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Abstract: This paper presents a development of new size-controlled compression algorithm for Electrocardiogram 
signal (ECG). Discrete Wavelet Transform (DWT) method, Bit-Field Preserving (BFP) and Running Length 
Encoding (RLE) are selected as compression tools in this work. Even though DWT-BFP-RLE is a lossy 
compression method, it has shown a potential in preserving the critical (diagnostic) part of the signal. 
Knowing that the size of transmitted packets of the battery-powered mobile telecardiology systems is 
limited within few bytes, the current algorithm is aiming to ensure that the compressed packets fit into the 
limited payload size. A parametric study of different mother wavelets and decomposition levels of DWT is 
presented with an emphasize on compression ratio (CR), percentage mean-square difference (PRD) and 
quality score (QS). The mother wavelet giving the best CR and QS results is then adopted to perform the 
dynamic compression algorithm on ECG records from MIT-BIH arrhythmia database.  

1 INTRODUCTION 

The Electrocardiogram (ECG) signal is an important 
biomedical signal that is widely used in diagnostic 
procedures by cardiologists. The monitoring of ECG 
signal can be done inside the hospitals/clinics using 
sophisticated equipment or at home or outdoor by 
using wearable monitoring devices that transmit the 
signal via cellular network or other wireless 
technologies. With the increased need of high 
resolution, high sampling rate and long recording 
period of the monitored ECG, the data compression 
becomes more vital for storage and transmission. 

Compression is the procedure of reducing the 
number of digitized ECG signal without significant 
loss of the diagnostic data. Many methods were 
proposed for ECG compression and they can be 
lossless or lossy but all of them can be grouped into 
two categories: direct methods and transform 
methods (Chen and Itoh, 1998). In direct methods, 
compression is applied directly on the time domain 
ECG signal, while in the transform methods the 
ECG signal is transformed into a different domain. 
In lossy methods; there is some kind of quantization 
of the input data which leads to higher compression 
ratio (CR) results at the expense of reversibility. But 
this may be acceptable as long as no significant 
clinical degradation is introduced to the encoded 

signal (Moody et al., 1988). The CR levels of 2 to 1 
achieved by lossless methods are too low for most 
practical applications. Therefore, lossy coding 
methods that introduce small reconstruction errors 
are preferred in practice. In other words, the main 
important factors in ECG compression are: (1) the 
ability of reconstructing the important features from 
the compressed ECG data, (2) the compression ratio, 
(3) execution time, and (4) the amount of error 
between the original and reconstructed signal. 
Recently, there are some trials to combine the lossy 
and lossless compression techniques specifically for 
the ECG signal (Abo-Zahhad et al., 2014).  

Discrete Wavelet Transform (DWT) is a 
powerful time-frequency signal analysis tool that 
was utilized for ECG filtering (de-noising), feature 
extraction and compression (Ballesteros et al., 2012; 
Ballesteros and Gaona, 2011; Chen and Itoh, 1998; 
Chouakri et. al, 2011). The DWT transforms the 
ECG signal into sub-bands that can be encoded 
using set partitioning in hierarchal tree (SPIHT) 
coding (Lu et al., 2000), vector quantization (VQ), 
energy package efficiency (EPE) and other encoding 
schemes. However, some of the encoding methods 
can be complex to implement on FPGA’s or basic 
microcontrollers and require high computational 
costs, which make them unsuitable for wearable 
battery-powered health monitoring devices.  Chan et 

246 Al-Busaidi A. and Khriji L..
Packet-size-Controlled ECG Compression Algorithm based on Discrete Wavelet Transform and Running Length Encoding.
DOI: 10.5220/0005225202460254
In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-2015), pages 246-254
ISBN: 978-989-758-069-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



al. (2008) proposed an encoding scheme to compress 
the DWT coefficients using bit-field preserving 
(BFP) and running length encoding (RLE) and it 
was tested on an FPGA system (Lee et al., 2011). 
The method was simple to implement and allows 
forward data processing compared to other methods 
that require sorting and heavy computations.  

Most of the ECG compression methods are open 
loop methods that have fixed performance. On the 
other hand, there are new closed loop compression 
methods that were designed to check the quality of 
the compressed signal by evaluating the amount of 
error introduced to the reconstructed signal before 
transmitting the compressed packet (Benzid et al., 
2006).  

