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Abstract: This paper deals with a production planning problem formulated as a Mixed Integer Linear Programming 
(MILP) model that has a competition component, given that the manufacturers are willing to produce as 
much products as they can in order to fulfil the market’s needs. This corresponds to a typical game theoretic 
problem applied to the productive sector, where a global optimization problem involves production planning 
in order to maximize the utilities for the different firms that manufacture the same type of products and 
compete in the market. This problem has been approached as a cooperative game, which involves a possible 
cooperation scheme among the manufacturers. The general problem was approached by Owen (1995) as the 
“production game” and the core was considered. This paper identifies the cooperative game theoretic model 
for the production planning MILP optimization problem and Shapley Value was chosen as the solution 
approach. The results obtained indicate the importance of cooperating among competitors. Moreover, this 
leads to economic strategies for small manufacturing companies that wish to survive in a competitive 
environment. 

1 INTRODUCTION 

The high competition in the market has led many 
companies to adopt supply chain management in 
order to obtain better results and competitive 
advantages to achieve a good positioning in them.  

For this reason, businesses today search for an 
optimal performance of their overall operations in 
important areas like Production and Logistics 
(Gimenez and Ventura, 2005). In order to do this, 
many authors have provided contributions in this 
field: Optimizing Inventory Operations (Hartman 
and Dror, 2003); Optimal operations planning (Li et 
al., 2003); Optimal price and return policy 
(Mukhopadhyay and Setaputro, 2004); Optimal 
operations of transportation fleet (Kang et al., 2008); 
Optimal multi-stage logistic and inventory policies 
(Hsiao, Lin & Huang, 2010); Optimal production 
planning (Shi et al., 2011); Optimal deteriorating 
items production inventory models (Widyadana and 
Wee, 2011); Optimal production management 
(Cadenillas et al., 2013); Optimal production 
planning (Gong and Zhou, 2013); Optimal 
transportation and business cycles (Das et al., 2014); 

and Optimal dynamic policies for integrated 
production (Chen, 2014).  

Optimal production is directly related to 
increased capacity and thus, a business is able to 
offer more to their clients. Yet, the overall 
performance of a business is not guaranteed by this, 
given that there are many other factors (financial, 
marketing, commercial) that affect the business’ 
performance and could be even more important than 
production itself. Production planning optimization 
problems have been approached to obtain the best 
solution that maximizes or minimizes an objective 
aimed by the business or group of businesses. This 
solution, in many cases, seems an unrealistic 
solution given that the businesses are observing a 
static market. Getting a view of the competitors’ 
movements, on the other hand, makes the decision 
even a more competitive one. Not only this, but if 
integrating the competitor’s decisions in the market 
to the production planning problem, could result in a 
more plausible solution. When tackling this type of 
problems, with a competition component involved, a 
game theoretic solution approach should be 
considered. 
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Production planning has been widely studied in 
many of its components and applications in the 
industry (Khaledi and Reisi-Nafchi, 2013), where 
mathematical models have been the most 
representative of this type of problems, on both 
static and dynamic models (Missbauer and Uzsoy, 
2011). Moreover, the competitive component of the 
production planning has been approached by a few 
authors and most of them have offered game 
theoretic solutions to these problems. In (Zhou, Xiao 
and Huang, 2010), the authors proposed a game 
theoretic mathematical solution to generate the 
optimal process plan for multiple jobs; (Manupati et 
al., 2012) presented a scheme for generating optimal 
process plans for multiple jobs in a networked based 
manufacturing system by applying non-cooperative 
games; (Aydinliyim and Vairaktarakis, 2013) 
considered a competitive scheduling setting using a 
cooperative game theoretic approach to achieve the 
maximum savings possible. 

Generally, production planning problems are 
formulated using mixed integer linear programming 
(MILP) models, issue that has had a great 
development in the literature. Lütke Entrup et al., 
(2005) developed a MILP model that integrates 
shelf-life issues into production planning and 
scheduling. In (Ertugrul and Isik, 2009), the authors 
presented a MILP model to wine production 
planning. In (Doulabi et al., 2012), the formulation 
of an open shop scheduling problem was developed 
as two different MILP models. Jolayemi (2012) 
developed a MILP model for scheduling projects 
under penalty and reward arrangements, while in 
(L'Heureux et al., 2013), the authors presented a 
MILP model to solve a short term planning problem. 
In (Mattik et al., 2014), an MILP optimization model 
based on the block planning principle was developed 
to obtain optimal production scheduling. 

