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Abstract: Disruption management is one of the main concerns of any airline company, as it can influence its annual 
revenue by upwards of 3%. Most of medium to large airlines have specialized teams which focus on 
recovering disrupted schedules with very little automation. This paper presents a new automated approach 
to solve both the Aircraft Assignment Problem (AAP) and the Aircraft Recovering Problem (ARP), where 
the solutions are responsive to unforeseen events. The developed algorithm, based on Ant Colony 
Optimization, aims to minimize the operational costs involved and is designed to schedule and reschedule 
flights dynamically by using a sliding window. Test results tend to indicate that this approach is feasible, 
both in terms of time and quality of the proposed solutions. 

1 INTRODUCTION 

The aviation sector is surely a key component in any 
thriving economy, as it supports $2.4 trillion of the 
world’s gross domestic product (GDP) and creates 
an estimated 58.1 million jobs (International Air 
Transport Association, 2011). Depending on its 
scale, when an event disrupts the normal flow of an 
airline company, the consequences can be massive; 
for instance, the eruption of the Icelandic volcano 
Eyjafjallajokull in April 2010 was responsible for 
worldwide economic and social setbacks. Therefore, 
the need for solutions that improve airline 
disruptions management is a legitimate concern not 
only for airline companies, that aim to increase 
profits by reducing operational costs, but also for the 
general public, due to its economic and social 
impact. 

When a disruption occurs, the airlines try to find 
a solution with a minimum impact to the airline’s 
schedule and with lowest added cost. Usually, the 
first problem to be tackled is the Aircraft Recovery 
Problem (ARP) which aims to recover the flight 
schedule by applying a set of operations to the 
disrupted plan so that a new aircraft can be assign to 
the disrupted flight. After solving the ARP the 
Airline Operations Control Centres (AOCC) have to 
deal with the Crew Rescheduling Problem (CRP) 
and the Passenger Rescheduling Problem (PRP). 

These three problems differ on the function they 
optimize; for instance, while the ARP minimizes the 
airline’s costs, the PRP minimizes the total 
travelling time each passenger takes to reach its 
destination.  

In order to recover from a disruption, four 
different operations can be applied: aircraft 
reassignment, flight delay, flight cancellation, and 
flight rerouting. Most of the AOCCs rely on human 
experts’ effort to minimize the impact of the 
disruption by means of these operations. In a large 
scale setup, this is a difficult task because the total 
cost of each operation include many dependent 
factors, e.g., to cancel a flight one must take into 
account the cost of parking in a specific airport, the 
hotel charges for both passengers and crew and the 
cost for alternative transportation for passengers. 
Therefore, the need for an automated system to solve 
these problems has been increasing in the past few 
years. One might think that the current setup for 
most airlines should be enough to handle a few 
unpredictable events but, in an ever growing 
industry, flight delays may be caused by simple 
events such as abnormal fuel consumption or even 
missing luggage. 

This paper proposes a new approach to deal with 
a subset of airline disruption management problem, 
the ARP. Section 2 contains information about the 
relevant literature addressing this area. Section 3 
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formally describes the problem at hand. Section 4 
presents the ant colony optimization approach we 
have developed. Section 5 includes an experimental 
evaluation of the approach when fed with a real 
dataset from the major Portuguese airline, TAP. 
Finally, Section 6 summarizes the main 
contributions of the paper, discusses limitations of 
the approach and proposes lines for improvement. 

2 STATE OF THE ART 

Previous studies about the ARP can be categorized 
into two large groups defined by the methods used to 
find the solution, i.e., Operations Research (OR) and 
Meta-heuristics. 

2.1 Exact Methods 

Although most of AOCCs are still human 
dependent, they are not fully manual. Usually, these 
teams use software that provides options regarding a 
specific disruption from which the operator must 
choose accordingly. This kind of software is often 
equipped with Operational Research-based methods 
since these are well known and reliable algorithms 
giving measurable solutions in acceptable time. 

One of the first articles about ARP appeared in 
the mid-1980s with the works of Teodorovic 
(Teodorovic and Guberinic, 1984). His objective 
was to find a new daily schedule when some 
aircrafts became unavailable; later on he also 
explored some integration with crew and passenger 
constraints in an attempt to develop a more cohesive 
solution. The first relevant computational 
breakthrough came by the works of Jarrah (Jarrah et 
al., 1993); using network flow models, his method 
should reduce costs between 20% and 90% 
compared with an un-optimized schedule recovery 
problem. His tests included real flights from United 
Airlines, during October 1993 and March 1994, and 
resulted in an estimate $540,000 in delay costs. 