This paper introduces a dynamic compression 
method that was not addressed in published 
literature yet. The dynamic compression method 
handles the issue of the limited payload size when 
the compressed packet is exceeding the maximum 
payload available. In other words, it controls the size 
of the compressed packets dynamically by a closed 
loop. For example, in low power wireless 
technologies like Bluetooth, Bluetooth Low Energy, 
6LoWPAN, and ZigBee, the payload size is not very 
large and thus sending a continuous raw data will 
not be efficient in terms of energy saving. 
Consequently, the data have to be compressed and 
the overheads have to be designed optimally to make 
sure that the packet holds much more data than 
headers. As a result the data rate is reduced without 
a significant loss in the clinical features. The 
proposed dynamic compression method was 
designed based on a modified DWT-BFP-RLE 
compression algorithm. The method was tested on 
ECG records from MIT-BIH Arrhythmia database 
after obtaining the proper compression parameters.   

2 METHODS 

2.1 Wavelet Decomposition and 
Reconstruction 

The ECG signal is a non-stationary signal that has 
varying frequency components with time and the 
DWT showed its powerfulness in decomposing the 
different ECG waveforms. The wavelet-based 
techniques fit with the standard signal filtering 
methods and encoding schemes and thus produce 
good compression results (Addison, 2002). The 
discrete wavelet transform (DWT) method can be 
done using decimation and without decimation 
(redundant or shift-invariant). Here undecimated 

DWT has been chosen due its better results in de-
noising (Raj and Venkateswarlu, 2011). The ECG 
signal can be decomposed into J decomposition 
levels as shown in Figure 1, using lowpass g(n) and 
highpass h(n) FIR filter banks and then down-
sampling by a factor of 2. The decomposed signal in 
each level is divided into low frequency signal (an) 
and high frequency signal (dn). The low frequency 
signal an is called the approximation signal and the 
high frequency signal dn is called the detail signal.  

The low frequency signal is decomposed again into 
two signals and so on up to dJ and aJ. The filter 
banks are constructed from wavelet basis functions 
such as Haar, Daubechies, Biorthogonal, Coiflet, 
Symmlet, Morlet, and Mexican Hat. The selection of 
wavelet transform function mainly depends on the 
application. The decomposed signal can be 
reconstructed back again into the original signal 
using reconstruction filters, which are the inverse of 
the decomposition filters. In this work, Daubechies 
(Db4 and Db5) and Symmlet (Sym4 and Sym6) 
mother wavelets were adopted and the 
decomposition level (J) was varied from 3 to 7. 

 

Figure 1: DWT with 2 level decomposition. 

2.2 Thresholding and Bit-Field 
Preserving  

After decomposing the signal into sub-bands using 
DWT, thresholds are applied to each sub-band. The 
thresholding process mainly contributes in filtering 
and used for decoding as well. One of the commonly 
used adaptive thresholds is provided in equation (1). 

Nn log2   

where,  is the standard deviation of the sub-band 
and N is the number of samples in the same sub-
band. However, in this work the threshold (ThresSb) 
was calculated based on the bit-depth (BSb) of each 
sub-band and the desired preserved bit-length (ISb). 
The bit-depth BSb is the most significant bit of the 
maximum coefficient in the sub-band. While, the 
preserved-length ISb is controlled according to the 
desired compression performance where Sb stands 
for the sub-band coefficients d1, d2,.., dJ and aJ.  
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12  sbsb IB
sbThres  

A round-off mechanism is applied to the DWT 
coefficients before thresholding and encoding by 
adding 2Bn-Isb to all coefficients to reduce the 
truncation error. Where, Bn is the bit depth before 
round-off mechanism and BSb after round-off.  

2.3 Encoding 

Before encoding the coefficients, the mean of the 
approximation coefficient aJ is subtracted and it will 
be added later on at the reconstruction stage. To 
encode the coefficients, first they are compared to 
the calculated sub-band threshold ThresSb. If the 
magnitude of the coefficient is greater than or equal 
to the sub-band threshold, it is considered as 
significant; otherwise it is considered as 
insignificant. The desired bits of interest of the 
significant coefficient will be sent to the bits-of-
interest (BOI) packet and a one will be sent to the 
significant map (SM) stream. The SM stream 
indicates the sequence of significant and 
insignificant coefficients by ones and zeros, 
respectively. The BOI are the extracted bits from 
Bsb+1 to Bsb-Isb+1, which represent BOI range, 
including the sign bit (BSb+1). In this works, each 
BOI is stored into one byte and the same for BOI 
range. Thus, ISb is no more than 6 (i.e. bits 0 to 6 
hold the extracted bits and bit 7 for the sign bit). 