On the other hand, the application of game 
theory to solve the production planning problem has 
shown great impact during the last years. In (Li et 
al., 2012), the authors developed an application of 
game theory in planning and scheduling integration, 
using Nash equilibrium to deal with multiple 
objectives; In (Zamarripa et al., 2012), a multi-
objective MILP model was developed, to optimize 
the planning of supply chain with a game theoretic 
approach; In (Yin et al., 2013) a game theoretic 
model to coordinate single manufacturer and 
multiple suppliers with asymmetric quality 
information was proposed. 

Others have used cooperative game theory for 
the formation of alliances in other contexts other 
than production. For example, in (Okada, 2010) the 

author proposed a cooperative game that describes 
an economic situation in which n individuals can 
communicate and form coalitions with each other 
under the concept that such a strategic alliance 
would increase individual income per participant.  

The purpose of this paper is to illustrate an 
approach to solving problems of production 
planning with a competitive component through the 
application of Game Theory. 

2 PROBLEM FORMULATION 

2.1 Mathematical Model for the 
Production Planning Problem  

We consider a production planning problem as a 
MILP model in order to obtain the maximum 
income for each of the ݉ manufacturers involved in 
a specific market, which considers the production of 
݊ different products. The following model is 
represented for each manufacturer. 
 

Notation: 
݅ ൌ 1, . . . , ݊  Product (good) type 
݆ ൌ 1,… ,  Production facilities ݌ܿ
݈ ൌ 1,… ,݉ Manufacturing firms 
	ݓ ൌ 1,… ,   Type of raw materials ݓܽݎ
݇	 ൌ 	1, … , ݈ܿ Client types 
 

Parameters: 
 ௜௝௟ = Production capacities of product type ݅ at݌ܽܥ
production facility	݆ of the manufacturing firm	݈. 
ܯ݌ܽܥ ௪ܲ௝௟ = Raw material type ݓ available at 
production facility	݆ of manufacturing firm݈. 
 ௜௞ = Quantity demanded of product type ݅ at݉݁ܦ
client	݇. 
 ݇ by	௜௞௟ = Price of product type ݅ offered to client݌
manufacturing firml. 
ܿ௜௝௟ = Cost of manufacturing product type ݅ at 
production facility	݆ by manufacturing firm݈. 
ܽ௜௪ = Quantity of raw material w required producing 
product type ݅ 
 

Variables: 

௜ܺ௝௟௞ 	ൌ Quantity of product type ݅ produced at 
production facility ݆ by manufacturing firm ݈ sold to 
client	݇. 
௜௟௞ݍ 	

ൌ ൜
1, ݇	݁ݐ݈݊݁݅ܿ	݋ݐ	݈	݉ݎ݂݅	݂ݑ݊ܽ݉	ݕܾ	݈݀݋ݏ	ݏ݅	݅	݀݋ݎ݌	݂݅
ݕݎܽݎݐ݊݋ܿ	݄݁ݐ	݊݋																																																										,0  

 

Objective Function: 
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Maximize 
 

݂ሺݔሻ ൌ 	෍෍݌௜௞௟෍ݍ௜௟௞ ௜ܺ௝௟௞

௝௞௜

െ෍ ௜ܺ௝௟௞ܿ௜௝௟
௞

 
(1)

 

Subject to 
 

෍ ௜ܺ௝௟௞

௞

൑ 		෍ݍ௜௟௞݌ܽܥ௜௝௟
௞

						∀݅, ݆, ݈ (2)

෍ܽ௜௪ ௜ܺ௝௟௞

௜,௞

	൑ ܯ݌ܽܥ		 ௪ܲ௝௟						∀ݓ, ݆, ݈ (3)

෍ݍ௜௟௞ ௜ܺ௝௟௞

௝,௟

	൒ ,݅∀				௜௞݉݁ܦ	 ݇ (4)

௜ܺ௝௟௞ 	 ∈ Ժା									 			∀݅, ݆, ݈, ݇ (5)

Equation (1) establishes the objective function of the 
production problem, which aims to maximize the 
total utilities of the manufacturers. Equation (2), (3) 
and (4) establish capacity and demand restrictions.   

For a single manufacturing firm this model is 
simple (the decision variable ݍ௜௟௞ should not be 
included) and an optimal solution is guaranteed, 
which makes the capacity restriction the main 
concern to obtaining greater income for each 
manufacturer. 