There are also many solutions that solve the ARP 
using integer programming, the most relevant work 
being from Thengvall (Thengvall et al., 2001). His 
implementation was tested with real data from 
Continental Airlines and results show that optimal or 
near-optimal solutions are often obtained; the 
downside is that his model is very restricted as it 
only considers delaying and cancelling flights. 

The latest work, to our knowledge, belongs to 
Wu and Le (Wu and Le, 2012), where the authors 
model the ARP as a time-space network and several 
real restrictions were taken into account, e.g., 

aircraft maintenance costs. Their implementation 
was tested with data provided from a major Chinese 
airline and results reveal that a feasible solution is 
found twice as fast as an exact algorithm. Although 
encouraging, this kind of performance is still too 
weak when the problem is scaled to higher 
dimensions. 

2.2 Meta-heuristic Methods 

With the increasing need for better automated 
solutions to solve the ARP, several meta-heuristic 
methods have been applied to this domain. Perhaps 
the first relevant study in this field was conducted by 
Løve (Løve et al., 2005) -- using a local search 
method, his solutions are developed considering 
delays, cancellations and reassignments and the goal 
is to maximize the profit. Although the study’s 
results reveal that good solutions are achieved in less 
than 10 seconds, by maximizing the profit instead of 
reducing costs, some restrictions, e.g., passenger 
satisfaction, are not taken into account. 

Liu (Liu et al., 2006) developed a model using a 
Multi-Objective Genetic Algorithm (Konak et al., 
2006) to construct new feasible aircraft reschedules. 
This model already considers several objectives that 
simulate different roles in the ARP. The study was 
limited only by the fact that it was tested with a 
small dataset of 7 aircrafts and 70 flights. 

Perhaps the most interesting article to our work 
was written by Zegordi and Jafari (Zegordi and 
Jafari, 2010) who used the Ant Colony Algorithm 
(Colorni et al., 1991) heuristic to solve the ARP. 
Their approach is very complete regarding real 
domain constraints, such as maintenance 
requirements and other restrictions and regulations. 
Test experiments reveal that the algorithm is able to 
construct a feasible revised schedule in less than 5 
seconds and, according to the authors, such method 
was successfully applied to an airline. Despite its 
robustness, this approach does not consider 
scenarios where aircrafts from different flight 
rotations recover each other. 

Finally we would like to mention the work of 
Castro (Castro et al., 2014) who developed a new 
approach to Airline Disruption Management, where 
a multi-agent system approach is used, including 
specialist agents for different dimensions of the 
disruption management problem. Despite this 
innovative approach, this work focuses on handling 
disruptions in a pre-scheduled plan, not combining 
the AAP and ARP problems. This is something we 
address in our own work. 

All these proposals have brought improvements 
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to the classical Operations Research approach. 
Nonetheless we believe that a more cohesive 
solution, capable of a higher automation and better 
optimization is still missing. 

3 PROBLEM DEFINITION 

In the solution proposed in this paper, we will strive 
to solve two different but complementary 
dimensions of the problem at hand: the Aircraft 
Assignment Problem (AAP) (Gabteni and 
Gronkvist, 2009) and the ARP. The AAP may be 
described as the problem of assigning flights to 
aircrafts in such a way that some operational 
constraints are satisfied and possibly that some 
objective function is optimized. In our approach 
these consist on aircraft’s capacity vs. number of 
passengers and average aircraft maintenance cost 
(both mechanical and fuel). This way an efficient 
allocation takes place because aircrafts are tailored 
to each flight, resulting in cost savings. 

The AAP original solution will provide a first 
optimized schedule for the set of flights and 
aircrafts. This schedule will be affected in case of a 
disruption, i.e., an event that stops a flight to keep its 
schedule. When such a disruption occurs, the 
objective is to recover the affected flight(s) reusing 
the original plan as much as possible, minimizing 
the total cost. To recover a flight one must choose 
the best suited action that implies the lowest cost. In 
order to achieve this, flights can be delayed or 
cancelled. 

Delays can result in different outcomes in terms 
of the assigned aircraft, i.e., simple aircraft delay; 
aircraft swaps, both between a fleet of aircrafts as 
well as different aircraft types; or flight rerouting, 
where passengers reach their destination having a 
midway stop. On the other hand, cancellations entail 
a cost computed with the measure of passenger 
discontent and the cost of local hotel charges. 

