 2.

In the Application Decomposition View of the
Order Management application in Figure 2, we can
identify two parallel algorithms Tax Calculations and
Shipping Calculations. As such we can have two
algorithm decomposition views for the application.

As an example we have defined the algorithm
decomposition view for Shipping Calculations as
shown in Figure 3. The algorithm is decomposed into
two serial and two parallel sections. The first section
is a serial section that initializes the cost parameters
per city. The second section distributes the cost
parameters to processing units to calculate
concurrently. The third section serially calculates the
cost per shipping on a processing unit. In the last
section, the results for shipping calculations are
retrieved from all processing units.

Table 2: Algorithm Decomposition Viewpoint.

Section Description
«Viewpoint
Name»

Algorithm Decomposition Viewpoint

«Overview» The decomposition of the parallel algorithm
«Concerns» What is the decomposition of the algorithm?

Which section can be either serial or parallel?
«Typical
Stakeholders»

Algorithm Analyst,
System Engineer

«Constraints » A section can be either serial or parallel
«Model types
and notation»

Index
Algorithm

Section
Section
Type

Operation

Ind. Algorithm Section Section Type Operation

1 Initialize cost parameters per city Serial -

2 Distribute cost parameters Parallel Scatter

3 Calculate cost per shipping Serial -

4 Get results for shipping calculations Parallel Gather

Figure 3: Shipping Calculations Algorithm Decomposition
View.

3.3 Physical Configuration Viewpoint

Table 3 shows the Physical Configuration Viewpoint
for representing the physical parallel computing
platform. The viewpoint defines explicit notations for
Node, Processing Unit, Network, Memory Bus and
Memory that are main physical structures of
computer architecture.

In alignment with the Flynn’s taxonomy (Flynn,
1972), the physical configuration can be defined as
shared memory that has multiple processing units that
use the same memory, distributed memory in which
each node has its own memory, or hybrid memory
that has also multiple nodes as distributed memory
and each node has multiple processing units with a
shared memory.

Figure 4 shows two alternative physical
configuration view examples. In Figure 4a, the
physical configuration is constructed with building
blocks over a network. This presentation shows
networks and buses explicitly, but for large scale
physical configuration views it is hard to present this
view. In Figure 4b the physical configuration is
presented in a unified structure, that the processing
units are represented by rectangles, nodes, buses and
networks are represented implicitly in the
presentation. This presentation alternative can be
more suitable for very large scale parallel computing
platforms.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

188

Table 3: Physical Configuration Viewpoint.

Section Description
«Viewpoint
Name»

Physical Configuration Viewpoint

«Overview» The physical structure of the parallel computing
platform.

«Concerns» What are the structures of the physical computing
platform?
The configuration is shared memory, distributed
memory or hybrid?

«Typical
Stakeholders»

System Engineer

«Constraints » There exists only one Network in a Physical
Configuration.
There exists only one Bus and a Memory in a Node.
If there is one Processing Unit in a Node, there is no
need for a Bus.

«Model types and
notation» Node

Memory<<Memory>>
Name

Processing Unit

<<Node>>
Name

<<PU>>
Name

Network

Bus

Network

Bus

part-of

Relations

(decomposition can also be shown using nesting)

n,p n: the id of the node in the
physical configuration
p: the id of the processing unit
in the node

M

(a)

(b)

Figure 4: Physical Configuration Views using two different
notations.

3.4 Component Viewpoint

The Component Viewpoint is shown in Table 4. The

component viewport is used for defining the
component structure of the parallel application. The
components are compiled from the modules that are
decomposed in application decomposition view. The
components are classified as serial component, serial
algorithm component, parallel component, and
parallel algorithm component, based on the module
that is compiled from. Each component can provide
an interface for another component and each
component can require an interface from another
component. The interface relations are defined
between the components.

