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Abstract: At present, there is a wide variety of free open-source brain-computer interface (BCI) software. Even 
though the available software is very complete, it often runs under a Matlab environment. Matlab is a high 
performance language for scientific computing, but its limitations concerning the license cost, the restricted 
access to the algorithm code, and the portability difficulties complicates its use. Therefore, we proposed to 
implement a motor imagery (MI) based BCI system using Python programming language. This system was 
called miBCI software, was designed to discriminate up to three control tasks and was structured on the 
basis of online and offline data analyses. The functionality and efficiency of the software were firstly 
assessed in a pilot study, and then, its applicability and utility were demonstrated in two subsequent studies 
associated with the external and internal influences on MI-related control tasks. Results of the pilot study 
and preliminary outcomes of the subsequent studies are herein presented. This work contributes by 
promoting the utilization of tools which facilitate the advance of BCI research. The advantage of using 
Python instead of Matlab, which is the widely used programming language at the moment, is the 
opportunity to develop BCI software in a public and collaborative way, without property license restrictions. 

1 INTRODUCTION 

A brain computer interface (BCI) is a system that 
allows individuals to interact with their environment 
by translating their brain signals into control 
commands for a specific-purpose device. In a typical 
non-invasive BCI system, the brain signals are 
recorded via electroencephalography (EEG) and 
users can modulate their brain signals through 
control tasks. Those control tasks are generally 
grouped into two types: endogenous or exogenous. 
Endogenous control tasks are voluntary mental tasks 
that generate distinguishable EEG patterns over the 
scalp. Exogenous control tasks direct the user 
attention to specific sensory-cognitive stimuli, which 
causes automatic and detectable changes in the EEG 
signals (Mason and Birch, 2003). The scope of the 
present project is limited to BCI systems based on 
endogenous control tasks, specifically motor 
imagery (MI). 

The operation of a BCI system is based on three 
functions: (1) data collection from an EEG recorder, 

(2) online EEG signal translation, and (3) delivery of 
user feedback (Figure 1.1). Frequently, it is also 
necessary to store the EEG information to study in 
depth the brain signals’ patterns emerged during the 
brain-computer communication (Delorme et al., 
2010). The implementation of a BCI system, along 
with application software for analysing offline EEG 
information, is herein called BCI working 
environment. 

As BCI research has been growing rapidly in the 
last years, the necessity to implement appropriate 
BCI working environments where researchers can 
conduct their specific-purpose studies has also 
arisen. To date, there is a wide variety of computer 
programs with BCI applications. The best known 
and extensively used BCI software includes 
BCI2000 (Mellinger and Schalk, 2007), BCILAB 
(Kothe and Makeig, 2013), BioSig (Schlögl et al., 
2007), OpenViBE (Renard et al., 2010), and 
EEGLAB (Delorme and Makeig, 2004). Most of the 
BCI software has been written in C/C++ or Matlab, 
and is free open-source. Even though the previous
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Figure 1: General structure of a non-invasive BCI system. Typically, this system first collects the user brain signals from an 
EEG recorder. Then, it translates the EEG signals into control commands via a digital signal processor, a feature generator, 
and a feature translator. Finally, it provides feedback about the user performance via a control display and translates the 
control commands into semantic control signals. 

BCI software is very complete, it usually requires 
programming skills (such as BCI2000) or runs under 
a Matlab environment (such as BCILAB). These 
facts could hinder the research progress due to time 
consuming or budget restrictions. 

With respect to Matlab, this is currently the most 
widely used tool for applying computational 
methods. In addition, The MathWorks Company 
offers other valuable tools such as Simulink for 
developing, testing and prototyping BCI approaches 
(Ishak, 2009). However, Matlab has three main 
limitations, which are: (1) cost, (2) divulgation and 
(3) portability (Klein and Reilink, 2013). Firstly and 
although Matlab is feasibly afforded by the business 
sector, it may become a financial burden for the 
private one. For instance, worldwide universities 
often purchase a limited number of licenses to deal 
with the cost; however, the number of available 
licenses seldom satisfies the demand. Furthermore, 
The MathWorks Company usually suggests paying 
for a low-cost student edition in restricted budget 
cases, but only a few of toolboxes are included. 
Unfortunately, toolboxes are the most exploitable 
resource of Matlab. Secondly, Matlab algorithms are 
under a proprietary licensing model. This prohibits 
access to the code, which is inconsistent with the 
research goals of transparency and reproducibility 
(Perez et al., 2011). Finally, the only way to run a 
compiled application in Matlab is using the 
Component Runtime, but the version of both the 
application and the component must be exactly the 
same. If we consider that The MathWorks Company 
releases a new version every six months, portability 
in Matlab becomes completely unfeasible (Klein and 
Reilink, 2013).  

