
Accelerating the Performance of Parallel Depth-First-Search  
Branch-and-Bound Algorithm in Transportation Network Design 

Problem 

Amirali Zarrinmehr and Yousef Shafahi 
Department of Civil and Environmental Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran 

Keywords: Transportation Network Design Problem, Parallel Branch-and-Bound Algorithm, Depth-First-Search, 
Greedy Algorithm, Super-linear Speedup. 

Abstract: Transportation Network Design Problem (TNDP) aims at selection of a subset of proposed urban projects in 
budget constraint to minimize the network users’ total travel time. This is a well-known resource-intensive 
problem in transportation planning literature. Application of parallel computing, as a result, can be useful to 
address the exact solution of TNDP. This paper is going to investigate how the performance of a parallel 
Branch-and-Bound (B&B) algorithm with Depth-First-Search (DFS) strategy can be accelerated. The paper 
suggests assigning greedy solutions to idle processors at the start of the algorithm. A greedy solution, 
considered in this paper, is a budget-wise feasible selection of projects to which no further project can be 
added while holding the budget constraint. The paper evaluates the performance of parallel algorithms 
through the theoretical speedup and efficiency which are based on the number of parallel B&B iterations. It 
is observed, in four cases of TNDP in Sioux-Falls transportation network, that achieving high-quality 
solutions by idle processors can notably improve the performance of parallel DFS B&B algorithm. In all 
four cases, super-linear speedups are reported. 

1 INTRODUCTION 

Transportation Network Design Problem (TNDP) is 
a well-know infrastructural problem in 
transportation planning. As a combinatorial problem, 
TNDP targets the selection of the optimal subset of a 
set of proposed projects, i.e. construction of urban 
highways, in budget constraint, so as to minimize 
the users’ total travel time. This is an NP-Hard 
problem which has been addressed by various 
heuristic or meta-heuristic approaches (see for 
example Vitins and Axhausen (2010), or Farahani et 
al., (2013) as a more recent survey). The exact 
solution of TNDP, however, is a resource-intensive 
problem which becomes intractable soon as the 
problem enlarges (Poorzahedy, 1980). 

By advent of parallel computing facilities in 
recent decades, much work has been directed to 
address the exact solution of NP-Hard problems. 
Parallel algorithms have been devised to tackle 
many of moderate or rather large size combinatorial 
problems (Roucairol, 1996). Parallel Branch-and-
Bound (B&B) algorithms with Depth-First-Search 

(DFS) strategy have been among these algorithms 
for which promissing results have been reported 
(Anstreicher et al., 2002). 

This paper is going to investigate accelerating 
the performance of parallel B&B algorithm with 
DFS strategy in TNDP. The B&B algorithm 
proposed by LeBlanc (1975) and parallelized by 
Zarrinmehr (2011) is taken into consideration. The 
paper demonstrates how assigning greedy high-
quality solutions to the initial idle processors can 
improve the parallel performance of the algorithm. 

The rest of this paper is organized as follows: 
Section 2 provides a formal discreption of TNDP. 
Section 3 overviews in brief the related literature 
and prerequisite concepts which will be refered in 
subsequent sections. Section 4 presents the 
methodology of this paper which will be about 
feeding idle processors. In section 5, detailed results 
of running the program on four cases of Sioux-Falls 
transportation network are reported and discussed, 
which will be followed by concluding remarks in 
section 6. 
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2 FORMAL DESCRIPTION OF 
TNDP 

TNDP is often formulated as a bi-level optimization 
problem. In this formulation, the optimal subset of 
projects is selected at the Upper Level Problem 
(ULP) and the users’ behaviour in route selection is 
simulated at the Lower Level Problem (LLP), by 
solving a Traffic Assignment Problem (TAP). To 
formally describe the problem at the upper level, 
assume that (Poorzahedy and Abulghasemi, 2005): 
 ௬: set of proposed projects (links) to be added toܣ
the current network, 
 ௔: Binary decision variable corresponding toݕ
project a, a ∈  ௬, taking values 1 or 0 indicatingܣ
whether to construct a project or not, 
y: binary vector of decision variables, 
A(y): set of network links after decision y has been 
made, A(y) = A U {a∈ ௬ܣ ∶ ௔ݕ ൌ 1ሽ, 

∋௔: Amount of flow in link “a”, aݔ  ,ሻݕሺܣ
x(y): vector of traffic flow on network links after 
decision y has been made, 
∋௔ሻ: Volume-delay function of link a, aݔ௔ሺݐ  ,ሻݕሺܣ
assumed to be convex and differentiable for ݔ௔≥0, 
ܿ௔: Cost related to the construction of project a, 
a∈  ,௬ܣ

B: available budget for the construction of given 
projects, 

Now the TNDP at the upper level can be written 
as (1)-(4). 