Therefore, within the scope of this paper, solving 
the combination of both the AAP and the ARP 
translates into minimizing the following function: 

෍෍ܥ௔௙	. ௔௙ݔ
௙∈ி௔∈஺

൅෍ܦܥ௙	. ൫1 െ ௙൯ݕ
௙∈ி

൅෍ܥܥ௙	. ௙ݖ
௙∈ி

൅෍൫ܥ ௙ܴ ൅ .௙൯ܮܥ ௙ݓ
௙∈ி

 

(1)
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ൌ  ܨܰ
(6)

∀݂ ܰ ௙ܲ௥ ൅ ܰ ௙ܲ௟ ൌ ܰ ௙ܲ (7)

∀݂ ௙݀݋ݐܽ ൒ ௙ (8)݀݋ݐ

∀݂ ݋ݐܽ ௙݀ ൌ ௙݀݋ݐ ⇒ ,௙ݕ ,௙ݖ ௙ݓ 	ൌ ሼ0ሽ (9)

∀݂ ௙݀݋ݐܽ ൐ ௙݀݋ݐ ⇒ ,௙ݕ ,௙ݖ ௙ݓ 	ൌ ሼ0,1ሽ (10)

∀ܽ, ݂ ,௔௙ݔ ,௙ݕ ,௙ݓ ௙ݖ ∈ ሼ0,1ሽ (11)

The decision variables in the model are 
described in Table 1. 

Table 1: Model variables description. 

Var Meaning 

.ܽ ௔௙ Flag indicating if flight ݂ is assigned to aircraftݔ
 .௙ Flag indicating if flight ݂ is delayedݕ
 .௙ Flag indicating if flight ݂ is cancelledݖ
௙ Flag indicating if flight ݂ is rerouted or leased toݓ

another airline. 
௙݀݋ݐܽ Actual time of departure of flight ݂. 
 .݂ ௙ Scheduled time of departure of flight݀݋ݐ
ݏ݊݅ Cost of passenger discontent. 
ܣ Set of all aircrafts. 
ܨ Set of all flights. 
 .݂ ௔௙ Cost of assigning aircraft ܽ to flightܥ
 .݂ ௙ Cost of delaying flightܦܥ
 .݂ ௙ Cost of cancelling flightܥܥ
ܥ ௙ܴ Cost of rerouting passengers from flight ݂. 
௙ Cost of rerouting passengers from flight ݂ using aܮܥ

different airline. 
ܰ ௙ܲ Number of passengers on flight ݂. 
ܰ ௙ܲ௥ Number of passengers on flight ݂ that have been

re-routed internally. 
ܰ ௙ܲ௟ Number of passengers on flight ݂ that have been

leased to other airlines. 
ܯܦܥ Cost of 1 minute of delay. 
௙ Cost of rerouting 1 passenger from flight ݂ using aݎܲ

different airline. 
௙ Cost of hotel charges for 1 passenger from flightܥܪ

݂. 
ܨܰ Total number of flights to be scheduled. 

This model is based on the one presented in 
(Zegordi and Jafari, 2010), with some changes. 
Function (1) to be minimized represents the total 
cost associated to scheduling and/or recovering all 
flights, aircrafts and passengers. Therefore, the ARP 
is slightly altered due to the introduction of 
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passenger related costs. Function (1) includes cost of 
aircraft assignment, total delay, cancellation and 
disrupted passengers. Minimizing the first term aims 
at efficiently assigning aircrafts to flights, i.e., 
providing the most cost effective aircraft given a 
certain flight. The second and third terms promote 
reliable operations by minimizing flight delay and 
cancellation, respectively. The last term recovers 
disrupted passengers either through reassigning them 
to another flight route to the same destination (with 
midway stops), or by transporting them using 
another airline or means of transportation. 

Constraints in (2) to (5) detail how to compute 
each of the costs described in the objective function 
(1). Constraint (6) ensures that the sum of active 
flags equals the number of flights, so that no flight is 
left without an aircraft. Constraint (7) guarantees 
that in case of rerouting the sum of passengers re-
routed internally with the passengers leased to other 
airlines equals the original number of passengers 
from flight f. Finally, constraints (8) through (10) 
ensure both that the atod is at least the same of tod, 
i.e., the atod is a reflection of any delay a flight may 
have; and that delaying, cancelling and rerouting 
flags are only active if a flight has different tod and 
atod. Constraint (11) is a domain restriction for all 
bit flags. 

