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Abstract: The majority of location problems are known to be NP-hard. An aggregation is a valuable tool that allows to
adjust the size of the problem and thus to transform it to the problem that is computable in a reasonable time.
An inevitible consequence is the loss of the optimality due to aggregation error. The size of the aggregation
error might be significant, when solving spatially large problems with huge number of customers. Typically,
an aggregation method is used only once, in the initial phase of the solving process. Here, we propose new
re-aggregation approach. First, our method aggregates the original problem to the size that can be solved by
the used optimization algorithm, and in an each iteration the aggregated problem is adapted to achieve more
precise location of facilities for the original problem. We use simple heuristics to minimize the sources of
aggregation errors, know in the literature as, sources A, B, C and D. To investigate the optimality error, we use
the problems that can be computed exactly. To test the efficiency of the proposed method, we compute large
location problems reaching 80000 customers.

1 INTRODUCTION

The location problem consists of finding a suitable set
of facility locations from where services could be effi-
ciently distributed to customers (Eiselt and Marianov,
2011; Daskin. M., 1995; Drezner, 1995). Many lo-
cation problems are known to be NP-hard. Conse-
quently, the ability of algorithms to compute the op-
timal solution quickly decreases as the problem size
is growing. There are two basic approaches how to
deal with this difficulty. First approach is to use a
heuristic method, which, however, does not guaran-
tee that we find the optimal solution. Second ap-
proach is to use the aggregation, that lowers the num-
ber of customers and candidate locations. The aggre-
gated location problem (ALP) can be solved by ex-
act methods or by heuristics. Nevertheless, aggrega-
tion induces various types of errors. There is a strong
stream of literature studying aggregation methods and
corresponding errors (Francis et al., 2009; Erkut and
Bozkaya, 1999). Various sources of aggregation er-
rors and approaches to minimize them are discussed
by (Hillsman and Rhoda, 1978; Current and Schilling,
1987; Erkut and Bozkaya, 1999).

Here, we are specifically interested in finding the
efficient design of a public service system that is serv-
ing spatially large geographical area with many cus-
tomers. Customer are modeled by a set of demand

points (DP) representing their spatial locations (Fran-
cis et al., 2009). To include all possible locations of
customers as DPs is often impossible and also unnec-
essary. In similar situations the aggregation is valu-
able tool to obtain ALP of computable size.

The basic data requirements for public service
system design problem are location of DPs and the
road infrastructure that is used to distribute services
or access the service centers. In this paper we use vol-
unteered geographical information (VGI) to extract
road infrastructure and locations of customers. VGI
is created by volunteers, who produce data through
Web 2.0 applications and combine it with the pub-
licly available data (Goodchild, 2007). We use data
extracted from the OpenStreetMap (OSM), that is one
of the most successful examples of VGI. For instance,
in Germany the OSM data are becoming comparable
in the quality to commercial providers (Neis et al.,
2011). Road and street networks in the UK reaches
good precision as well (Haklay, 2010). Therefore,
OSM is becoming an interesting and freely available
alternative to commercial datasets.

We combine the OpenStreetMap data with avail-
able residential population grid (Batista e Silva et al.,
2013) to estimate the demand that is associated to
DPs.

It is well known, that the solution that is pro-
vided by a heuristic method using more detailed data
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Figure 1: Schematic illustrating the generation of DPs.

is often better than a solution achieved by the exact
method, when solving aggregated problem (Hodgson
and Hewko, 2003; Andersson et al., 1998). Often, ag-
gregation is used only in the initial phase of the solv-
ing process, to match the problem size with the perfor-
mance of the used solving method. In this paper, we
propose a re-aggregation heuristic, where the solved
problem is in each iteration modified to minimize the
aggregation error in the following iterations. Our re-
sults show that the re-aggregation may provide bet-
ter solutions than solution obtained by exact methods
when using aggregated data or solutions found by the
heuristic method which uses aggregation only once.

The paper is organized as follows: section 2 in-
troduces the data processing procedure. The re-
aggregation heuristic is explained in section 3. In sec-
tion 4, we briefly summarize the p-median problem,
that we selected as a test case. Results of numerical
experiments are reported in section 5. We conclude in
section 6.