To reduce the redundant zeros in SM stream and 
increase the compression ratio, it is divided into 
bytes and then running length encoding (RLE) is 
applied on the SM bytes. The RLE is well known 
method that replaces the consecutive bytes with their 
value followed by their number of copies (e.g. x=1 1 
0 0 0 5 0 0 0 9 0 0 0 0 0 3 3 3, will be xenc=1 2 0 3 5 
1 0 3 9 1 0 5 3 3). The SM can be easily encoded 
(SMe) by encoding the consecutive zeroes. One byte 
is enough to represent the number of consecutive 
zeros up to 255 zeros. The last two sub-bands (aJ and 
dJ) have fewer samples and less consecutive zeros 
and thus RLE method was not applied to them. The 
overall compression scheme is illustrated in Figure 
2. 

2.4 Packetizing the Transmitted Data 

To send the compressed BOI, BOI Range and SM 
packets, headers are required to indicate each 
segment of the compressed data. Table I shows the 
headers and the sizes of each packets. First, an 
indicator of the total number of samples of the ECG 
signal (Ns) taken for compression is placed at the 

beginning of the packet. Ns can have a value of 0, 1, 
2, 3 and 4 which indicate that number of the 
compressed samples of 64, 128, 256, 512 and 1024, 
respectively. Then, for each transformed sub-band 
by DWT, headers were created to indicate the Bits-
of-Interest Range (BOI Range), the number of bytes 
that holds the Bits-of-Interest (BOI Size), the 
number of bytes that holds the significant map (Size 
SM) or the encoded significant map (Size SMe). The 
BOI and SM follow the BOI Size and SM Size 
headers, respectively. Finally, the subtracted mean 
of the approximation sub-band (Mean of aJ) is 
divided into two bytes and placed at the end of the 
packet. At the receiver side, the packets are arrived 
in sequence and decompressed after decoding them 
using the information arrived.  

Table 1: Format of the compressed packet. 

Packet Description Size Details 

Ns 
Number of Compressed 

Samples 
1 Byte 2n Samples 

BOI  
Range 

(d1) 

The Range of Bits of 
Interest of the first 
detail sub-band  d1 

1 Bytes 

The 4 MSBs 
for the low bit 

range. 
The 4 LSBs 
for the high 
bit range. 

BOI  
Size (d1)

Number of BOI in the 
first detail sub-band  d1 

2 Bytes - 

BOI  
(d1) 

Bits of Interest in the 
first detail sub-band  d1 

Size BOI  
* 1Byte 

Extracted 
using Thresd1 

SMe  
Size (d1)

Number of encoded 
SM in the first detail 

sub-band  d1 
1 Byte - 

SMe  
(d1) 

RLE Encoded 
Significant Map of BOI 
of the first detail sub-

band  d1 

Size 
SM * 
1Byte 

- 

…

BOI  
Range 

(aJ) 

The Range of Bits of 
Interest of the approx. 

sub-band  aJ 
1 Bytes - 

BOI 
Size (aJ)

Number of BOI in the 
approx.  sub-band  aJ 

2 Bytes - 

BOI  
(aJ) 

Bits of Interest of the 
approx. sub-band  aJ 

Size BOI  
* 1Byte 

Extracted 
using ThresaJ 

SM  
Size (aJ)

Number of SM in the 
approx. sub-band  aJ 

1 Byte - 

SM  
(aJ) 

Significant Map of 
BOI of the approx.  

sub-band  aJ 

Size SM  
* 1Byte 

- 

Mean 
(aJ) 

The mean of the 
approx. sub-band  aJ 

2 Bytes 

The mean is 
subtracted 
from aJ and 

sent separately 
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Figure 2: Compression scheme. 

3 PROPOSED DYNAMIC 
COMPRESSION ALGORITHM 

In this study, the ECG compression scheme based on 
DWT-BFP-RLE described in section 2 has been 
adopted and modified for telecardiology systems by 
considering the limit of the transmitted payload. The 
algorithm was designed to be a closed loop 
compression scheme that controls the size of the 
compressed packet. A schematic diagram of the 
algorithm is shown in Figure 3, which can be 
summarized into the following steps: 
1. Store N (2n) ECG samples into a buffer and 

compress them. 
2. Check the size of the compressed packet. If the 

compressed packet size is less than or equal to 
the maximum allowable number of bytes (M), 
transmit the packet.  