4 ONLINE SCHEDULING WITH 
ANT COLONY OPTIMIZATION 

The Ant Colony Optimization (ACO) firstly 
described by Dorigo (Colorni et al., 1991) is a local 
search optimization algorithm that mimics the 
behaviour of ants as a sociable species. In Dorigo’s 
adaptation, an ant is a conceptual unit performing a 
random construction of a solution. This solution is 
the set of nodes visited by the ant; in nature, these 
are geographic points in the field on which they are 
looking for food. The convergence to optimization 
occurs because ants communicate with each other 
through stigmergy, i.e., they give feedback about a 
specific solution through the so-called pheromones. 
Therefore, when an ant is on the verge of choosing 
the next node, the ones with the highest pheromone 
levels are more likely to be chosen. 

Lately ACO has been applied to a vast range of 
problems (Dorigo and Stutzle, 2004) with a relative 
amount of success. However, unlike genetic 
algorithms or simulated annealing, the application of 
ACO is usually better than other meta-heuristics 
when the problem can be described by highly 

constrained graphs. Thus, this approach is expected 
to be especially appropriate for solving the problem 
as modelled in Section 3. 

Our approach is split in two distinct parts that are 
related with the different problems the algorithm 
solves: the Aircraft Assignment Problem and the 
Aircraft Recovering Problem. Although both 
problems are bounded to optimize the same 
expression, the practical outcome results in different 
behaviours. When the algorithm first runs it receives 
information about which routes are needed to assign 
aircrafts, as well as where and how many airplanes 
are available. Therefore, its first objective is to 
create a valid aircraft assignment such that all flights 
are feasible while minimizing the cost. On the other 
hand, the algorithm keeps running in order to adapt 
its schedule in case of a sudden disruption, where 
the original solution is modified so that all flights 
remain feasible with the lowest cost raise. 

4.1 Illustrating Example 

In order to illustrate how we have applied ACO to 
the AAP/ARP problem, in this section we provide an 
example where we graphically represent all 
outcomes for both AAP and ARP solutions. Our 
directed graph representation consists of two sets of 
nodes: one representing aircrafts and the other all 
flights within the scheduling scope (see Figure 1). 

 

Figure 1: Model representation (circle nodes represent 
flights, triangle nodes represent aircrafts). 

Every flight/aircraft node is connected to every 
aircraft node. Furthermore, each aircraft has 
connections to possible flights assignments (e.g. 
aircraft CSTOJ has an edge to flight 815 but not to 
flight 803 because the aircraft is not located at the 
flight’s origin airport or/and does not have the 
required passenger seats). A flight node can be 
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connected to another flight node if it respects a 
spatial and time constraint: the second flight’s origin 
has to be the same as the first flight’s destination, 
and the second flight must depart after the scheduled 
arrival of the first flight plus some rotation time, so 
that the aircraft can be properly set up (refuelling, 
transportation between gates, inspection, etc.). The 
leasing node is a special aircraft node that is 
connected to every flight, allowing flights to be 
leased to other airlines whenever an internal solution 
is not viable and the cost of leasing is lower than 
cancelling the flight. 

In order to build a solution, an ant must first 
choose an aircraft, followed by a series of flight 
nodes representing the flights assigned to that 
aircraft. When the next node to be visited represents 
an aircraft this means that subsequent flights are 
linked to it (the last visited aircraft is assigned to the 
flights). Flight nodes visited after the leasing node 
will have a leased aircraft assigned. Flights not 
included in the path are cancelled. This process 
continues until all aircraft nodes are visited. The 
objective is to find the minimum cost path in the 
directed graph. In Figure 2 we can see a possible 
solution: aircraft CSTOJ is assigned to flights 815 
and 803; aircraft CSTI has no flights; flight 202 will 
use a leased aircraft. 

 

Figure 2: Possible solution. 

When the system is notified with a disruption, 
the solution graph is updated (see Figure 3) and the 
ants will try to optimize a new path given those 
constraints with new actions on flight nodes. Delays 
may also be accepted, thus demanding no changes in 
the previous solution path. A possible solution to the 
disruption event is shown in Figure 4, where it can 
be seen that flight 803 has been cancelled. 

This representation allows optimization of both 
AAP and ARP regarding the objective function 

defined in Equation (1). On the other hand, the 
ability to respond to disruptions on the go allows the 
algorithm to adapt to environmental constraints with 
minimum human interaction. This approach is online 
rescheduling: the algorithm is constantly renewing 
and updating the best solution. In theory, this 
approach could result in a perpetually running 
algorithm that would assign aircrafts and deal with 
disruptions continuously. The algorithm would have 
a sliding window, e.g., a month, where all flights 
within that window would be taken into account 
while optimizing. As the time window moves 
forward, past flights are discarded and new ones are 
taken into consideration. 