2 DATA MODEL

The OSM provides all necessary data to generate DP
locations and to extract the road network. To esti-
mate the position of demand points we use OSM lay-
ers describing positions of buildings, roads, residen-
tial, industrial and commercial areas. To generate DPs
we use a simple procedure. First, we generate spa-
tial grid, which consists of uniform square cells with
a size of 100 meters. For each cell we extract from
OSM layers elements that are situated inside the cell.
Second, DPs are located as centroids of cells with a
non empty content. The process of generating DPs
is visualized in Figure 1. Third, generated DPs are
connected to the road network and we compute short-
est paths distances between them. Finally, we calcu-
late Voronoi diagrams, while using DP as generating
points, and we associate with each DP a demand by
intersecting Voronoi polygons with residential popu-
lation grids produced by (Batista e Silva et al., 2013).

3 RE-AGGREGATION
HEURISTIC

In this section we describe our re-aggregation ap-
proach. The main goal is to re-aggregate solved prob-
lem in each iteration to achieve more precise locations
of facility in the following iterations. Aggregation is
an essential part of the heuristic and it leads to loca-
tions errors (Francis et al., 2009; Erkut and Bozkaya,
1999). To minimize the effect of aggregation errors
we need to understand the possible sources of errors.
Therefore, we start by a brief summary of known
sources of aggregation errors that are related to the
input data. These sources of errors are in the litera-
ture denoted as A, B, C and D. We describe meth-
ods how to reduce them (Current and Schilling, 1987;
Hodgson and Neuman, 1993; Hodgson et al., 1997;
Erkut and Bozkaya, 1999). To supplement this dis-
cussion we also point at the sources of errors that are
often made by designers of public systems (Erkut and
Bozkaya, 1999).

3.1 Aggregation Errors

Aggregation errors are caused by the loss of informa-
tion, when DP are replaced by aggregated demand
points (ADP). (Hillsman and Rhoda, 1978) named
these errors as source errors and introduced source A,
B and C errors. Elimination of source A and B errors
was studied by (Current and Schilling, 1987). Mini-
mization of the source C error was analysed in (Hodg-
son and Neuman, 1993). Source D error and possibil-
ities how it can be minimized were studied in (Hodg-
son et al., 1997). We summarize source error in Table
1.

Some errors are also often made by designers or
decision makers, who are preparing the input data or
evaluating the aggregation errors. Examples of such
errors can be use of uniform demand distribution, ag-
gregation method that is ignoring population clusters,
or incorrect methods used to measure the aggregation
error (Erkut and Bozkaya, 1999).

The algorithm we are proposing is minimizing all
source errors A, B, C and D. To aggregate DPs we use
row-column aggregation method proposed by (Ander-
sson et al., 1998), which considers population clus-
ters. To evaluate the aggregation error in numerical
experiments, we measure optimality error, which is
commonly use metrics in the location analysis (Fran-
cis et al., 2009; Erkut and Bozkaya, 1999).
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Table 1: Types of source errors.

Error Descriptiontype
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This error is a result of wrongly
estimated distance between ADPs
a and b, when measuring the dista-
nce only between corresponding
centroids.
Elimination
Replace the distance by the sum
of distances from all DPs agg-
regated in the ADP a to the
centroid of ADP b.
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It is a specific case of source A error.
If ADP a is a candidate location for
a facility, and at the same time it re-
presents a customer, the distance be-
tween facility location a and custo-
mer a is incorrectly set to zero value.
Elimination
Replace the zero distance
by the sum of all distances
from DPs aggregated in the ADP a
to the centroid of the ADP a.
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ADP are assigned to the same
facility.
Elimination
Re-aggregate ADPs and find the
closest facility for all DPs.

so
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It is consequence of establishing
facilities in ADPs and not in DPs.
Elimination
Find the facility location by
disaggregating ADPs in the close
neighborhood of located facilities.

3.2 Aggregation Method

To aggregate DP, we use row-column aggregation
method proposed by (Francis et al., 1996; Andersson
et al., 1998). In this part we introduce original row-
column aggregation method and our adaptation to the
spatially large geographical areas with many munici-
palities.

First, we introduce three basics steps of the
original aggregation method (Francis et al., 1996;
Andersson et al., 1998):
STEP 1: Generate irregular grid for the whole
geographical area of the problem.
STEP 2: Select a centroid (ADP) of each grid cells.
STEP 3: Assign DP to the closest ADP.

building

road
municipalities boundary

cell of the aggregation method grid

Figure 2: Map of the area after application of the row-
column aggregation method to each administrative zone
separately. The aggregation procedure results in 1000
ADPs.