ULP: Min௬ ܶሺݕሻ=∑ ௔ሻ௔ݔ௔ሺݐ௔ݔ	 ∈஺ሺ௬ሻ	  (1)

s.t: ݕ௔ = 0 or 1 ∀ܽ ∈ ௬ (2)ܣ

∑ 	ܿ௔ݕ௔௔	∈஺೤	  ≤ B (3)

x(y): the user equilibrium flow, from 
solution of LLP(y), corresponding to 
decision vector y 

(4)

In the above formulation, the objective function (1) 
is the sum of users’ total travel time over all links of 
the network. Decision variables are defined in 
equation (2) as binary values. Equation (3) means 
that the selection of projects must meet the budget 
constraint. Constraint (4) expresses that the amounts 
of traffic flows on the network links must follow the 
pattern of User Equilibrium (UE) which is obtained 
through a TAP. This problem, as shown in (5)-(8), is 
formulated at the LLP and the following definitions 
are further required for its description: 
P: set of origin-destinations (ODs), P	⊆ ܸ ൈ ܸ, 

݀௥௦: The travel demand from r to s, ሺݎ, ሻݏ ∈ ܲ, 
 ሻ: Non-empty set of different paths form r to sݕ௥௦ሺܭ
after decision y has been made, ሺݎ, ሻݏ ∈ ܲ, 

௞݂: Amount of flow in path k from r to s, ݇ ∈
 ,ሻݕ௥௦ሺܭ
 ௔௞: Binary variable taking values 1 or 0 indicatingߜ
whether link “a” belongs to path k or not, a∈  ,ሻݕሺܣ
݇ ∈  ,ሻݕ௥௦ሺܭ

LLP(y): Min ∑ ׬ ሻݑ௔ሺݐ
	௫ೌ
଴௔ ∈஺ሺ௬ሻ d(5) ݑ

s.t.: 

∑ ௞݂௞ ∈௄ೝೞሺ௬ሻ  = ݀௥௦    ∀ሺݎ, ሻݏ ∈ ܲ 
(6)

௞݂ ≥ 0 
∀ ݇ ∈ ሻݕ௥௦ሺܭ , ∀ሺݎ, ሻݏ ∈ ܲ 

(7)

௔ݔ ൌ෍ ෍ ௔௞ߜ ௞݂
௞ ∈௄ೝೞሺ௬ሻ	ሺ௥,௦ሻ∈௉

∀ܽ ∈ ሻ (8)ݕሺܣ

In the LLP formulation, the objective function (5) is 
the sum of the integrals of the link volume-delay 
functions, which is a mathematical construct without 
any clear interpretation (Sheffi, 1985). Equation (6) 
shows the flow conservation constraint, while the 
path flows are ensured to be non-negative in 
equation (7). The relationship between link flows 
and path flows is also considered as equation (8). It 
expresses that the amount of flow at each link is the 
summation of those path flows going through the 
link (Sheffi, 1985). 

Solving LLPs makes the model consider how 
users select their route in the network, which is often 
known as the UE situation. The UE in a 
transportation network is a situation in which for any 
origin-destination, all paths used by travellers have 
an equal travel time which is less than or equal to the 
travel time of unused paths (Sheffi, 1985). The TAP 
formulation in (5)-(8) will be referred as a UE-TAP 
through this paper. There is still another kind of 
TAP which results in the System Optimal (SO) paths 
and flows in the network, and therefore, will be 
referred as SO-TAP. In the following is the 
formulation of a SO-TAP which is the same as UE-
TAP unless in its objective function (Sheffi, 1985): 

Min ܶሺݕሻ=∑ ௔ሻ௔ݔ௔ሺݐ௔ݔ	 ∈஺ሺ௬ሻ  (9)

s.t. : (6), (7), (8) 

The objective function (9) in SO-TAP has an 
intuitive meaning, which is minimization of the 
users’ total travel time at the entire network. The 
resulting flow patterns, however, does not represent 
the actual behaviour of users, though it can be useful 
theoretically in transportation network problems. 