Given that there are multiple manufacturers 
integrated in the same optimization problem, when 
competing in the same market, the solution is not 
that simple. Moreover, if some of the manufacturing 
companies are small and, as an overall, the industry 
is affected by external competitors that are 
threatening to take away a part of their own market, 
a strategy besides working at optimal conditions, has 
to be implemented by the manufacturers. 

2.2 Cooperative Game Model 

The "Production Game” (Owen, 1995) is defined as 
a set of players ݈ ൌ ሼ1,2, … ,݉ሽ, each player has a 
batch of ݓ kinds of raw material. Player 1 has ܾଵଵ 
units of raw material 1, ܾଵଶ units of raw material 2, 
and ܾଵ,௥௔௪ units of raw material ݓ; Player 2 has 
units ܾଶଵ raw material 1, ܾଶଶ units of raw material 2 
and ܾଶ,௥௔௪ units of raw material ݓ; player 3 has ܾଷଵ 
units of raw material 1, ܾଷଶ  units of raw material 2, 
and ܾଷ,௥௔௪  units of raw material ݓ,…, player ݉ has 
ܾ௠ଵ units of raw material 1, ܾ௠ଶ units of raw 
material 2,…, ܾ௠,௥௔௪ units of raw material ݓ. The 
products do not have value for themselves, except 
that they are used to produce goods ݔଵ, ݔଶ,…, ݔ௡ 

which can be sold at prices set in the market. A 
linear production process is assumed, in which one 
unit of the product 1 requires ܽଵଵ raw material 1, ܽଵଶ 
units of the raw material 2 and ܽଵ,௥௔௪ units of the 
raw material ݓ; a unit of the product 2 requires ܽଶଵ 
units of raw material 1, ܽଶଶ units of raw material 
units 2 and ܽଶ,௥௔௪ units of the raw material ݓ, one 
unit of the product ݊ requires ܽ௡ଵ units of raw 
material 1, ܽ௡ଶ units raw material 2 and ܽ௡,௥௔௪ units 
of the raw material ݓ. Products	ݔଵ,ݔଶ,…, ݔ௡ can be 
sold at ݌ଵ, ݌ଶ,…, ݌௭ dollars respectively. 

When a coalition ܵ is formed, members will 
contribute to each of their products in order to 
maximize profits from the sale of products on the 
market. Therefore, the characteristic function is 
given by the following linear equation:  
 

vሺSሻ ൌ෍݌௜ݔ௜
௜

ൌ ଵݔଵ݌ ൅ ଶݔଶ݌ ൅ ௡ (6)ݔ௭݌

Subject to: 

෍ ܽ௜௪ݔ௜
௜

൑ ܾ௪ሺܵሻ, (7) ݓ	∀

 

Where: 

ܾ௪ሺܵሻ ൌ෍ܾ௟௪
௟∈ௌ

 (8)

3 SOLUTION APPROACH 

3.1 Application of the MILP to the 
Cooperative Game Model 

The model described in section 2.1 is integrated to 
the Cooperative Game Model described in section 
2.2. For the implementation of the game, the 
following cooperation strategies were considered: 

 When cooperating, each player is allowed to 
share its capacity with the others that form the 
coalition. 

 Utilities are transferable among players that form 
the same coalition. 

3.1.1 Definition of the Cooperative Game 

Consider the ݉ manufacturers, players of the game. 
Each player has a manufacturing facility with 
available raw materials for production and clients 
requiring each type of product. Each one yields for 
the maximum payoff, according to the MILP 
formulated in section 2.1. When cooperating, the 
production is set on two strategies: (i) more capacity 
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is available and (ii) prices are stabilized according to 
the market’s needs.  

3.1.2 Characteristic Function 

Given the optimal income function ݂ሺݔሻ presented 
previously and ݒሺܵሻ for the general problem, the 
resulting characteristic function evaluated is: 

 

vሺSሻ ൌ෍෍෍෍ ௜ܺ௝௟௞൫݌௜௞
∗ െ ܿ௜௝௟൯

௟∈ௌ௞௝௜

 (9)

where, ݌௜௞
∗  is the average price of product type ݅ 

offered to client ݇ for all players belonging to the 
coalition ܵ, That is, every player belonging to the 
coalition ܵ, offers to each client ݇, a  product type ݅ 
with a ݌∗ price. On the other hand, the cost involved 
corresponds to the facility that is actually managing 
the production of the type of product sold. The 
facilities chosen to manufacture a product are 
subject to the capacity restriction that was previously 
stated in the MILP formulation, and adapted to the 
cooperative model as follows in eq. 10. 
 