3. Otherwise, split the ECG data stored in the buffer 
into two new packets each with size N/2. 

4. Apply the compression algorithm onto each 
packet separately, but in the correct sequence, 
where the first half of the data is to be 
compressed and transmitted first. 

5. Go back to step 2 and repeat the process until all 
the data are transmitted. 

The efficiency of this method is investigated and 
evaluated in the next section.  

 

Figure 3: Dynamic Compression scheme. 

4 SIMULATION RESULTS 

To evaluate the proposed compression scheme, ECG 
records from MIT-BIH Arrhythmia (mita) database 
were used. The ECG signals in mita database were 
sampled at 360Hz and with 11-bit resolution. Ten 
different ECG records were used to evaluate the 
compression scheme; 100, 102, 107, 109, 117, 118, 
119, 220 and 232. To test the proposed scheme, the 
first 10 minutes duration of each record was taken 
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and divided into frames each contains 1024 samples 
(2.84 seconds). For each record, the mother wavelet 
filters Db4, Db5, Sym4 and Sym6 were applied with 
varying decomposition levels between 3 and 7. The 
results were evaluated using the compression 
measures provided in section 4.1. 

4.1 Evaluation Scheme 

First, the modified compression scheme was 
evaluated and then the dynamic compression scheme 
was studied based on the selected parameters. To 
evaluate the compression algorithm, the percentage 
root-mean square difference or PRD error between 
the original xor and the reconstructed signal xre was 
calculated by (3). Another measure to evaluate the 
compression algorithm is the compression ratio (CR) 
in equation (4). The CR calculates the ratio between 
the number of bits in the original signal (bor = 11 bits 
1024= 11,264) and number of bits in the 
compressed packet (bcomp =8 bits  Ncomp).  

Fira and Goras (2008) saw that the CR and PRD 
are the most important compression measures in all 
literature, thus they suggested a new compression 
measure called “quality score” (QS) that represents 
the ratio between the CR and the PRD as shown in 
equation (5). The high quality score indicates a good 
compression performance.  

   2 2
100%or re orPRD x x x     (3)

compborbCR   (4)

PRDCRQS   (5)

4.2 Parametric Study 

Figures 4 to 7 shows the original and reconstructed 
ECG signal of record 100 using different mother 
wavelets and decomposition levels. Surface plots of 
the average PRD and CR at different mother 
wavelets and decomposition levels of the same 
record are shown in Figures 8 and 9, respectively. 
According to Figure 8, Sym4 and Sym6 give better 
CR at the decomposition levels 4-7. However, the 
best CR results are obtained by Sym4 at levels 5-7. 
Figure 9 shows that levels 3 and 4 give the lowest 
PRD compared to other levels. However, it is 
interesting to note that Sym4 produces the lowest 
PRD at all decomposition levels. The QS of record 
100 is shown in Figure 10. It is clear from the figure 
that Sym4 produces the best QS results at all 
decomposition levels.  

 

Figure 4: The original and reconstructed ECG of record 
100 based on Db4 and J= 3 to 7.  

 

Figure 5: The original and reconstructed ECG of record 
100 based on Db5 and J= 3 to 7. 

 

Figure 6: The original and reconstructed ECG of record 
100 based on Sym4 and J= 3 to 7. 

 

Figure 7: The original and reconstructed ECG of record 
100 based on Sym6 and J= 3 to 7. 
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Figure 8: CR of ECG record 100 vs. decomposition level 
and wavelets. 

 

Figure 9: PRD of ECG record 100 vs. decomposition level 
and wavelets. 

Figures 11 to 13 reflect the average CR, PRD 
and QS of the ten ECG records. Figure 11 reveals 
that the best CR value is of Sym4, which ranges 
between 3.99:1 and 4.84:1. The average PRD, 
shown in Figure 12, illustrates a gradual increase for 
almost all of the wavelets. But the increase is found 
to be a bit higher for Sym6 at higher decomposition 
levels with a value of 1.46% at level 7. In terms of 
the average QS, Sym4 shows the highest results 

among all the decomposition level. Hence, it is 
worthwhile to state that Sym4 reflects the best 
compression performance. 