Based on the application decomposition view for
order management application, the component view
is shown in Figure 5. Here the parallel and serial
components are represented according to the modules
defined in application decomposition view. The
interface relations between the components are also
represented in the view.

Table 4: Component Viewpoint.

Section Description
«Viewpoint
Name»

Component Viewpoint

«Overview» The component structure for the parallel application
«Concerns» What are the interface relations between components?
«Typical
Stakeholders»

Software Architect,
System Engineer

«Constraints » Each module must have at least one component.
«Model types and
notation»

(Serial)
Component

Relations

interface

(Serial) Algorithm
Component

Parallel
Component

Parallel Algorithm
Component

<<Algorithm>>
Name

Name

<<Algorithm>>
Name

Name

Figure 5: Order Management Component View.

3.5 Deployment Viewpoint

The components defined in the component view must
be deployed on processing units defined in the
physical configuration. Here, a serial module or a
serial algorithm module can be deployed on a single

Architecture�Framework�for�Modeling�the�Deployment�of�Parallel�Applications�on�Parallel�Computing�Platforms

189

processing unit. A parallel module or a parallel
algorithm module can be deployed on different
processing units. The parallel module runs the same
instruction sets on multiple processing units and
provides output to other components. The parallel
algorithm module runs different instruction sets and
coordinate data between themselves to calculate a
specific algorithm using different processing units.
The Deployment Viewpoint is shown in Table 5.
Similar to the physical configuration view, the
deployment view can also be defined in alternative
representations. Figure 6 shows two alternative
representation of the order management deployment
view. In Figure 6(a), the deployment view is based on
the physical configuration view of Figure 4(a), where
the relations are shown using <<deploy>> relation. In
Figure 6(b), the deployment view is based on the
physical configuration view of Figure 4(b) and the
relations are shown using nesting. Again, the second
deployment view is more suitable for very large scale
physical configurations, while the first deployment
view represents networking structures explicitly.

Table 5: Deployment Viewpoint.

Section Description
«Viewpoint
Name»

Deployment Viewpoint

«Overview» The deployment for the modules of the parallel
application

«Concerns» Which component runs on which processing unit?
«Typical
Stakeholders»

System Engineer

«Constraints » Parallel component can be deployed on different
processing units.
Serial component can be deployed on a single
processing unit.

«Model types and
notation»

3.6 Logical Configuration Viewpoint

Table 6 shows the Logical Configuration Viewpoint,
which presents the mapping of the parallel algorithm
module to physical configuration together with the
required communication links for the algorithm
operations.

The previously introduced physical configuration
defines the actual physical configuration of the
system with the physical communication links among

(a)

(b)

Figure 6: Order Management Deployment Views.

the processing units. The deployment view defines on
which processing units the parallel algorithm module
is deployed. The logical configuration is a view of the
physical configuration that provides the logical
communication structure among the physical nodes.
Typically, for the same physical configuration we can
have many different logical configurations. To
represent the mapping of the parallel algorithm to the
logical configuration, the cores are identified using
the identification values of nodes and processing
units. The number of cores should be equal to the
selected processing units in the deployment view.

As stated before for each parallel algorithm a
corresponding algorithm view is provided. In
addition, a logical configuration view needs to be
defined to present the communication structures of
the physical nodes to realize the parallel algorithm.
For example, the earlier introduced algorithm
decomposition view for the Shipping Calculation
algorithm included two parallel sections that
implement the Scatter and Gather operations. The
mapping for these operations is defined in the logical
configuration view as communication relations
between core elements on which the parallel
algorithm is deployed. Figure 7 shows an example
logical configuration view for both scatter and gather
operations.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

190

Table 6: Logical Configuration Viewpoint.

Section Description
«Viewpoint
Name»

Logical Configuration Viewpoint

«Overview» The logical structure of the parallel computing
platform.

«Concerns» What are the primitive tiles to map on physical
configuration?
What are the communication patterns to use?