෍ ௜ܺ௝௟௞

௞

൑ 		෍݌ܽܥ௜௝௟
௞

						∀݅, ݆, ݈ (10)

3.2 Shapley Value 

Shapley Value is a solution approach to cooperative 
games and is given by the following equation: 
 

φ௜ሺݒሻ ൌ ෍
ሺݏ െ 1ሻ! ሺ݊ െ 1ሻ!

݊!
ሾݒሺܵሻ

ௌ⊂ே
െ ሺܵݒ െ ݅ሻሿ 

(11)

 

Where ܰ is any finite ݒ company, with |ܰ| ൌ ݊. 
This formulation expresses the Shapley value for 
each player ݅ in a game ݒ as a weighted sum of 
terms of the form	ሾݒሺܵሻ െ ሺܵݒ െ ݅ሻሿ, which is the 
contribution of player ݅ to coalition ܵ (Roth, 1988). 

In this way, the contribution of each player can 
be calculated by using an algorithm that evaluates 
the Shapley Value, which is explained in the 
following sections. 

3.2.1 Solution Algorithm 

Calculating the Shapley Value has been a research 
topic of interest. Its computational complexity is 
combinatorial given that it requires knowing all 
possible combinations among the ݊ different 
players, that is, 2௡ െ 1. The model proposed in this 
paper presents an efficient algorithm that can be 
applied to many players, given that it integrates the 
probabilistic aspect of the Shapley Value formula 

and the possible margin of contribution that any 
player is able to make in a coalition. Similar to the 
expected value a decision making model under 
uncertainty restrictions, the Shapley Value is the 
expected value of each player under the different 
coalition scenarios. The table 1 explains the 
calculations executed in this algorithm with an 
example of four players. 

Table 1: Shapley Value calculation for 4 players. 

݅th pl. 1 2 3 4 

1 v(1) 

v(1,2)  – v 
(2) + v (1,3) 
–  v(3) + v 
(1,4) - v (4) 

v(1,2,3) - 
v (2.3) + 
v(1,2,4) - 
v(2.4) + 

v(1,3,4) -
v(3,4) 

v 
(1,2,3,4) 

- 
v(2,3,4) 

2 v(2) 

v (1,2) - v 
(1) + v (2,3) 
- v (3) + v 

(2,4) - v (4) 

v (1,2,3) - 
v (1,3) + v 
(1,2,4) - v 
(1,4) + v 

(2,3,4) - v 
(3,4) 

v 
(1,2,3,4)

-v 
(1,3,4) 

3 v(3) 

v (1,3) - v 
(1) + v (2,3) 
- v (2) + v 

(3,4) - v (4) 

v (1,2,3), 
v (1,2) + v 
(2,3,4), v 
(2,4) + v 
(1,3,4), v 

(1,4) 

v 
(1,2,3,4)

-v 
(1,2,4) 

4 v(4) 

v (1,4) - 
v (1) + v 

(2,4) - v (2) 
+ v (3,4), v 

(3) 

v (1,2,4), 
v (1,2) + v 
(1,3,4), v 
(1,3) + v 
(2,3,4), v 

(2,3) 

v 
(1,2,3,4)

-v 
(1,2,3) 

3.2.2 Pseudo Code 

The resulting program code for the solution 
algorithm generated is showed in the Appendix 
section. 

This solution approach was first applied to other 
applications related to supply chain, resulting in 
interesting results. In the electric energy industry, 
where a two-level game was proposed, in which the 
first one looks for a Stackelberg Equilibrium 
solution where the leader is a generator, in 
particular, then the second-level obtains the 
coordination among a group of marketers following 
a cooperative game, where Shapley Value is 
calculated for each player as a result of their 
coordination (Guzmán et al., 2008). Also, in the 
furniture industry, with respect to the competitive 
value of both supplier and manufacturing companies 
(Puello-Pereira and Ramírez-Ríos, 2014). 
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4 RESULTS 

4.1 Numerical Example 

For the numerical example, a 4-player game is 
considered, where each player represents a 
manufacturing company that competes for a single 
client with four different products. The information 
below includes the market price and consumption of 
raw material per type of product. 