 

Figure 3: Disruption event (flight 815 is delayed, breaking 
connection with flight 803). 

 

Figure 4: Solving the disruption. 

4.2 Algorithm Implementation 

In this section we include details of our implemented 
algorithm. A pheromone matrix keeps track of all 
the pheromone values of every edge in the problem 
graph, which are initialized to 1. 
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Every ant chooses probabilistically its next node 
depending on the relative amount of pheromone in 
the edge connecting the current node and the next 
one (see Eq. 12, where ߩ௞ is the pheromone value 
for edge ݇). 

௘ܲௗ௚௘ೖ ൌ ௞/෍ߩ ௜ߩ
௜

 (12)

When an ant finishes its graph traversal task (as 
described in Section 4.1), pheromones are laid out 
(i.e., the pheromone matrix is updated through 
addition) for each selected edge according to: 

ߩ ൌ ൬
1
ݐ݂݅

൰ ∗ (13) ܥ

where ݂݅ݐ is the solution’s fitness, according to 
function (1), and ܥ is a constant which normalizes 
the amount of pheromone deposited, so that it is not 
negligible when the fitness value is too big1. 

In each iteration, the algorithm updates the 
pheromone matrix with a decay factor. This mimics 
the evaporation of natural pheromones, preventing 
the overflow of pheromone values and allowing the 
colony to respond to changes in the fitness 
landscape: when a good path stops being viable, ants 
stop depositing or deposit less pheromones, which 
results in ants progressively abandoning this 
previously good path. This constant updating creates 
a reactive algorithm that responds to changes in the 
environment. A pheromone evaporation rate must be 
found so that the colony achieves a good balance 
between quick response to new and better paths and 
enough persistence to not give up on potentially 
good solutions. This means that the lower the 
evaporation rate, the more lasting is the “memory” 
of the colony regarding older paths. The pheromone 
evaporation rule is: 

௞ߩ ൌ max	ሺ1, ௞ߩ ∗ ሻ (14)ߤ

where ߤ is the pheromone evaporation rate, which 
for the experiments presented in Section 5 we have 
set to 0.85. 

5 EXPERIMENTS AND RESULTS 

Our ACO algorithm was tested on a real dataset 
obtained from (Castro et al., 2014). This dataset 
contains actual flight information from Portuguese 
airline TAP relative to all 5722 flights in September 
2009 and a fleet of 72 aircrafts. In order to conduct 

 
1 Note that we want to minimize function (1), thus the 

fitness value is actually a cost.  

our experiments, we had to parse TAP’s dataset and 
extract information about flight routes, i.e., 
departure, arrival, origin, destination, total distance 
and number of tickets sold; how many and where 
aircrafts were initially positioned; information 
regarding the aircrafts, maintenance costs per mile 
and total capacity; and hotel charges per 
passenger/night. The given dataset did not contain 
any information about the cost of leasing, therefore, 
those values where extrapolated to be 50% higher 
than internal costs. 

Two different experiments, regarding both AAP 
and ARP, were conducted. All tests were conducted 
under a machine with an Intel I5 650 and 4.00 GB of 
RAM and all implementations were coded in Java. 

On the first experiment we were trying to 
evaluate the algorithm’s ability to solve de AAP 
considering both the time it took to solve the 
problem and the quality of the final assignment 
schedule. These tests consisted on a time 
comparison between our ACO approach and a 
branch and bound (BB) optimization algorithm 
(Lawler and Wood, 1966); when BB became 
unresponsive due to memory overflows, a depth first 
search (DFS) (Tarjan, 1972) was used to compare 
the ACO’s solution with DFS’s first feasible 
solution. This experiment also contains information 
regarding the best known solution (BKS), i.e., the 
actual assignment carried by TAP on September 
2009. The BKS’s schedule operational costs served 
as a reference measure to evaluate the quality of a 
solution. Results regarding this experiment, 
summarized in Table 2, show that our ACO 
approach, although not always the fastest algorithm, 
consistently returns good solutions. This experiment 
also proves that an exact approach, such as branch 
and bound, is infeasible when a higher number of 
flights are taken into account. Overall, as the 
problem size grows, it is obvious that ACO’s 
approach provides much better solutions than its 
competitors. 