It is easy to see that both formulations of UE-
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TAP and SO-TAP are convex optimization problems 
and can be solved using the iterative convex 
combination algorithms (Sheffi, 1985). 

3 RELATED LITERATURE 

This section brief-reviews the related literature in 
three subsections. First, speedup and efficiency, as 
two basic measures in parallel computing are 
introduced as well as Amdahl’s law. Parallel B&B 
algorithms with DFS strategy are introduced next. 
Finally the application of the B&B algorithm in 
TNDP and its parallelization are addressed. 

3.1 Two Basic Measures in Parallel 
Computing 

Two important parallelization measures used 
extensively in the literature are known as speedup 
and efficiency. Speedup is a measure indicating how 
many times the parallel algorithm performs faster 
due to the parallelization. Efficiency is also a 
normalized version of speedup, which is the speedup 
value divided by the number of processors (Barney, 
2010). 

A fundamental theorem in parallel computing is 
known as Amdahl's law. According to Amdahl’s 
law, the speedup can never exceed the number of 
processors. This, in terms of efficiency measure, 
means that the efficiency will always be less than 1. 
A linear speedup is achieved when the speedup 
almost equals to the number of processors (Barney, 
2010). 

3.2 Parallel DFS B&B Algorithms 

The B&B algorithms are general heuristic search 
procedures which can be applied in the exact 
solution of combinatorial problems (Li and Wah, 
1990). In these algorithms, the search space of the 
problem is iteratively decomposed in the form of a 
rooted search tree, in which the root is the main 
problem and the descendents are partially solved 
problems. The B&B algorithm selects iteratively 
among the nodes of the search tree, expands the 
selected node, and updates the search tree 
information, until when there will be no node to be 
selected in the search tree (Gendron and Crainic, 
1994). 

Various search strategies of B&B algorithms 
arise at the stage of defining the selection priority 
over nodes of the search tree. DFS is a very famous 
strategy that selects the deepest node in the search 

tree in each iteration. Parallelization of this strategy 
has been an important research topic in 1980's and 
1990's (Lai and Sahni, 1984; Li and Wah, 1986, Li 
and Wah, 1990). This was mainly because of some 
reports on super-linear speedup (i.e. a speedup 
which is greater than the number of processors) 
which seemed to be in contradiction with Amdahl's 
law, introduced previously in 3.1. The super-linear 
speedup in parallel DFS B&B algorithms was not, 
however, a contradiction because in reported cases 
the processors had been observed to access high 
quality solutions in early iterations, which in turn 
brought about a reduction in the search tree and 
problem size (Pruul et al., 1988). 

3.3 B&B Algorithms in TNDP 

Due to the NP-Hard complexity of TNDP, extensive 
research has investigated non-exact solutions for the 
problem (see Farahani et al., (2013) for example). 
Not much work has addressed the exact solution of 
TNDP. The only exact solution, to our knowledge, is 
the early study of LeBlanc (1975) which proposed a 
B&B algorithm to tackle the problem. 

LeBlanc organized a binary rooted tree in 
correspondence with binary decision variables of the 
problem. In partial solutions, LeBlanc proposed 
solving a SO-TAP in which all undecided projects 
were assumed to be added to the underlying 
network. He proved that the users’ total travel time, 
taken from such an assignment, would work as a 
lower-bound for complete solutions located at the 
last level of the search tree which are to be 
evaluated, in turn, with a UE-TAP. LeBlanc’s 
algorithm was a working method to tackle small size 
TNDPs, but became inefficient soon as the problem 
enlarged (Poorzahedy, 1980). 

In a recent study, Zarrinmehr (2011) discussed 
that the B&B algorithm proposed by LeBlanc (1975) 
well-adapts to a master-slave parallelization 
paradigm. In master-slave paradigm, one processor, 
namely the master, holds the main information of the 
problem. At the beginning of B&B iterations, the 
master processor assigns the nodes of the search tree 
to other processors, namely the slaves. Each slave 
processor receives one node from the master for 
which it solves a traffic assignment problem and 
sends back to the master processor the 
corresponding result. Receiving the results back 
from the slaves, the master updates the information 
and starts a new iteration if needed. This process 
will be addressed throughout this paper as a parallel 
iteration. 