Table 2: Market price: 

Product type Price ௭ܲ 
1 40 
2 50 
3 45 
4 35 

 

It is assumed that the fabrication of product 
requires four different materials in the proportions 
showed in Table 4.  

Table 3: Amount of raw material. 

Raw material Player 1 Player 2 Player 3 Player 4
1 200 150 130 180 
2 100 210 190 140 
3 50 155 230 160 
4 300 135 180 90 

Table 4: Raw material requirement. 

Row material ݔଵ ݔଶ ݔଷ ସݔ
1 5 6 6 5 
2 6 2 1 5 
3 1 2 5 1 
4 3 5 1 6 

4.1.1 Optimal Solution for the Competitive 
Model 

This problem was solved initially as global 
optimization model that didn’t consider possible 
cooperation among the agents. 

By using an optimization engine (GAMS), an 
optimal solution was generated, with a total utility of 
$5.155, where the optimal value, corresponding to 
each player, is presented in table 5. 

Table 5: Solution generated. 

P. type Player 1 Player 2 Player 3 Player 4 
Prod 1 10 0 2 0 
Prod 2 20 25 20 15 
Prod 3 0 0 0 15 
Prod 4 0 0 0 0 

Utilities 1400 1250 1080 1425 

4.1.2 Cooperative Game Solution to the 
Problem 

For this numerical example, the possible coalitions 
are the following: ݒሺ1ሻ, ݒሺ2ሻ, ݒሺ3ሻ, ݒሺ4ሻ, ݒሺ1,2ሻ, 
 ,ሺ1,2,3ሻݒ ,ሺ3,4ሻݒ ,ሺ2,4ሻݒ ,ሺ2,3ሻݒ ,ሺ1,4ሻݒ ,ሺ1,3ሻݒ
 .ሺ1,2,3,4ሻݒ ,ሺ2,3,4ሻ yݒ ,ሺ1,3,4ሻݒ ,ሺ1,2,4ሻݒ

According to the solution approach implemented, 
after weighing the coalitions, an optimization engine 
is integrated to generate the optimal value for each 
scenario, resulting in each contribution to the 
coalition, as was presented in table 1. 

For each scenario generated, the FO value for 
each player is considered as the contribution of each 
one to the coalition. In the first case, when 
considering individual coalitions, that is, {1}, {2}, 
{3} and {4}, the optimal solution would be the ones 
considered in the optimization model previously 
solved if solved individually. Thus for Player 1, it 
turns to be optimal to manufacture 10 units of 
product 1 and 20 units for product 2. Nevertheless, 
when it comes to sharing demanded quantity, the 
solutions change for the other players. 
After solving for all scenarios, optimal values for 
each coalition are given in the following table. 

Table 6: Optimal value. 

Coalition 
Optimal 

value 
Coalition 

Optimal 
value 

v (1) 1400 v (2,3) 2333.3 
v (2) 1250 v (2,4) 2687.5 
v (3) 1083.33 v (3,4) 2583.3 
v (4) 1425 v (1,2,3) 4000 

v (1,2) 2916.66 v (1,2,4) 4416.66 
v (1,3) 2750 v (1,3,4) 4250 
v (1,4) 3166.66 v (2,3,4) 3833.33 

v (1,2,3,4) 5500 

4.1.3 Shapley Solution 

In the previous subsection coalitions were formed 
and also optimal values for each coalition were 
calculated, the next step is find optimal coalitions 
 

߮௜ሺܸሻ ൌ ෍
ሺs െ 1ሻ! ሺn െ sሻ!

n!
ሼୗ஫୒:୧஫ୗሽ

 (12)

We replace ݏ for each player: 

߮ଵ ൌ ෍
ሺ1 െ 1ሻ! ሺ4 െ 1ሻ!

4!
ൌ 0,25	

ሼୗ஫୒:୨஫ୗሽ

 (13)

߮ଶ ൌ ෍
ሺ2 െ 1ሻ! ሺ4 െ 2ሻ!

4!
ൌ 0,083

ሼୗ஫୒:୨஫ୗሽ

 (14)

߮ଷ ൌ ෍
ሺ3 െ 1ሻ! ሺ4 െ 3ሻ!

4!
ൌ 0,083	

ሼୗ஫୒:୨஫ୗሽ

 (15)
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߮ସ ൌ ෍
ሺ4 െ 1ሻ! ሺ4 െ 4ሻ!