A second experiment was conducted in order to 
evaluate the algorithm’s capacity to overcome 
unforeseen aircraft disruptions (ARP). In order to 
compare ACO’s results with BB and DFS, a set of 
predefined disruptions was created so that the 
overload was the same across all algorithms. The set 
of disruptions contained situations where aircrafts 
were unavailable for a short or long period of time 
due to minor or major aircraft failure/ impediment. 
Disrupted aircrafts targeted both flights with and 
without future dependencies, that is, likely to cause a 
“snowball effect” of consecutive delays. The scope 
of this experiment only considered the ARP; 

Airline�Disruption�Management�-�Dynamic�Aircraft�Scheduling�with�Ant�Colony�Optimization

403



therefore, each algorithm execution time excludes 
the AAP; moreover, the initial flight schedule was 
similar across all implementations so that only the 
recovery capability would be evaluated. There was 
no useful information from TAP’s dataset that we 
could use to evaluate the performance on this 
instance of the algorithm. For that reason, the BKS 
is considered to be the solution returned by the 
ACO, since it consistently outperformed its 
competitors. Table 3 summarizes the results 
obtained from this experiment. As expected, ACO’s 
performance is much better in terms of solutions 
quality, although it takes, on average, 40% more 
time than other approaches. The trade-off between 
time and quality will probably be an issue to take 
into account when applying our approach in larger 
datasets. 

Table 2: Experiment results regarding AAP experiment. 

Algorithm 
Number of 

Flights 
Total 
Time 

Difference 
to BKS 

ACO 
20 

2.35 s 0% 
BB 0.90 s 0% 

DFS 0.58 s -1,1% 
ACO 

50 
8.60 s 0% 

BB - - 
DFS 2.95 s -6.4% 
ACO 

100 
32.43 s -0.4% 

BB - - 
DFS 7.05 s -13.4% 

Table 3: Experiment results regarding ARP experiment. 

Algorithm 
Number of 

Flights 
Total 
Time 

Difference 
to BKS 

ACO 
20 

3.13 s 0% 
BB 1.20 s 0% 

DFS 1.18 s -2,3% 
ACO 

50 
15.33 s 0% 

BB - - 
DFS 8.68 s -9.7% 
ACO 

100 
25.10 s 0% 

BB - - 
DFS 18.41 s -20.2% 

6 CONCLUSIONS 

This paper focused on studying the AAP and ARP 
with a detailed introduction of several approaches in 
the literature upon this topic. Most of the analysed 
models lack a consideration of passenger 
disruptions, a problem that can influence both the 
airline’s maintenance costs and passenger 
satisfaction. We have developed an ACO algorithm 

to solve the AAP and ARP while considering 
disrupted passengers as part of the cost function. The 
objective function that is defined in our problem 
considers aircraft assignment costs and, in case of 
unforeseen events, it allows flights to be delayed, 
cancelled or rerouted. Ants will always try to 
combine these actions so that total costs are kept to 
the minimum and disruptions are not propagated to 
other flights. 

Conducted experiments reveal that our online 
ACO rescheduling approach is able to solve 
different sets of AAP/ARP within reasonable time 
and with very good final solutions. We believe that 
this time overhead is largely compensated by the 
quality of the solutions produced. This approach is a 
step towards a full automation of AOCC’s because 
the developed algorithm is ready to run in a 
continuous fashion, where a sliding window through 
time considers future flights and discards past ones, 
constantly optimizing the current schedule and 
always ready to adapt to a new environment. An 
AOCC equipped with such a system would save the 
airline not only on operational costs, due to a better 
flight recovery, but also from having less employees 
dedicated to flight recovery. On the other hand, we 
realize that real flight management is not, at the 
moment, ready to cope with a dynamic approach 
such as our ACO-based method, because the 
constant change in aircraft assignments could 
compromise security protocols and long term flight 
planning. Nevertheless, our approach can be seen as 
a starting point towards a more realistic responsive 
system. 

A possible improvement to our approach could 
be a different representation that aggregates flights 
from the same route. This improvement would allow 
a faster optimization because flights would be 
compressed by routes, thus generating fewer nodes 
in the system. Some methods from operations 
research could also be introduced, especially on the 
AAP as an initial solution to the ACO. On the other 
hand, the algorithm could be expanded with the 
introduction of new constraints from crew 
rescheduling problem resulting in a broader 
algorithm. 

Finally, although we have made preliminary tests 
to the performance of ACO applied to this problem, 
we need to perform a comparative evaluation of our 
implementation with other meta-heuristic 
approaches.
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