The results reported by Zarrinmehr (2011) 

Accelerating�the�Performance�of�Parallel�Depth-First-Search�Branch-and-Bound�Algorithm�in�Transportation�Network
Design�Problem

361



supported that, in low levels of parallelism, an 
almost linear speedup can be assured. It was also 
observed that, due to little idling overhead and 
negligible communication between master and slave 
processors, the performance of the parallel algorithm 
can be roughly estimated by the theoretical speedup, 
ܵ୲ሺ݌ሻ, and theoretical efficiency, ܧ୲ሺ݌ሻ, which 
account for the number of iterations in the parallel 
B&B algorithm rather than the running-times (Li 
and Wah, 1990). 

Given that p is the number of parallel processors 
and I(1) and I(p) stand for the number of B&B 
iterations while using a single processor and p 
processors, respectively, the theoretical speedup and 
efficiency are defined as follows: 

ܵ௧ሺ݌ሻ = I(1)/ I(p) (10)

ሻ/p (11)݌ሻ = ܵ௧ሺ݌௧ሺܧ

4 METHODOLOGY 

To address the solution of TNDP, this paper uses the 
parallel DFS B&B algorithm developed in 
Zarrinmehr (2011) as a base algorithm. The only 
difference is about feeding initial idle processors at 
the beginning of parallel B&B iterations. 

The idling of processors in parallel B&B 
algorithms usually takes place when the algorithm is 
just started and there are not yet enough nodes 
available in the search tree to be distributed among 
processors (See Henrich (1993) for example). 
Exploiting these idle processors to evaluate high-
quality solutions in parallel DFS B&B algorithms 
can be helpful in achieving better solutions while 
starting the search and it does not impose an extra 
computational burden on the performance of parallel 
program. 

In many combinatorial problems (e.g. scheduling 
problems, integer-programming problems, etc) 
finding feasible solutions with good quality is an 
NP-Hard problem, itself, which is not easier than the 
main problem. In TNDP, however, simple greedy 
algorithms can be devised to generate such 
solutions. The next sub-section introduces one of 
these algorithms. 

4.1 Greedy Solutions for TNDP 

Although addition of more projects to a 
transportation network would not necessarily result 
in reducing the users’ total travel time (known as 
Brass’ paradox in transportation literature) it can 
provide a greedy solution for the problem. In other 

words, a transportation network with more projects, 
in a greedy approach, is likely to provide less 
congestion and travel time. As a result, a high-
quality solution for TNDP may be a feasible 
selection of projects to which no further project can 
be added in budget constraint. Zarrinmehr and 
Shafahi (2014) named such a solution a dominant 
solution in one dimensional binary integer 
programming problems and proposed an algorithm 
for Enumeration of Dominant Solutions (EDS). 

Given that there are n projects in TNDP to be 
selected, the EDS algorithm holds an n-length binary 
string as a candidate solution. The algorithm does 
not ignore any of dominant solutions and enumerates 
each of them in O(3n) as a rough estimate. The 
interested reader can follow Zarrinmehr and Shafahi 
(2014) to find the details about the EDS algorithm 
and its functionality.  

4.2 Feeding Initial Idle Processors 

As mentioned in the beginning of this section, 
dominant solutions can serve as high-quality 
solutions to feed initial idle processors in the parallel 
DFS B&B solution of TNDP. Furthermore, the 
greedy solutions provided by this algorithm can be 
generated in no more that O(3n) which is 
computationally negligible compared with other 
computations e.g. the iterative traffic assignment 
procedure. As a result, one way to feed initial idle 
processors in the parallel B&B solution of TNDP 
can be application of the EDS algorithm. 

In the methodology used in this paper, whenever 
some idle slave processors receive nothing from 
master to work on, the master uses the EDS 
algorithm to assign dominant solutions to those 
processors. Assignment of dominant solutions to idle 
processors is done in the same order as they are 
computed by the EDS algorithm, as long as there are 
some idle processors to be assigned. These solutions 
are evaluated by idle slave processors and sent back 
to the master. The master, then, may update the best 
solution in starting iterations of the parallel DFS 
B&B algorithm which, in turn, can be helpful in 
directing the search and discarding useless nodes of 
the search tree. 