«Typical
Stakeholders»

Algorithm Analyst,
System Engineer

«Constraints » The number of cores should be equal to the processing
units in the deployment view.
The numbering of the cores should match the
numbering in the physical configuration.

«Model types and
notation»

Figure 7: Shipping Algorithm Logical Configuration View.
(a) Scatter operation, (b) Gather operation.

3.7 Approach for using Viewpoints

In the previous section we have provided the
architecture framework consisting of a coherent set of
viewpoints for analysis and design of parallel
computing systems. Figure 8 shows the UML activity
diagram that represents the process for applying the
viewpoints. The process starts initially with the
definition of application decomposition and physical
configuration views. In principle, for each parallel
algorithm module an algorithm decomposition view
can be provided. The component view is defined
according to the modules as presented in the
application decomposition view. The deployment

Figure 8: Approach for Design and Analysis of Parallel
Computing System.

view is defined by using both the component view
and the physical configuration view. Finally for each
algorithm decomposition view, the logical
configuration view is defined according to the
deployment view. Iterations to the start of the process
take place from the deployment view and logical
configuration view. Also there are iterations between
logical configuration view and deployment view.

4 RELATED WORK

Applying viewpoints to manage parallelism has been
proposed by several studies. Rozanski and Woods
(2011) propose the concurrency viewpoint for
describing concerns related to the communication and
synchronization mechanisms of concurrent systems.
Further they also propose the deployment viewpoint,
which addresses how to describe the environment into
which the system will be deployed. The viewpoints
that we have described could be considered as a more
domain-specific extension to these viewpoints.

Muhammed et al. (2011) propose the parallelism
viewpoint to analyze parallelism related overheads in
existing parallelism-intensive software systems. The
targeted overheads include excessive context
switches, uneven distribution of read/write operations
and complex thread management structure. The
authors propose one viewpoint with five different
model kinds including, Time Distribution, Task
Distribution, Task Type, Thread Behaviour and
Thread Management. In our approach we have
provided an architecture framework consisting of a
coherent set of six viewpoints each of which has one
or two different kind of notations. We did not directly
focus on analyzing parallelism related overheads but
focused on the deployment of the modules and
algorithms to a parallel computing platform in a
parallel application. Arias et al. (2011) focus on the
runtime behavior and structure of a software-
intensive systems. For this they propose an approach
for defining, validating and documenting a set of
execution viewpoints to support the construction and
use of execution views for large software-intensive
systems. Ortega-Arjona (2006) defined a parallel
application as a specification of a set of sequential
process and communication among themselves.
According to this definition they propose a
performance model and architectural patterns for
parallel application.In the literature of parallel
computing the particular focus seems to have been on
parallel programming models such as MPI, OpenMP,
CILK etc. (Talia, 2001) but the design and the
modeling got less attention. Several papers have

1,21,1

1,41,3

2,2 2,1

2,42,3

3,23,1

3,4 3,3

4,24,1

4,44,3

1,21,1

1,41,3

2,2 2,1

2,42,3

3,23,1

3,4 3,3

4,24,1

4,44,3

Architecture�Framework�for�Modeling�the�Deployment�of�Parallel�Applications�on�Parallel�Computing�Platforms

191

focused in particular on higher level design
abstractions in parallel computing and the adoption of
model-driven development.

In our earlier study (Arkin et. al., 2013)
(Tekinerdogan and Arkin, 2013), we have proposed
an architecture framework for mapping parallel
algorithms to parallel computing platforms. In that
study we only focused on parallel algorithms and did
not consider the broader concept of application. Also
we assumed a distributed memory model in which
each node has its own memory unit and, as such,
targeted the MISD architecture of the Flynn’s
taxonomy. The current approach focuses on software
application and is more general in the sense that it
supports both modules and algorithms, can represent
different memory models, and supports modeling
different computing architectures.