The irregular grid, with c columns and r rows,
is obtained by solving the c-median problem on the
projection of the DPs to the x-axis, and the r-median
problem on the projection of the DPs to the y-axis.
The border lines defining the rows and columns are
positioned in the middle between facilities that has
been found by solving the one dimensional location
problems (Francis et al., 1996). Next in the step 2, for
each call of the grid, we extract the subnetwork of the
road network that intersects with the area of the cell.
ADP is found by solving the 1-median problem for
each individual subnetwork (Andersson et al., 1998).
Finally, each DP is assigned to the closest ADP.

We slightly modified this approach by applying
it to each individual administrative zone separately.
This allows to approximate population clusters more
precisely and thus it helps to minimize the aggrega-
tion error. In the Figure 2 is visualised the result of
the aggregation obtained by the row-column aggrega-
tion method.

3.3 Re-aggregation Algorithm

The proposed heuristic algorithm consists of several
phases. Main parameters of the algorithm are de-
scribed in Table 2. Re-aggregation algorithm is com-
posed from phases that are executed in the following
order:

Phase 0: Initialization
Set i = 0 and prepare ALP aggregating the input data.
The results be s ADPs and the corresponding distance
matrix.
Phase 1: Elimination of Source A and B Errors
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Table 2: Parameters of the re-aggregation algorithm.

Symbol Description
s Initial number of ADPs.
m Maximal number of ADPs.
r Maximal number of iterations.

ε Radius of ADP neighbourhood. This
parameter divides the set C of all
ADPs into two subsets A,B ⊂C, where
A∩B = /0 and A∪B =C. Subset A
includes all ADPs that
are are located from the closest facility at
distance less than ε. Subset B is
defined as B =C−A.

λ Percentage of ADPs
that are re-aggregated in each iteration.

p-LA Algorithm for solving p-location
problem.

1-LA Algorithm for solving 1-location
problem.

Update the distance matrix accounting for source A
and B errors.
Phase 2: Location of Facilities
Solve ALP using p-LA algorithm. As a result we ob-
tain located facilities.
Phase 3: Elimination of Source C and D Errors
To minimize the source C error reallocate DPs to the
closest facilities.
To minimize the source D error decompose the prob-
lem into p location problems each consisting of one
facility location and of all associated DPs. Each de-
composed problem is solved using 1-LA algorithm.
As a result we obtain p new locations of facilities.
Phase 4: Re-aggregation
If all ADPs with an established facility are constituted
by only one DP or if i > r then terminate. Otherwise,
considering the parameter ε, divide the set of DPs into
two subsets A and B. Move from subset B into the
subset A all ADPs that include at least one DP that
has shorter distance to another facility than its ADP
centroid. De-aggregate each ADP in the subset A to
λ new ADPs using aggregation method from initial
phase 0 and update the value of parameter s. While
s > m than randomly select one ADP from subset B
and aggregate it with the closest ADP from the subset
B. Increment i by 1 and go to the phase 1.

4 THE P-MEDIAN LOCATION
PROBLEM

The number of existing location problems is over-
whelming (Eiselt and Marianov, 2011; Daskin. M.,
1995; Drezner, 1995). To evaluate the optimality

error and the time efficiency of the proposed re-
aggregation algorithm, we use the p-median problem,
which is one of the most frequently studied and used
location problems (Hakimi, 1965; Calvo and Marks,
1973; Berlin G N et al., 1976; Janáček et al., 2012).
This problem includes all basic decisions involved in
the service system design. The goal is to locate ex-
actly p facilities in a way that the sum of weighted
distances from all customers to their closest facilities
is minimized. The problem is NP hard (Kariv and
Hakimi, 1979). For complex overview of applications
and solving methods see (Marianov and Serra, 2002;
Marianov and Serra, 2011). Exact solving methods
are summarized in (Reese, 2006) and heuristic meth-
ods in (Mladenović et al., 2007).

To describe the p-median problem we adopt the
well-known integer formulation proposed in (ReVelle
and Swain, 1970). As possible candidate locations we
consider all DPs, where n is a number of DPs. The
length of a shortest path on a network between DP i
and j is denoted as di j. We associate to each DP a
weight wi, representing the number of customers as-
signed to the DP i. The decisions to be made are de-
scribed by the set of binary variables:

xi j =

{
1, if demand point i is assigned to facility j
0, otherwise,

y j =

{
1, if a facility at the candidate location j is open

0, otherwise.

