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Abstract: Thrombotic disorders have severe consequences for the patients and for the society in general, being one of 
the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of 
how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a 
decision support system that will cater for an individual risk evaluation with respect to the surge of 
thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an 
extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The 
computational framework in place will be centered on Artificial Neural Networks. 

1 INTRODUCTION 

Thrombophilia or Venous ThromboEmbolism (VTE) 
may be defined as an increased tendency towards 
hypercoagulability and venous thrombosis, i.e., it refers 
to a predisposition to thromboembolism (Favaloro et 
al. 2009). Thrombophilia is a common clinical condition 
with high morbidity and mortality, comprising Deep-   
-Vein Thrombosis (DVT) and Pulmonary Embolism 
(PE) (Cohen et al. 2007). The incidence of VTE is 
estimated at 56-160 per 100,000 people/year (East 
and Wakefield, 2010). VTE is a multifactorial disease 
and these risks are generally distinguished as either 
heritable or acquired, although sometimes this distinc-
tion is unclear (Rosendaal, 1999; Favaloro et al., 2009). 

Venous thrombosis could be correlated with 
some genetic defects, namely mutations that result in 
deficiency of natural coagulation inhibitors, as well as 
mutations with increased level/function of coagulation 
factors (Reitsma and Rosendaal, 2007). Inherited risk 
factors include deficiencies/defects in natural 
anticoagulants, such as antithrombin, protein C and 
protein S (Mondal et al. 2010; Cafola et al., 2011), 

and genetic polymorphisms such as prothrombin 
G20210A and factor V Leiden (Reitsma and 
Rosendaal, 2007), that lead to a condition designated 
as activated protein C resistance (Agrawal et al. 
2009). Inherited AntiThrombin (AT) deficiency is an 
uncommon autosomal dominant disorder. Most cases 
remain heterozygous. Homozygosity for AT 
deficiency is rare and is almost always fatal in utero. 
Protein C (PC) deficiency is an autosomal dominant 
inherited disorder associated with spontaneous and 
recurrent thrombotic events. Patients with protein C 
and S deficiency are at increased risk for venous 
thromboembolic disease, occasional arterial 
thrombosis (Mondal et al., 2010). Factor V Leiden 
(FVL) increases the risk of thrombosis in PC-deficient 
type I families (Cafolla et al. 2011). Other mutations 
or polymorphisms associated with increased risk of 
thrombosis are methylenetetra-hydrofolate reductase 
677C (Rosendaal, 1999).  

Acquired thrombophilia risk factors include 
antiphospholipid antibodies, detected as lupus 
anticoagulants and/or anticardiolipin antibodies and/or 
anti-beta-2-glycoprotein-I antibodies. Environmental 
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or acquired thrombophilia risk factors include also 
previous history or concomitant disease, age, 
immobility, surgery, obesity, smoke, cancer hormone 
use, and pregnancy or postpartum states (Rosendaal, 
1999; Heit et al. 2002; Goldhaber, 2010). 

This work reports the founding of a computational 
framework that uses knowledge representation and 
reasoning techniques to set the structure of the 
information and the associate inference mechanisms. 
We will centre on a Logic Programming (LP) based 
approach to knowledge representation and reasoning 
(Neves, 1984; Neves et al. 2007), complemented 
with a computational framework based on Artificial 
Neural Networks (ANNs) (Cortez et al., 2004). 

ANNs are computational tools which attempt to 
simulate the architecture and internal operational 
features of the human brain and nervous system. 
ANNs can be defined as a connected structure of 
basic computation units, called artificial neurons or 
nodes, with learning capabilities. Multilayered feed- 
-forward neural network architecture is one of the 
most popular ANNs structure often used for prediction 
as well as for classification. This architecture is 
molded on three or more layers of artificial neurons, 
including an input layer, an output layer and a 
number of hidden layers with a certain number of 
active neurons connected by modifiable weights. In 
addition, there is also a bias, which is only connected 
to neurons in the hidden and output layers. The 
number of nodes in the input layer sets the number 
of independent variables, and the number of nodes in 
output layer denotes the number of dependent 
variables (Haykin, 2008). 

Several studies have shown how ANNs could be 
successfully used to model data and capture complex 
relationships between inputs and outputs (Caldeira et 
al., 2011; Vicente et al., 2012; Salvador et al., 2013). 

With this paper we make a start on the development 
of a diagnosis assistance system for thrombophilia 
risk detection using LP complemented with ANNs. 