5 NUMERICAL RESULTS 

To explore the effect of feeding initial idle 
processors in the parallel DFS B&B algorithm in 
TNDP, this section considers a problem with 12 
given projects in the Sioux-Falls transportation 
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network (Bar-Gera, 2011) as shown in Figure. 1. 

 
Figure 1: The Configuration of Sioux-Falls network and 
projects. 

Given that the volume-delay functions of the 
network edges (i.e. highways) follow the pattern of 
equation (12), details about the projects definition 
are given in Table 1. 

ୟ(1+0.15ሺݐݐ݂݂ = (ୟݔ)ୟݐ
௫౗
஼౗
ሻସ ) (12)

Table 1: Projects definition. 

Project 
Free Flow 

Travel 
Practical 
capacity 

Project 
Cost 

Number 
Time 

(Minutes) 
(Vehicles per 

Hour) 
(Units of 
Budget) 

1 (1 to4) 8.0 5000 20 

2 (5 to 2) 6.0 5000 22 

3 (24 to 22) 5.0 5000 27 

4 (8 to 2) 7.0 5000 27 

5 (5 to 8) 4.0 5000 27 

6 (15 to 11) 6.5 5000 28 

7 (5 to 3) 10.0 5000 31 

8 (19 to 22) 5.0 5000 32 

9 (17 to 15) 4.5 5000 34 

10 (18 to 19) 6.0 5000 40 

11 (4 to 9) 3.0 5000 40 

12 (9 to 4) 3.0 5000 42 
 

In equation (12),  ݐୟ is the travel time in link ‘a’ 
(minutes), ݂݂ݐݐୟ is the free flow travel time in link 
‘a’ (minutes), ݔୟ is the amount of traffic flow on link 

‘a’ (vehicles per hour), and ܥୟ is the practical 
capacity of link ‘a’ (vehicles per hour). 

The parallel programs of DFS B&B algorithm 
were run before and after feeding the initial idle 
processors. Each program was only run once, 
because the performance of the parallel algorithm is 
not subjected to a stochastic behaviour (Zarrinmehr, 
2011). Four budget levels of 60, 100, 140, and 200 
(in units of budget) have been considered. The 
performance measures are theoretical speedup and 
efficiency which are rough estimates for real 
speedup and efficiency, according to Zarrinmehr 
(2011). Results are reported for processor numbers 
of 1, 2, 4, ..., 20. Table 2 presents the detailed 
results. 

There are some symbols in Table 2 that need to 
be introduced beforehand: 
#p:  Number of processors, 
#iter:  Number of parallel iterations in parallel 
B&B algorithm (as introduced earlier in subsection 
3.3), 
ܵ௧ሺ݌ሻ: Theoretical speedup, 
 ,ሻ: Theoretical efficiency݌௧ሺܧ
Err: The gap, in percentage, between the objective 
function of the best found solution by idle 
processors and the global optimum.  

Tables 2(a-d)-1 use the measure Err to show the 
quality of greedy solutions found by the EDS 
algorithm in the beginning of the parallel B&B 
algorithm. When this measure is close to zero, a 
better solution is initially available to direct the 
search of the DFS strategy. 

For example, in Table 2(a)-1, when 6 processors 
are considered to parallelize the DFS B&B 
algorithm, the solution [000000011000] is achieved 
with the objective function (i.e. users’ total travel 
time) of 6710836 (vehicle-minutes) which is a rather 
high-quality solution due to Err = 100*(6710836-
6667832)/6667832 = 0.6%. This initial solution 
contributes to discard useless nodes in the search 
tree of DFS B&B algorithm and leads to a notable 
reduction in the number of parallel iterations of the 
algorithm. This is shown in Table 2(a)-2 for #p=6 
where the number of parallel iterations is reduced 
from 40 to 32. 

Addressing the speedup and efficiency through 
the number of parallel iteration (as in 3.3), it is 
interesting also to see that the reduction in the 
number of parallel iterations due to feeding idle 
processors may bring about a super-linear speedup. 
Again, in Table 2(a)-2 when 6 processors are 
assumed to be available, after feeding the idle 
processors it can be observed that 
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ܵ௧ሺ6ሻ=216/32=6.75 > 6 and ܧ௧ሺ6ሻ=6.75/6=1.13 > 
1.00. 

Table 2: Detailed Results of Parallel DFS B&B Algorithm 
Before and After Feeding Idle Processors. 