The p-median problem can be formulated as follows:

Minimize f =
n

∑
i=1

n

∑
j=1

widi jxi j (1)

subject to

n

∑
j=1

xi j = 1 for all i = 1,2, . . . ,n (2)

xi j ≤ y j for all i, j = 1,2, . . . ,n (3)
n

∑
j=1

y j = p (4)

xi j,y j ∈ {0,1} for all i, j = 1,2, . . . ,n (5)

Objective function (1) minimizes the sum of
weighted distances from all DPs to the their closest fa-
cilities. The constraints (2) insure that each customer
is allocated exactly to the one facility. The constraints
(3) allow to allocate customers only to located facil-
ities and the constraint (4) makes sure that exactly p
facilities are located.
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Table 3: Basic information about selected geographical ar-
eas that constitute our benchmarks.

Area Number Size Populationof DPS [km2]
Partizánske 4,873 301 47,801

Košice 9,562 240 235,251
Žilina 79,612 6,809 690,420

Table 4: Selected subversions of the re-aggregation algo-
rithm.

Subversion Composition of phases
S1 0,2,4
S2 0,1,2,4
S3 0,2,3,4
S4 0,1,2,3,4

5 RESULTS

To evaluate the proposed heuristic, we analyse the op-
timality error and the computation time consumed by
the heuristic when it is applied to three real geograph-
ical areas. More details about geographical areas are
given in Table 3.

As the algorithm p-LP we use the algorithm ZE-
BRA (Garcı́a et al., 2011) that is state-of-the-art algo-
rithm for the p-median problem.

To evaluate the importance of individual phases
of the proposed heuristic we formulate four different
subversions of the algorithm, denoting them as S1, S2,
S3 and S4. Table 4 summarizes the composition of
each subversion.

We start by investigating the performance of
the re-aggregation algorithms using benchmarks Par-
tizánske and Košice that can be also solved by the al-
gorithm ZEBRA to optimality. Then to evaluate the
efficiency of the proposed heuristic when it is applied
to large problems we use it to solve benchmark Žilina.
This benchmark is too large to be solved to optimality.

5.1 Performance Analysis

We aim to investigate the relation between the qual-
ity of the solution and the computational time that is
consumed by individual phases of the re-aggregation
algorithm by means of numerical experiments.

First, we define the relative reduction coefficient
characterizing the size of the ALP problem as α:

α = (1− number o f ADPs
number o f original DPs

)100%. (6)

Thus α = 0 denotes the size of the original, unag-
gregated problem.

Second, adopting the formulation described
in (Erkut and Neuman, 1992), we define the relative
error ∆ between two solutions as:

∆(xα,y) =
f (y)− f (xα)

f (xα)
, (7)

where f () is the optimal value of the objective
function measured considering original, i.e. unaggre-
gated problem; xα is the optimal solution of the ALP
problem with relative reduction α and y is the solu-
tion provided by our re-aggregation algorithm. Thus,
x0 denoted the optimal solution of the original, i.e.
unaggregated, problem.

When we use x0 in the formula 7 we obtain the
optimality error.

Finally, using the same notation, we define the rel-
ative time effectivity σ as:

σ(xα,y) =
t(y)− t(xα)

t(xα)
, (8)

where t() is time spent by computing the solution.
In experiments we compare three different values

of the input parameter s = 1%,10% and 25% of the
unaggregated problem size and we fix the parameter
m to value 50% of the unaggregated problem size.

Further we investigate two values of the param-
eter ε = 0 when the surrounding of facilities is not
re-aggregated; and the value ε = 1km when all ADPs
closer than 1 kilometer from the located facilities are
re-aggregated. The results of numerical experiments
are shown in Tables 5 and 6.

In the majority of cases we find the optimality
error ∆ below the value of 1%. For the area of
Partizánske, when ε = 0, we find also some cases
when the values of the optimality error ∆ are between
1− 2%, but here the reduction coefficient α has sig-
nificantly higher value as if ε = 1, which means that
lower number of ADPs was used. Thus, we are trad-
ing the optimality error for the computational time.
On the one hand side, when ε = 1 for all solutions the
optimality error ∆ is below 0,5%, and frequently we
find the optimal solution. On the other hand side, re-
duction coefficient α is smaller and the computational
time is increased.