2 RELATED WORK 

Many studies presenting the concept of uncertainty 
and/or ”imperfect data” like Hunter (1999) and 
Zhang and Goodchild (2002) shows that there is an 
emergent interest in the problem of uncertainty as 
compared to accuracy or error in data. The notion of 
uncertainty is broader than error or accuracy and 
includes these more restricted concepts. While 
accuracy is the closeness of measurements or 
computations to their “true” value or some value 
agreed to be the “truth”, uncertainty can be 

considered any aspect of the data that results in less 
than perfect knowledge about the phenomena being 
studied (Hong et al., 2014). On the one hand, it is 
consensual that when the data are uncertain, it is need 
a different representation and uncertainty can be 
reduced by “acquiring additional information or 
improving the quality of the information available” 
(Hunter, 1999), i.e., in almost all decisions that one 
may take, the information is not always exact, but 
indeed imperfect, in the sense that we handle 
estimated values, probabilistic measures, or degrees 
of uncertainty. On the other hand, knowledge and 
belief are generally incomplete, contradictory, or even 
error sensitive, being desirable to use formal tools to 
deal with the problems that arise from the use of 
partial, contradictory, ambiguous, imperfect, nebulous, 
or missing information (Neves, 1984; Neves et al., 
2007; Hong et al., 2014). Some general models have 
been presented where uncertainty is associated to the 
application of Probability Theory (Li et al., 2007), 
Fuzzy Set Theory (Schneider, 1999), Similarities 
(Freire et al., 2002; Liao, 2005). Other approaches 
for knowledge representation and reasoning have 
been proposed using the Logic Programming 
paradigm, namely in the area of Model Theory 
(Gelfond and Lifschitz, 1988; Kakas et al., 1998; 
Pereira and Anh, 2009) and Proof Theory (Neves, 
1984; Neves et al., 2007). The evaluation of knowledge 
that stems out from logic programs becomes a point 
of research. In this sense, the evaluation of 
knowledge that stems out from logic programs 
becomes a point of research. Lucas (2003) and 
Hommerson (2008) work is a good example of 
quality evaluation using logic. The author used 
abduction and temporal logic for quality checking of 
medical guidelines, proposing a method to diagnose 
potential problems in a guideline, regarding the 
fulfilment of general medical quality criteria at a 
meta-level characterization. They explored an 
approach, which uses a relational translation to map 
the temporal logic formulas to first-order logic and a 
resolution-based theorem prover (Schneider, 1999). 
In another research line, the Quality-of-Information 
concept (QoI) (Lucas, 2003; Machado et al., 2010) 
demonstrated their applicability in dynamic 
environments and for decision-making purposes. 
The objective is to built a quantification process of 
the QoI and an assessment of the argument values of 
a given predicate with relation to their domains (here 
understood as Degree-of-Confidence (DoC)), that 
stems from a logic program or theory during the 
evolution process when searching for solutions in 
order to solve a problem in environments with default 
data. Our main contribution relies on the fact that at 
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the end, the extensions of the predicates that make 
the universe of discourse are given in terms of DoCs 
predicates that stand for one’s confidence that the 
predicates arguments values fit into their respective 
domains. This approach potentiate the use of diverse 
computational paradigms, like Case Based Reasoning 
(Carneiro et al., 2013), Artificial Neural Networks 
(Vicente et al., 2012; Salvador et al., 2013), Particle 
Swarm (Mendes et al., 2004), just to name a few. It 
also incapsulates, in itself, a new vision of Multi-
value Logics, once a proof of a theorem in a 
conventional way, is evaluated to the interval [0,1]. 
Indeed, some interesting results have been obtained, 
namely in the fields of Coronary Risk Evaluation 
(Rodrigues et al., 2014), Hyperactivity Disorder 
(Pereira et al., 2014) and Length of Hospital Stay 
(Abelha et al., 2014) among others.  

3 KNOWLEDGE 
REPRESENTATION AND 
REASONING 

We follow the proof theoretical approach and an 
extension to the Logic Programming (LP) language, 
to knowledge representations and reasoning. An 
Extended Logic Program (ELP) is a finite set of 
clauses in the form: 

݌ ← ⋯,ଵ݌ , ,௡݌ ݐ݋݊ ⋯,ଵݍ , ௠ ሺ1ሻݍ	ݐ݋݊

? ሺ݌ଵ,⋯ , ,௡݌ ⋯,ଵݍ	ݐ݋݊ , ݐ݋݊ ݉,ሺ݊		௠ሻݍ ൒ 0ሻ ሺ2ሻ
where ? is a domain atom denoting falsity, the pi, qj, 
and p are classical ground literals, i.e., either positive 
atoms or atoms preceded by the classical negation 
sign  (Neves, 1984). Under this representation 
formalism, every program is associated with a set of 
abducibles (Kakas et al. 1998; Pereira and Anh, 
2009) given here in the form of exceptions to the 
extensions of the predicates that make the program. 