In the light of the above discussion, several 
scientific fields have been gradually turning to other 
programming languages, which could offer all the 

benefits of Matlab, but under a free open-source 
environment. Over the past few years, Python has 
become a potential replacement of Matlab because it 
provides a comprehensive ecosystem (Perez et al., 
2011). As Matlab, Python has a large variety of 
packages for efficient scientific computing. Unlike 
Matlab, Python is not limited to the scientific field. 
Python is widely used for more general applications 
such as web development and database management 
(Spacek and Swindale, 2009; Oliphant, 2007; 
Lindstrom, 2005). Furthermore, Chavez et al., 
(2006) evaluated the usability, productivity, 
performance and scalability aspects of Python on 
high performance computing modernization 
programs. They proved that Python was powerful 
enough to efficiently implement complex 
signal/image processing algorithms (Center, 2006). 
Python is additionally very accessible to those who 
are not programmers. In fact, Fangohr (2004) 
compared the programming languages C, Matlab 
and Python as teaching languages for engineering 
students, and Python was found to be the best choice 
in terms of clarity and functionality.  

Owing to the limitations of using Matlab and as 
Python provides the sufficient tools for 
implementing a customised BCI working 
environment, the aim of this project was to develop 
a MI-based BCI using Python. This was called 
miBCI software and a prototype version was 
presented in (Alonso-Valerdi and Sepulveda, 2011; 
Alonso-Valerdi and Sepulveda, 2011). In this paper, 
the final version of the miBCI software is introduced 
as follows. First, the development, evaluation and 
application of the system are described in detail. 
Thereafter, the results obtained from all of the 
conducted experimental studies are reported. Finally, 
some highlights and future directions are discussed. 
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2 METHODS 

MI has been extensively employed as control task 
because this allows a natural and intuitive BCI 
control. Moreover, MI-based BCIs provide the 
flexibility to develop autonomous (or asynchronous) 
systems. There is a large volume of published 
studies describing the use of MI in BCIs. In this 
regard, the most prominent work has been reported 
by Graz BCI Lab (Pfurtcheller et al., 2007). At 
present, this research group has a well-established 
procedure to develop synchronous and asynchronous 
systems (Pfurtscheller et al., 2011; Leeb et al., 
2007). Such procedure has been illustrated in Figure 
2.1 and the architecture of the miBCI software was 
founded on those stages related to the development 
of a synchronous system. 

2.1 Design Considerations 

The miBCI software was designed to discriminate up 
to three control tasks and structured on the basis of 
both online and offline data analyses. Considering 
the Graz paradigm for developing synchronous MI-
based BCIs (Figure 2.1), the online data analysis 
comprises a cycle of two phases: adaptation and 
application. The adaptation phase is a series of 
computing processes, which adjusts a mathematical 
model (classifier) to a particular EEG dataset. Those 
datasets come from training sessions with or without 
feedback. The application phase is the utilization of 
the model adjusted in the adaptation phase to predict 
the user control tasks during training sessions with 
feedback or during BCI control. The offline data 
analysis comprises digital signal processing (DSP), 
feature generation and classification, and plotting. 

2.2 Description of the System 

The miBCI software was completely written in 
Python. It was built on top of Numpy and Scipy 
(Oliphant, 2007), in addition to a very complete 
plotting library, matplotlib (Hunter, 2007). The 
graphical user interface of the software was 
programmed on PyGTK , a rich binding for creating 
interfaces; the machine learning was supported by 
mlpy, a module for (un)supervised problems 
(Albanese et al., 2012); and the classifier generation 
was provided by LIBSVM, a library for supported 
vector classification (Chang and Chih-Jen, 2011). 

The miBCI software was created to carry out the 
same operations through online and offline analyses, 
except for the controlling device operation of the 
online process. On this basis, the fundamental 

structure of the miBCI software was divided into six 
modules: (1) data acquisition, (2) DSP, (3) feature 
extraction, (4) feature selection, (5) feature 
classification, and (6) plotting tools. 