(a)-1: Solutions Found by Idle Processors When B=60 

 
Best Solution Found Corresponding Objective Gap 

# p by Idle Processors Function (vehicle-minutes) (%) 

1 - - - 

2 [000000000011] 7443194 11.6 

4 [000000001010] 7127291 6.9 

6 [000000011000] 6710836 0.6 

8-20 [000000110000] 6667832 0.0 

 
The Global Optimum of the Problem 

 
[000011000000] 6667832 

 

(a)-2: Performance Measures When B=60 

 
Before Feeding Processors After Feeding Processors 

# p # iter ܵ௧ሺ݌ሻ ܧ௧ሺ݌ሻ # iter ܵ௧ሺ݌ሻ ܧ௧ሺ݌ሻ 

1 216 1.00 1.00 216 1.00 1.00 

2 109 1.98 0.99 109 1.98 0.99 

4 57 3.79 0.95 57 3.79 0.95 

6 40 5.40 0.90 32 6.75 1.13 

8 31 6.97 0.87 25 8.64 1.08 

10 26 8.31 0.83 21 10.29 1.03 

12 24 9.00 0.75 18 12.00 1.00 

14 22 9.82 0.70 18 12.00 0.86 

16 19 11.37 0.71 16 13.50 0.84 

18 18 12.00 0.67 16 13.50 0.75 

20 17 12.71 0.64 15 14.40 0.72 

(b)-1: Solutions Found by Idle Processors When B=100 

 
Best Solution Found Corresponding Objective Gap 

# p by Idle Processors Function (vehicle-minutes) (%) 

1 - - - 

2 [000000001111] 6951620 8.7 

4 [000000011100] 6586257 3.0 

6-20 [000000111000] 6395632 0.0 

 
The Global Optimum of the Problem 

 
[000000111000] 6395632 

 
 
 
 
 
 
 
 
 

Table 2: Detailed Results of Parallel DFS B&B Algorithm 
Before and After Feeding Idle Processors. (cont.) 

(b)-2: Performance Measures When B=100 

 
Before Feeding Processors After Feeding Processors 

# p # iter ܵ௧ሺ݌ሻ ܧ௧ሺ݌ሻ # iter ܵ௧ሺ݌ሻ ܧ௧ሺ݌ሻ 

1 468 1.00 1.00 468 1.00 1.00 

2 236 1.98 0.99 236 1.98 0.99 

4 120 3.90 0.98 115 4.07 1.02 

6 83 5.64 0.94 59 7.93 1.32 

8 64 7.31 0.91 46 10.17 1.27 

10 53 8.83 0.88 37 12.65 1.26 

12 47 9.96 0.83 32 14.63 1.22 

14 41 11.41 0.82 30 15.60 1.11 

16 37 12.65 0.79 25 18.72 1.17 

18 34 13.76 0.76 24 19.50 1.08 

20 33 14.18 0.71 22 21.27 1.06 

 

(c)-1: Solutions Found by Idle Processors When B=140 

 
Best Solution Found Corresponding Objective Gap 

# p by Idle Processors Function (vehicle-minutes) (%) 

1 - - - 

2 [000000011111] 6575316 5.5 

4 [000000111101] 6271596 0.6 

6-20 [000000111110] 6259644 0.4 

The Global Optimum of the Problem 

[001000111000] 6233324 

 

(c)-2: Performance Measures When B=140 

 
Before Feeding Processors After Feeding Processors 

# p # iter ܵ௧ሺ݌ሻ ܧ௧ሺ݌ሻ # iter ܵ௧ሺ݌ሻ ܧ௧ሺ݌ሻ 

1 717 1.00 1.00 717 1.00 1.00 

2 362 1.98 0.99 362 1.98 0.99 

4 183 3.92 0.98 166 4.32 1.08 

6 124 5.78 0.96 111 6.46 1.08 

8 95 7.55 0.94 84 8.54 1.07 

10 76 9.43 0.94 68 10.54 1.05 

12 65 11.03 0.92 58 12.36 1.03 

14 59 12.15 0.87 51 14.06 1.00 

16 53 13.53 0.85 45 15.93 1.00 

18 47 15.26 0.85 42 17.07 0.95 

20 45 15.93 0.80 39 18.38 0.92 
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Table 2: Detailed Results of Parallel DFS B&B Algorithm 
Before and After Feeding Idle Processors. (cont.) 