The modified DWT-BFP-RLE performed better 
compared to other well-known method as clearly shown in 
Table 3. Two preserved bit-lengths ISb values were tuned 
to get the preferred compression performance.  

 

Figure 10: Quality score (QS) of ECG record 100 vs. 
decomposition level and wavelets. Note: surface plot axis 
is rotated to provide better projection. 

 

Figure 11: The average CR vs. decomposition level and 
wavelets. 
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Figure 12: The average PRD vs. decomposition level and 
wavelets. 

 

Figure 13: The average QS vs. decomposition level and 
wavelets. Note: surface plot axis is rotated to provide 
better projection. 

4.3 Dynamic Compression 

Sym4 mother wavelet and 4th level of decomposition 
were selected to demonstrate the dynamic 
compression scheme. From Figure 11, the average 
CR using Sym4 wavelet and at J=4 is 4.61:1, which 
corresponds to 305 of compressed samples. 
Accordingly, the number of samples to be 

Table 3: Performance Comparsion with Other Methods for 
N=1024 and Duration of 10 Minutes (Sym4 and J=4). 

Method Record CR PRD  QS 
SPIHT (Lu, 

2000) 

117 

8.00:1 1.18% 6.78 

Hilton (1997) 8.00:1 2.60% 3.08 
Dojhon (1997) 8.00:1 3.90% 2.05 
Proposed with 
 ISb={1, 2, 2, 4, 

6} 
8.07:1 0.95% 8.51 

Proposed with 
 ISb={1, 2, 2, 3, 

6} 
8.30:1 1.14% 7.29 

compressed was set to be Ns=256. The first 10 
seconds of the ECG records 100, 117 and 119 were 
used to test the dynamic compression scheme. The 
available payload size (M) was assumed to be 70 
bytes. Table 4 shows the number of compressed 
packets generated for each record, the average CR of 
these packets and the RPD between the original and 
reconstructed signal. The number of packets 
required to send 10 seconds of raw (un-compressed) 
data is 103 packets (3,600 samples× 2 Bytes /70 
Bytes), since each ECG sample is represented by 2 
bytes. The efficiency of the dynamic compression 
can be evaluated by calculating the percentage 
amount of the packet reduction (PR) shown in (6). 

%100



Raw

N

Compressed
N

Raw
N

PR  (6)

where, NRaw and NCompressed are the number of raw 
and compressed packets, respectively. It was found 
that record 100 was segmented into 27 packets to 
send 10 seconds of ECG data with an average CR of 
3.02±1.65 and a high reduction of 73.79% in the 
number of transmitted packets. The records and their 
reconstructed signals are shown in Figure 14, where 
the grid lines indicate the generated packets. The 
visual results show acceptable results and confirm 
the efficiency of the proposed method.  

Table 4: Obtained parameters of the dynamic compression 
scheme with Sym4 and J=4 (10 seconds for each record). 

Record 
No. of 

Packets 
Packet 

Reduction 
Average 
CR ± 

PRD 

100 27 73.79% 3.02±1.65 0.46% 
117 35 66.02% 2.62±1.09 0.47% 
119 26 74.76% 3.24±1.43 0.85% 

4 CONCLUSIONS 

This paper presents a closed loop ECG compression 
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algorithm based on modified discrete wavelet 
transform (DWT), bit-field preserving (BFP) and 
running-length encoding (RLE) methods. The closed 
loop scheme is important for low-powered 
telecardiology systems that have limited payload. 
The proposed compression algorithm reveals a 
dynamic scheme to subdivide the ECG data into 
equal packets and apply compression on each packet 
again until they fit into the provided payload. Based 
on PRD, CR and QS, Sym4 and 4th level of 
decomposition were adopted to implement the 
dynamic compression scheme. The proposed dynamic 
scheme was tested on records 100, 117 and 119 
using 10 seconds of data. The results showed that 
the method can divide the ECG records to 27, 35 and 
26 packets with an average CR of 3.02±1.65, 
2.62±1.09 and 3.24±1.43 and PR of 73.79%, 66.02% 
and 74.76% for records 100, 117 and 119, 
respectively. The optimal CR and PRD can be 
designed by controlling the preserved bit-length. 
Moreover, a packetizing scheme of the compressed 
data was proposed to have minimum headers and 
more space for the compressed data. Nevertheless, 
further improvement can be done on this method to 
have higher CR and QS. Our future prospect is to 
implement the method on ultra-low power hardware 
since the initial indication shows promising results. 
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