 

Figure 2.1: Flowchart of the general Graz procedure to 
develop MI-based BCIs. Both types of systems 
synchronous () and asynchronous (,) are illustrated. 

2.2.1 Data Acquisition  

At Essex BCI group, user brain signals are recorded 
via BIOSEMI equipment. Such company provides 
an EEG recording system (ActiveTwo), along with 
application software (ActiView). The ActiveTwo 
was configured to record the EEG signals within a 
400Hz-bandwidth at 2048S/s. The ActiView 
software displays the EEG signals, saves EEG data 
as BDF-file, and provides a server for network-
oriented communication (TCP/IP).  

In the miBCI software, EEG data must be 
provided in mat-format organized in three 
dimensions (channels, trials, and samples) for offline 
analysis. As data are saved as BDF-file, those must 
be first converted into mat-files by using the BioSig 
library (Schlogl and Brunner, 2008). For online 
analysis, a TCP/IP client is used to acquire the 
upcoming EEG signals. Refer to Figure 2.2a. 

2.2.2 Digital Signal Processing 

In essence, the DSP of the miBCI software consists 
of spectral and spatial filtering. The spectral method 
was included in three ways: (1) ‘50Hz-rejection’, 
filtering based on a second-order Butterworth band-
stop filter; (2) ‘Low frequency filtering’, filtering for 
removing frequencies below 0.01Hz; and (3) 
‘Bandwidth selection’, filtering based on a fourth-
order Butterworth high-pass filter followed by a 
seventh-order Butterworth low-pass filter. The 
spatial technique was mainly encompassed under 
three categories: bipolar, Laplacian, and common 
average reference (CAR). Bipolar filtering calculates 
a local voltage gradient where the influences of 
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distant sources are attenuated. Laplacian filtering is 
estimated by subtracting the average of surrounding 
electrodes from each individual electrode. CAR is 
acquired by removing the mean of all the electrodes 
from each individual electrode. See Figure 2.2b. 

2.2.3 Feature Extraction 

Sensory stimulation, cognitive activities, and motor 
behaviour result in amplitude suppression or 
enhancement of the EEG signals. The association of 
this EEG modulation with specific events is known 
as event-related oscillation (ERO). Those events can 
be of two types: event-related synchronization 
(ERS) and event-related desynchronization (ERD). 
If the EEG signals increase their synchrony and thus 
their amplitude, an ERS arises. Otherwise, an ERD 
appears (Klimesch, 1999). Particularly, MI activity 
triggers ERD on the contralateral hemisphere, as 
well as ERS on the ipsilateral hemisphere. The 
concerned oscillations take place within alpha (8–
12Hz) and beta (16–24Hz) bands over the primary 
sensory-motor cortical area (Pfurtscheller and Lopes 
da Silva, 1999). As EEG power can reflect ERD and 
ERS, there are three methods based on power 
measurement to detect MI activity. These are: (1) 
band power (BP) or absolute power, (2) relative 
power, and (3) ERD-ERS values. All of them were 
implemented in the miBCI software and are 
illustrated in Figure 2.2c. 

BP consists of three steps: (1) band-pass filtering 
of the EEG signals in predefined frequency bands, 
(2) squaring of the amplitude samples to obtain 
power samples, and (3) averaging of the power 
samples over specific time segments (Pfurtscheller 
and Lopes da Silva, 1999). Note that time segments 
used to average the power samples are specified in 
the segmentation tool of the data acquisition menu 
(Figure 2.2a). 

Relative power is defined as the ratio between 
the absolute power in a single frequency band, and 
the absolute power in a collection of frequency 
bands (Kropotov, 2009; Sörnmo and Laguna, 2005). 
This is determined as follows. First, the EEG signals 
are band-pass filtered in predefined frequency bands. 
Second, the EEG signals are band-pass filtered in a 
broad band that involves all the foregoing frequency 
bands. Third, the amplitude samples are squared to 
obtain power samples. Fourth, the power samples in 
the predefined frequency bands are divided by the 
power samples in the broad band. Finally, the power 
samples are averaged as in the BP method. 

To obtain ERD-ERS values, the same procedure 
described for BP is followed. However, having 

determined the BP estimates, these are additionally 
divided by an average power value. This value refers 
to the BP calculation in a reference interval (RI), 
which is typically taken a few seconds before 
occurring the control task. 