4!
ൌ 0,25	

ሼୗ஫୒:୨஫ୗሽ	

 (16)

The resulting solution that gives the Shapley Value 
is given in table 7, as shown in the last column, 
which is considered as the payoff that should be 
assigned to each player in the coalition	ܵ ൌ
ሺ1,2,3,4ሻ, also known as the grand coalition. 

Table 7: Shapley values. 

݅th 
player 

1 2 3 4 ᶲ 

1 1400 5075 5062.5 1667 1611.5 
2 1250 4029 3750 1250 1273 
3 1083 3592 3312.5 1083 1117 
4 1425 4500 4500 1500 1498 
 ௜ 0.25 0.0833 0.0833 0.25 5500݌

 

According to the Shapley value, the distribution 
of the profits associated with each player in the 
grand coalition are as follows: 

For player one   USD $ 1,611.45.  
For player two  USD $ 1,273.26.  
For the player three USD $ 1,273.26.  
For the player four  USD $ 1,273.26.  
Value of grand coalition  USD $ 5,500.00. 

The results, as compared to the individual payoffs 
observed in table 5, show the feasibility of the 
solution and the economic incentive for cooperating. 
Table 8 show the comparison of the results obtained. 

Table 8: Results compared. 

Player Individual SV % Improvement 

1 1400 1611,5 15% 
2 1250 1273 2% 
3 1083 1117 3% 
4 1425 1498 5% 

4.2 Analysis Results Generated 

After solving the numerical example shown above, it 
can be observed that cooperation is possible among 
competitors, which assume the share of demanded 
quantities for each one of the products offered. The 
grand coalition sets an overall of $5.500, much 
greater than what the global model considered 
initially, $5.155. In the resulting cooperative model, 
player 1 is most strategically benefited as shown by 
the Shapley values generated. Yet, overall, all 
players are benefitted, obtaining greater benefits 
than operating individually. 

5 CONCLUSIONS 

The increase of market competitiveness generates a 
growing interest in companies to improve their 
processes and operations in order to obtain 
satisfactory results and become well positioned. This 
has encouraged many of them to integrate with their 
competitors where the implementation of strategies 
focused on collaboration between several companies 
with a common goal. Nevertheless, this is not 
always true due to the lack of incentives that 
businesses have to cooperate. For this reason, many 
companies decide to continue working 
independently. In this particular case, cooperative 
game theory offers solutions such as the Shapley 
Value that allows an efficient distribution of 
incentives among each player, thus, resulting in a 
contribution received by each player, according to 
its objective function.  

In this paper, we considered a problem of 
production planning in manufacturing companies, 
with a cooperative game model that integrated with 
MILP models that made possible the determination 
of optimal coalitions and the amount of each type of 
product to be manufactured by each player. The 
results generated, indicate that involving 
competition to obtain optimal benefits is not as 
simple as solving for a MILP model. Involving 
competition requires generating previous decisions, 
which are considered in several scenarios that must 
be evaluated. Moreover, if cooperation is 
considered, the implications make it a more dynamic 
and complex model.  

The Shapley value calculation determine an 
efficient way of distributing their income and a 
solution algorithm was implemented in order to 
calculate the value among many companies.  

This solution approach demonstrated that 
cooperation is not only recommended at a strategic 
level, but also is considered an important strategy for 
companies that are struggling in a competitive 
market and are striving to succeed.  

Future research directions are considered 
reducing the complexity of coalition formation when 
addressing Shapley Value. Also, there are multiple 
applications where cooperation is needed and more 
and more companies are searching for a way to 
cooperate without losing money.  
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APPENDIX 

Solution algorithm 
 
Count = number of coalitions formed. 
Count < 2m-1  
begin 

g = m, w= 0 
For l = 1 to m      

Slg = assign l to coalition S 
v(Slg)=Max f(x)  

Next l 
w= w + m 
Do while w <= Count 

Do 
z=1 
h=g-1 

 For j = 1 to h 
Do  
  Swh = j   
  For i = h+1 to g 

  Swi = j+z  
  v(Swi)= Max f(xj) jSwi 
  z = z +1   

  Next i  
  w=w+1 
while j+z = m  

 Next j 
h= h-1 
while h > 0 

Loop 
For l=1 to m 

For r=1 to g 
 Calculate marginal payoffs  
 MVr= sumr[v(Srl)-v(Srl-l)] 

  Calculate pr 
Next r 

   Next l 
   Calculate shapley value SVl  
   SVl=suml[pr*MVl] 
end 
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