The most time consuming subversion is theS2.
The number of iterations and the reduction coefficient
α are frequently smaller than in other cases, espe-
cially in the case of the larger benchmark of Košice.
Moreover, the subversion S2 exhibits the highest op-
timality error ∆ from all subversions. The subversion
S4 found the optimal solution in 83% of experiments
when ε = 1. When ε = 0, in 44% of cases for the
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Table 5: Results of numerical experiments for the geograph-
ical area of Partizánske

s
ε

p=
5

p=
10

p=
20

[%
]

[k
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]
S1

S2
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S4
S1
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1

0
∆
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00
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0.
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0.
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0.
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0
0
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7
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0.
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1
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0

0
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0.
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0.
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39

0
0.
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0.
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0.
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0.
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0
σ

-0
.9
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-0

.9
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-0
.9
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-0

.9
61

-0
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-0

.9
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-0
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-0
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-0

.7
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0
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0
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-0
.8
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-0
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-0
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.9
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6
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.8
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1
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.9
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-0
.7
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-0

.9
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-0
.8
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-0

.1
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0.
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7
-0

.1
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-0
.2
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1

1
α
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.1

%
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%
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.5
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%
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%
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%
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.2
%

10
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∆
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0
0

0
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0

0
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47

0.
00

12
0.
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0
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1
σ

-0
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-0
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-0
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-0

.8
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-0
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.8
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.2
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8

-0
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.4

%
65

.6
%

66
.5

%
50

.8
%

50
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benchmark Košice and in 67% of cases for the bench-
mark Partizánske the optimal solutions is found. The
subversion S1 reached the optimal solution in the 17%
of the experiments for the benchmark Partiánske and
in 33% of all benchmark for the benchmark Košice,
when ε = 1. When parameter ε = 0, the subversion
S1 did not find the optimal solution. As expected, the
most time efficient is the subversion S1. Optimal so-

Table 6: Results of numerical experiments for the geograph-
ical area of Košice.
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lutions or very small optimality error is the most of-
ten found by subversions S4 and S3. From this we
cam conclude that elimination of source A and B er-
rors has no significant effect on the quality of the final
solution and we found that in some cases it even leads
to worse final solution.

Computational time grows when increasing the
value p. That can be partially explained by smaller
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values of the reduction coefficient α. Larger values
of parameter s help to find better solution, but it of-
ten leads to smaller values of α. For example, for the
area of Partizánske, when ε = 0,s = 10 and p = 5,
subversions S3, S4 found an optimal solution with us-
ing only 10− 11% of DPs. When ε = 0 we add at
most (λ−1)∗ p new ADPs in each iteration. If ε = 1
the reduction coefficient α is about 24− 25%. Thus,
ε = 1 leads to larger values of α. This is because
we are de-aggregating more than p ADPs defined by
perimeter ε around the p ADPs. The re-aggregation
algorithm has high time effectivity σ, especially if p
is small. This can be particularly beneficial, as for ex-
ample the state-of-the-art-algorithm ZEBRA system-
atically needs more computational time and consumes
more computer memory when p is small. Just for il-
lustration, the computer memory allocation needed to
find optimal solution for the benchmark Košice using
the algorithm ZEBRA for p = 5 is 10.41 GB. Our re-
aggregation algorithm demanded less than 3 GB.

In the next subsection we present the results ob-
tained for large instance of the location problem
Žilina.

Here, in contrast to small problems we compute
the shortest path distances on the fly. Although here it
is not that case, this has to be done when the size of the
problem does not allow to store the distance matrix in
the computer memory. This leads to larger computa-
tions times and makes impossible comparison of the
computational time between small and larger problem
instances.

5.2 Large Location Problems

In this part, we compute the large location problem
Žilina using the subversions S1,S2 and S4 of the re-
aggregation algorithm. The parameter s is fixed to
α = 99%. In these experiments, we investigate the
improving of the solutions and the elapsed computa-
tional time in the first three iterations of the algorithm.
Results for all subversions are summarized in Table 7.

The size of the problem Žilina does not allow to
compute the optimal solution, and thus, we cannot
evaluate the optimality error. Therefore, instead of
the optimal solution of the original problem Žilina, we
use in the formula 7 optimal solution of the ALP. We
prepared three aggregated versions of problem Žilina
with different values of α: 97%,94% and 90%. Here,
we also used the initialization phase 0 of the heuris-
tic. We denote the ALP solutions as: x97,x94 and x90,
where index indicate the α of the ALP.