2.2.4 Feature Selection 

Feature selection is based on two stages: ranking and 
classification. This means that the features within 
each vector are first ranked from the most to the 
least fruitful feature by using Davis-Bouldin index 
(DBI) or recursive feature elimination. Having 
ranked the features and in order to select a proper 
number of them, a classification stage takes place as 
follows. First of all, if there are three classes (class1, 
class2, and class3) under study, then one classifier 
(c1) is assigned to discriminate between class1+2 and 
class3, while another one (c2) is used to discriminate 
between class1 and class2. If there are two classes 
(class1 and class2), then only the first classifier (c1) 
is necessary. Applying any of these two 
classification methods, the already ranked feature-
vectors are classified every  features, 
accomplishing  classifications in total (C1K). This 
means that K sub-feature-vectors (x) are formed on 
the basis of the factor . In addition to the factor , 
the feature-indexes () corresponding to the first and 
last features taken from every feature-vector must be 
defined as well. The whole classification stage can 
be expressed by  

1),::(1),::(

1),::(1),::(
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From the  resulting classification accuracies, the 
miBCI software searches the classifier(s) that yields 
the highest classification accuracy(ies), and so the 
most fruitful features are selected. 

2.2.5 Classification 

Classifiers mainly seek to assign a feature-vector to 
a specific class through a discriminant function. In 
the miBCI software, this function is obtained by 
using Fisher discriminant analysis (FDA) or 
linear/Gaussian support vector machines (SVM).  

The classification stage in the miBCI software 
proceeds in five steps. First, the feature-vectors are 
scaled to avoid features in greater numeric ranges 
dominate those in smaller numeric ranges. The 
feature-vectors are normalized by using the mlpy 
module (Albanese et al., 2012) or standardized by 
dividing MI-related features by RI related features. 
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Figure 2.2: Graphical user interface of the miBCI software. The software was structured in four tabs. These are: (a) data 
acquisition for offline and online analyses, (b) digital signal processing, (c) feature extraction, feature selection and 
classification, and (d) plotting tools. 

Second, the model is adapted to a training set by 
minimizing the difference between a target vector 
and the model output of the feature-vectors. This 
step is called training phase and is executed through 
10-fold cross-validation. In addition, a regularization 
process is run during the training phase so as to 
prevent over-fitting problems due to the 
manipulation of numerous feature-vectors. Third, the 
model with the lowest parameters and the highest 
classification accuracy is selected. Finally, once the 
model has been trained, its ability to categorize 
correctly a testing set is evaluated (Bishop, 2006; 
Hsu et al., 2003). 

2.2.6 Plotting Tools 

The miBCI software has six plotting tools (Figure 
2.2d). Five of them are for offline analysis and the 
remaining one is for online analysis. The offline 
tools are divided into three categories: (1) graphical 
representation of the EEG signals in the frequency 
domain, (2) feature distribution, and (3) time course 
of ERD-ERS (Pfurtscheller and Lopes da Silva, 
1999). The online tool creates x-y plots of the 
incoming features during the brain-computer 
communication. 

2.3 Evaluation of the System 

Three naive participants (one female and two males) 
took part in a pilot study. All of them consented to 
take part in the study and none of them reported 
neurological deficits. All the participants were aged 
between 26 and 31 and were right-handed. The study 
lasted around 50 minutes split in a 30-min session to 
mount 61 electrodes, and a 20-min session to train 
the participants. The 61 electrodes corresponded to 
the EEG layout of 81 electrodes based on the 10/10 
system, wherefrom the 20 ones localized along the 
0% axial reference curve were discarded. The 
participant training session was arranged in four 
runs. Each run had 40 trials (20 left and 20 right 
hand MIs) and each trial lasted between 10 and 11s 
(Figure 2.3).  

The miBCI software was applied to monitor the 
behaviour of the EEG signals during the experiment 
(online data analysis), and subsequently, was also 
applied to analyse those EEG signals (offline data 
analysis). In both analyses, the time windows taken 
by the miBCI software were MI performance (from 
3 to 7s) and relaxing period (only from 8 to 10s). 
The relaxing period was used to characterize the no 
control (NC) class in the online data analysis, while 
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it was used as RI in the offline data analysis. 

2.3.1 Online Data Analysis 

For the online data analysis, the miBCI software was 
configured as follows. Two bipolar channels (FC3–
CP3 and FC4–CP4) were selected. The MI-related 
signals were segmented using 1s time windows, 
while those related to NC were segmented using 
500ms time windows. In both cases, no overlapping 
was applied. The feature extraction was based on 
absolute power measurements within two narrow 
frequency bands: upper alpha (U, 10–12Hz) and 
upper beta (U, 20–24Hz). Given the configuration 
described above, feature-vectors of 16 features were 
obtained.  