(d)-1: Solutions Found by Idle Processors When B=200 

 
Best Solution Found Corresponding Objective Gap 

# p by Idle Processors Function (vehicle-minutes) (%) 

1 - - - 

2 [000001111111] 6254867 3.6 

4 [000010111111] 6183311 2.4 

6 [000100111111] 6159487 2.1 

8 [000100111111] 6159487 2.1 

10 [000110111110] 6120960 1.4 

12 [001000111111] 6108631 1.2 

14 [001000111111] 6108631 1.2 

16-20 [001010111100] 6035512 0.0 

 
The Global Optimum of the Problem 

 
[001010111100] 6035512 

 

(d)-2: Performance Measures When B=200 

 
Before Feeding Processors After Feeding Processors 

# p # iter ܵ௧ሺ݌ሻ ܧ௧ሺ݌ሻ # iter ܵ௧ሺ݌ሻ ܧ௧ሺ݌ሻ 

1 869 1.00 1.00 869 1.00 1.00 

2 437 1.99 0.99 437 1.99 0.99 

4 221 3.93 0.98 220 3.95 0.99 

6 149 5.83 0.97 148 5.87 0.98 

8 114 7.62 0.95 114 7.62 0.95 

10 94 9.24 0.92 93 9.34 0.93 

12 80 10.86 0.91 79 11.00 0.92 

14 70 12.41 0.89 69 12.59 0.90 

16 63 13.79 0.86 47 18.49 1.16 

18 56 15.52 0.86 43 20.21 1.12 

20 52 16.71 0.84 39 22.28 1.11 

Similar results can be observed in Table 2(a)-2 
for #p = 8, 10, and 12, as well as in Tables 2(b), (c), 
and (d) where super-linear speedups, and 
efficiencies greater than one have been bolded. 
Figure 2 presents graphs for efficiencies before and 
after feeding idle processing cores. 

The results in Table 2 suggest that, when 
assigning greedy TNDP solutions to idle processors, 
the improvement in the performance of the parallel 
DFS B&B algorithm is quite dependent on the 
quality of the best solution found by initial idle 
processors. This can be better found out in Figures 
2(b) and 2(d). In Figure 2(b) the early access of 

processors to the optimal solution of the problem 
(i.e. Err =0.0) caused a notable increase in the 
efficiency (e.g. ܧ௧ሺ6ሻ=1.32) of the parallel 
algorithm. On the other side, in Figure 2(d) the 
performance almost remains unchanged up to use of 
14 processors, due to low-quality solutions accessed 
by idle processors. 

 
(a) TNDP When B = 60 

 
(b) TNDP When B = 100 

 
 (c) TNDP When B = 140 

 
(d) TNDP When B = 200 

Figure 2: Theoretical Efficiencies of Parallel Algorithms 
Before and After Feeding Idle Processors. 
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6 CONCLUDING REMARKS 

This paper addressed accelerating the exact solution 
of TNDP via a parallel DFS B&B algorithm with a 
master-slave parallelization paradigm. Theoretical 
measures of speedup and efficiency, based on the 
number of parallel iterations, were considered to 
evaluate performances. It was discussed that there 
were some initial idle processors at the start of the 
parallel iterations, as there were not sufficient nodes 
to be worked on. The paper suggested assigning 
greedy solutions in TNDP (namely dominant 
solutions), to these idle processors and applied a 
simple enumeration algorithm to provide such 
solutions. It was shown, in four case studies of 
TNDP with 12 projects, in Sioux-Falls transportation 
network, that feeding the idle processors can be 
helpful in reducing the number of parallel iterations 
and accelerating the performance of the algorithm. 
Super-linear speedups, and efficiency values greater 
than one, were observed in all examples. 

Numerical results in this paper suggested that 
improving the performance of the algorithm was 
quite dependent on the quality of the best found 
solution by idle processors. Therefore, it is 
interesting to investigate how application of more 
promising solutions, rather than those computed first 
by the EDS algorithm, can affect improving the 
performance of the algorithm. Also, this paper 
addressed the performance measures through 
theoretical speedups and efficiencies of parallel 
B&B algorithm which have been based on the 
number of parallel iterations rather than running-
times. Reporting on the real speedups and 
efficiencies based on the running-times and running 
the programs on large transportation networks with 
more than 12 projects and with higher number of 
processors can all be helpful to extend the results of 
this paper. 
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