5 CONCLUSIONS

The current trend towards increased parallelization of
software systems requires proper architecture design
approaches for modeling and analysis of concerns
related to parallel computing. In this paper we have
primarily focused on the mapping of parallel
applications on parallel computing platforms. In the
current parallel computing literature the focus has
been mainly on mapping algorithms to computing
platform. Our approach adopts a broader perspective
and considers the mapping of software application
consisting of modules and algorithms to different
computing platforms. Although various viewpoints
exist in the software engineering community to cope
with parallelism the architecture framework is novel
since it provides a coherent and integrated set of
viewpoints dedicated for mapping parallel
applications to parallel computing platforms. In
addition to the viewpoints we have also provided the
corresponding approach that describes the logical
order in defining the views. We have illustrated the
approach for the Order Management case study. The
architecture framework is useful in supporting the
architecture design process of parallel applications
and supports the communication among stakeholders,
the guidance of the development of the system and
the analysis of the system. In our future work we will
further refine the tool support and elaborate on the
design of parallel applications using the presented
architecture framework.

REFERENCES

Amdahl, G.M., 2007. Validity of the Single Processor
Approach to Achieving Large Scale Computing
Capabilities, Re. fr. the AFIPS Conf. Proc., Vol. 30
(Atlantic City, N.J., Apr. 18–20), AFIPS Press, Reston,
Va., 1967, pp. 483–485, Solid-State Circuits
Newsletter, IEEE, vol.12, no.3, pp.19,20.

Arias, T.B.C., Avgeriou, P., America, P., 2011. Defining
and documenting execution viewpoints for a large and
complex software-intensive system. Elsevier Journal of
Systems and Software 84 1447– 1461.

Arkin, E., Tekinerdogan, B., Imre. K., 2013. Model-Driven
Approach for Supporting the Mapping of Parallel
Algorithms to Parallel Computing Platforms. Proc. of
the ACM/IEEE 16th Int. Conf. on Model Driven
Engineering Languages and System.

Flynn, M., 1972. Some Computer Organizations and Their
Effectiveness, Computers, IEEE Transactions on, vol.
C-21, no.9, pp.948, 960.

Foster, I., 1995. Designing and Building Parallel Programs:
Concepts and Tools for Parallel Software Engineering.
Addison-Wesley Longman Publishing Co., Boston,
MA, USA.

Frank, M.P., 2002. The physical limits of computing,
Computing in Science & Engineering, vol.4, no.3,
pp.16, 26.

Gustafson, J.L., 1988. Reevaluating Amdahl's law,
Communications of the ACM, v 31, n 5, p 532-533.

Hill, M.D., Marty, M.R., 2008. Amdahl's Law in the
Multicore Era, Computer, vol.41, no.7, pp.33, 38.

[ISO/IEC 42010:2011], 2011. Systems and Software
Engineering – Architecture Description.

Kogge, P., et al. 2008. Exascale Computing Study:
Technology Challenges in Achieving Exascale Systems.
DARPA.

Ortega-Arjona, J.L., 2006. Architectural Patterns for
Parallel Programming: Models for Performance
Estimation, Phd. Thesis, Dept. of Computer Science,
University College London.

Pllana, S., Fahringer, T., 2002. UML based modeling of
performance oriented parallel and distributed
applications, Simulation Conf., 2002. Proceedings of
the Winter, vol.1, no., pp.497, 505 vol.1, 8-11.

Rozanski, N., Woods, E., 2011. Software Systems
Architecture: Working with Stakeholders Using
Viewpoints and Perspectives, Second Edition,
Addison-Wesley.

Talia, D., 2001. Models and Trends in Parallel
Programming. Parallel Algorithms and Applications
16, no. 2: 145-180.

Tekinerdogan, B., Arkin, E., 2013. Architecture
Framework for Mapping Parallel Algorithms to Parallel
Computing Platforms, Proc. of the 2nd Int. Workshop
on Model-Driven Engineering for High Performance
and CLoud computing., Miami.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

192