2.3.2 Offline Data Analysis 

For the offline data analysis, the miBCI software was 
configured as follows. Three central channels (C3, 
Cz, and C4) were taken and spatially filtered via two 
methods: small Laplacian and CAR. The channels 
were segmented by using time windows of 1s length 
with 50% overlapping rate. The feature extraction 
was based on absolute power measurements within 
four narrow frequency bands: lower alpha (L, 8–
10Hz), U, lower beta (L, 16–20Hz), and U. The 
classification was executed through a Gaussian 
SVM, which was trained with 40 trials per class and 
tested with 40 trials per class as well. This 
configuration resulted in vectors of 84 features. 

2.4 Application of the System 

To demonstrate the usability of the miBCI software, 
the conduct of two independent studies, where the 
software was applied, is hereunder outlined. 

2.4.1 Analysis of the Cue Effects  

The aim of this analysis was to investigate the cue 
(audio, visual and bimodal stimuli) effects on left 
and right hand imaginary movements. 

Nine participants (four females and five males) 
took part in this study and signed a consent form. All 
of them were aged between 28 and 41 years. None 
of them reported auditory impairments, seven of 
them had normal vision, and two of them had 
corrected-to-normal vision. Eight of the nine were 
right-handed and only one was left-handed. The 
participants attended two sessions, which lasted 48 
minutes each and followed an identical procedure. 
Every session consisted of six runs and one run had 
50 trials. One trial took from 8500 to 9500ms. Each 

trial consisted of three phases: movement 
preparation (0-2500ms), MI (2500-6000ms) and 
relaxation (6000-8500±1000ms). The timing 
protocol is similar to that depicted in Figure 2.3. 

For analysing the MI-related control tasks, the 
miBCI software was configured as follows. Sixty 
one electrodes were selected (note that the same 
EEG layout used in the pilot study was employed).  

 

Figure 2.3: Timing protocol for the pilot study. Each trial 
comprised four phases: warning sign, cue onset plus a 
beep, blank screen, and random inter-trial interval. 

The EEG signals were referenced through the 
large Laplacian method and segmented by using 
time windows of 500ms length with 50% 
overlapping rate. The feature extraction was based 
on absolute power measurements within seven 
narrow frequency bands: lower theta (L, 4–6Hz), 
upper theta (U, 6–8Hz), L, U, L, U, and gamma 
(, 39–41Hz). The resulting feature-vectors were 
increasingly sorted by their DBI and classified via 
FDA. 

2.4.2 Study of the Workload Influence 

The goal of this study was to investigate the 
workload effects in BCI systems. For this purpose, 
users were immersed into a simulated living-
environment with increasingly demanding scenarios. 
In this study, three control tasks were used: left and 
right hand MIs and non-MI. 

Five women and six men took part in this study. 
At the beginning of the study, all the participants 
were informed about the experimental procedure and 
signed a consent form. All of them were right-
handed and aged between 25 and 60 years. None of 
them reported auditory impairments and/or 
neurological disorders, nine of them had normal 
vision, and two of them had corrected-to-normal 
vision. 

The experiment was divided into three sessions. 
Every session lasted between 120 and 180 minutes. 
All of the sessions followed three phases: (1) 61 
electrode mounting, (2) determination of the 
independent alpha frequency (IAF), and (3) 
fulfilment of three scenarios per session. The timing 
protocol for this experiment was based on trials that 
lasted between 7000 and 8000ms. Each trial 
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included three phases: warning (0–1500ms), control 
task (1500–5000ms), and blank screen (5000–
7000±1000ms). The trial configuration is similar to 
that illustrated in Figure 2.3. 

For this study, the miBCI software was 
configured as the previous study. However, instead 
of using predefined frequency bands to the feature 
extraction process, theta and alpha bands were 
adjusted to the IAF of each participant. 

Note that the EEG analysis of the two 
aforementioned studies was exclusively offline. 