When designing the public service systems for
large geographical areas, it is common in location
analyses to aggregate DPs to the level of municipali-

Table 7: Results of experiments for large location problem
Žilina for p = 10,ε = 0. t denoted the elapsed computa-
tional time of the heuristic algorithm and f (y) is the value
of the objective that corresponds to the found solution.

subversion S1
α t f(y)

Iteration [%] [h] [km× person]
1 98.93 0.33 5931969
2 97.41 1.28 5855933
3 94.44 8.45 5837895
4 90.26 33.99 5832424

subversion S2
α t f(y)

Iteration [%] [h] [km× person]
1 98.93 0.33 5931969
2 97.38 3.01 5861099
3 94.64 23.59 5843044

subversion S4
α t f(y)

Iteration [%] [h] [km× person]
1 98.93 33.76 5822479
2 97.47 69.91 5822479
3 94.79 114.72 5822479

ties (Janáček et al., 2012). For the region of Žilina we
add to our benchmarks also the case, when the aggre-
gation is done at the level of individual municipalities
(i.e. each municipality represents one ADP). Here we
obtained 346 ADPs, which represents the reduction
about α = 99.57% of DPs that are present in the orig-
inal problem. The solution of this problem is denoted
as x99.

The results in Table 8 show that for subversions
S1 and S2 the solution is improved in each iteration
of the algorithm. The subversion S4 does not improve
solution in this range of iterations.

The re-aggregating approach can find better solu-
tion using the lower or similar number of ADPs as
the fixed ALP with exact method. Experiments with
the large location problem, once again, confirm that
phase 2, which was supposed to eliminate source er-
rors A and B, does not lead to better solutions. Sim-
ilarly as in the previous experiments, the best turned
out to be the subversion S4. Furthermore, for sub-
version S4 with α = 98.93%, which is the problem
with size of the 853 ADPs, enables to achieve bet-
ter solution than the exact method on the fixed ALP
with 7916 ADPs which represents the reduction of
the 90% of DPs. However, its computational time is
much larger than for the subversion S1, but its solu-
tion is better than solution of the subversion S1 after
four iterations.
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Table 8: Relative errors ∆(xα,y) in the solution y obtained
by our heuristic, with respect to the solutions xα considering
various values of the reduction coefficient α.

subversion S1
∆(xα,y)

Iteration α = 99 α = 97 α = 94 α = 90
1 -0.011 0.012 0.015 0.014
2 -0.024 -0.0001 -0.002 0.0019
3 -0.027 -0.003 -0.001 -0.0001
4 -0.028 -0.004 -0.0018 -0.0021

subversion S2
∆(xα,y)

Iteration α = 99 α = 97 α = 94 α = 90
1 -0.011 0.013 0.015 0.0149
2 -0.023 0.0008 0.003 0.0028
3 -0.026 -0.0023 -0.00005 -0.0003

subversion S4
∆(xα,y)

Iteration α = 99 α = 97 α = 94 α = 90
1 -0.0293 -0.0035 -0.0034 -0.0038
2 -0.0293 -0.0035 -0.0034 -0.0038
3 -0.0293 -0.0034 -0.0034 -0.0038

6 CONCLUSIONS

When a location problem is too large to be solved by
a solving method at hand, the aggregation can be a
way around. Typically, solving methods do not re-
adjust the input data and the aggregation is done at
the beginning of the process and it is kept separated
from the solving methods. In this paper we proposed
a method, which is adapting the granularity of input
data in each iteration of the solving process to aggre-
gate less in areas where located facilities are situated
and more elsewhere. The proposed method is ver-
satile and it can be used for wide range of location
problems.

We use the large real-world problems derived
from the geographical areas that consist of many mu-
nicipalities. It is important to note that in location
analysis it is not very common to use such large prob-
lems. We found only two examples where the p-
median problem with approximately 80,000 DPs was
solved (Garcı́a et al., 2011; Avella et al., 2012) and
in difference to our study they do not use real-world
problems, but randomly generated benchmarks.

We found that minimization of the source C and D
errors has the most significant effect on the quality of
the solution. Not surprisingly, the highest time effec-
tivity is observed when no elimination of source er-
rors is performed. Unexpected is that the elimination
of source A and B errors has tendency to worsen the

quality of the solution. However, this is only an ini-
tial study entirely based on the p-median problem and
more evidence is still needed when it comes to other
types of location problems. For example, the lexi-
cographic minimax approach has considerably larger
computational complexity (Ogryczak, 1997; Buzna
et al., 2014), where problems with more than 2500
DPs are often not computable in reasonable time. In
similar cases, we believe, our approach could be very
promising.
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