3 RESULTS 

3.1 Evaluation of the System 

The results that were obtained from the pilot study 
conducted to evaluate the miBCI software are 
presented in Table 3.1. As can be seen from the 
table, the system recognized at least 60% of the MI 
patterns of three participants in both online and 
offline analyses. The classification results showed 
that the small Laplacian and the CAR methods were 
more effective to discriminate MI patterns than the 
bipolar method. Furthermore, the small Laplacian 
method was more efficient than the CAR method. 
The results are congruent with those reported in 
(Ramoser et al., 2000), thereby demonstrating the 
proper functionality of the miBCI software. 

3.2 Application of the System 

The utility of the miBCI software is illustrated by 
presenting some preliminary results obtained from 
two offline analyses. As will be described in the next 
paragraphs, those preliminary results provided a 
valuable insight into the EEG information at hand.  

3.2.1 Analysis of the Cue Effects 

To illustrate the application of the miBCI software, 
feature-vectors proceeding from right hand MI cued 
by audio stimuli were selected. As can be seen from 
Figure 3.1, right hand MI produced EROs in 
unexpected frequency bands such as theta and 
gamma. Specifically, right hand MI produced 
remarkable ERD on the contralateral hemisphere in 
L, U, L, U, and  bands. Similarly, it caused 
significant ERS on the ipsilateral hemisphere in L, 
U, L, andU bands. Refer to Figure 3.1. 

3.2.2 Study of the Workload Influence 

The main objective of this analysis was to observe 
the control task changes throughout increasingly 
demanding scenarios. In order to exemplify the 
miBCI software application, spectral information of 
the three control tasks from one of the participants is 
presented. The spectrograms of the control tasks 
obtained from the lowest and the highest demanding 
scenarios are compared in Figure 3.2. It can be seen 
that most of the spectral components are held within 
0 and 40Hz when the control tasks were generated 
under low demanding situations (a, b, and c). In 
contrast, spectral components are spread over all the 
frequencies when the control tasks were generated 
under high demanding situations (d, e, and f). 

Table 1: Results of the pilot study. 

 

 

Figure 3.1: ERD-ERS maps of right hand MI cued by 
audio stimuli. The MI activity on right and left hemisphere 
is display in (a) and (b), respectively. 

 

Figure 3.2: Spectrograms of left, right, and non-MI control 
tasks extracted from the left hemisphere. The control tasks 
coming from low demanding situations are display in (a), 
(b), and (c) for left, right, and non-MI, respectively. 
Likewise, those coming from high demanding situations 
are presented in (d), (e), and (f). 
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4 DISCUSSION 

At present, there is a wide variety of BCI software 
that is very complete and free open-source. 
However, most of the available BCI software runs 
under a Matlab environment. This leads to purchase 
a MathWorks license. The cost and restrictions of 
such license is what hinders the use of BCI software 
that requires Matlab programming language. In fact, 
a common topic discussed in social networking 
websites such as ResearchGate and LinkedIn is the 
substitution of Matlab for biosignal processing. 

Several scientific fields have been gradually 
turning to Python programming language, which 
offers all the benefits of Matlab, but under a free 
open-source environment. Python is a functional and 
object-oriented programming language, which 
facilitates software development from scratch. With 
regard to BCI research, Python has an extensive 
variety of modules applicable to neurosciences, 
pattern recognition, machine learning and others.  

In the light of the above discussion, a MI-based 
system was programmed through Python 
programming language. The system was called 
miBCI software and was based on online and offline 
data analysis. In both analyses, the same EEG data 
processing system was adopted. This data processing 
system was created in line with six modules: data 
acquisition, DSP, feature extraction, feature 
selection, feature classification, and plotting tools. 
The functionality of the miBCI software was tested 
in a pilot study, and its utility was exemplified 
through a miscellaneous collection of plots obtained 
from two offline studies. 

Although the miBCI software is terminated for 
now, further work is required to increase the 
versatility of the system. A number of future 
improvements have been considered. First of all, the 
online data analysis of the software can be 
redesigned in order to detect non-control stages. 
This will allow users to control the miBCI software 
at any time. In other words, it is proposed to 
transform the synchronous system into an 
asynchronous one. Secondly, a larger number of 
classes can be included so as to offer greater 
freedom of manipulation to the users. Thirdly, it is 
worth mentioning that the modules of the miBCI 
software are subject to constant improvement. 
Examples of such improvement are the following. 
The mechanism for loading EEG data in the offline 
analysis could be adapted to read BDF-files, and not 
only mat-files. The feature selection may involve 
other typical methods used in BCI research such as 
principal component analysis. The variety of 

classifiers can be enriched by including algorithms 
such as neural networks. 
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