With respect to the problem of knowledge 
representation and reasoning in LP, a measure of the 
Quality-of-Information (QoI) of such programs has 
been object of some work with promising results 
(Lucas, 2003; Machado et al. 2010). The QoI with 
respect to the extension of a predicate i will be given 
by a truth-value in the interval [0,1], i.e., if the 
information is known (positive) or false (negative) 
the QoI for the extension of predicatei is 1. For 
situations where the information is unknown, the 
QoI is given by: 

௜ܫ݋ܳ ൌ ݈݅݉
ே→ஶ

1

ܰ
ൌ 0 					ሺܰ ≫ 0ሻ ሺ3ሻ

where N denotes the cardinality of the set of terms or 

clauses of the extension of predicatei that stand for 
the incompleteness under consideration. For 
situations where the extension of predicatei is 
unknown but can be taken from a set of values, the 
QoI is given by: 

௜ܫ݋ܳ ൌ
1
ൗ݀ݎܽܥ  ሺ4ሻ

where Card denotes the cardinality of the abducibles 
set for i, if the abducibles set is disjoint. If the 
abducibles set is not disjoint, the QoI is given by: 

௜ܫ݋ܳ ൌ
1

ଵܥ
஼௔௥ௗ ൅ ⋯൅ ஼௔௥ௗܥ

஼௔௥ௗ ሺ5ሻ

where ܥ஼௔௥ௗ
஼௔௥ௗ is a card-combination subset, with Card 

elements. The next element of the model to be 
considered is the relative importance that a predicate 
assigns to each of its attributes under observation, 
i.e., ݓ௜

௞, which stands for the relevance of attribute k 
in the extension of	݁ݐܽܿ݅݀݁ݎ݌௜. It is also assumed that 
the weights of all the attribute predicates are 
normalized, i.e.: 

෍ ௜ݓ
௞ ൌ

ଵஸ௞ஸ௡

1, ∀௜ ሺ6ሻ

where  denotes the universal quantifier. It is now 
possible to define a predicate’s scoring function 
௜ܸሺݔሻ so that, for a value ݔ ൌ ሺݔଵ,⋯ ,  ௡ሻ, defined inݔ

terms of the attributes of ݁ݐܽܿ݅݀݁ݎ݌௜, one may have: 

௜ܸሺݔሻ ൌ ෍ ௜ݓ
௞ ൈ

ଵஸ௞ஸ௡

௜ܫ݋ܳ ሺݔሻ ݊⁄  ሺ7ሻ

allowing one to set: 

⋯,ଵݔ௜ሺ݁ݐܽܿ݅݀݁ݎ݌ , ௡ሻݔ ∷ ௜ܸሺݔሻ ሺ8ሻ

It is now possible to engender the universe of 
discourse, according to the information given in the 
logic programs that endorse the information about 
the problem under consideration, according to 
productions of the type: 

௜݁ݐܽܿ݅݀݁ݎ݌ െ ራ ݏݑ݈ܽܿ ௝݁ሺݔଵ,⋯ , ௡ሻݔ

ଵஸ௝ஸ௠

∷ ௜ܫ݋ܳ ∷ ௜ ሺ9ሻܥ݋ܦ

where ⋃ and m stand, respectively, for “set union” 
and the cardinality of the extension of predicatei. On 
the other hand, DoCi denotes one’s confidence on the 
attribute`s values of a particular term of the extension 
of predicatei, whose evaluation will be illustrated 
below. In order to advance with a broad-spectrum, 
let us suppose that the Universe of Discourse is 
described by the extension of the predicates: 

ଵ݂ሺ⋯ ሻ, ଶ݂ሺ⋯ ሻ,⋯ , ௡݂ሺ⋯ ሻ ሺ݊		݁ݎ݄݁ݓ	 ൒ 0ሻ ሺ10ሻ

Assuming we have a clause that is mapped into a 
case, that clause has as argument all the attributes 
that make the case. The argument values may be of 
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the type unknown or members of a set, may be in the 
scope of a given interval or may qualify a particular 
observation. Let us consider the following clause 
where the second argument value may fit into the 
interval [3,5] with a domain of [0,8], the value of the 
third argument is unknown, which is represented by 
the symbol ٣, with a domain that ranges in the 
interval [5,15], and the first argument stands for 
itself, with a domain that ranges in the interval [0,3]. 
Let us consider that the case data is given by the 
extension of predicate ଵ݂, given in the form: 

ଵ݂: ,ଵݔ ,ଶݔ ଷݔ → ሼ0,1ሽ ሺ11ሻ

where “{” and “}” is one´s notation for sets, where 
“0” and “1” denote, respectively, the truth values 
“false” and “true”. One may have: 

 

{ 
൓ ଵ݂ሺݔଵ, ,ଶݔ ଷሻݔ ⟵ 	ݐ݋݊ ଵ݂ሺݔଵ, ,ଶݔ  ଷሻݔ

ଵ݂ ሺ2,					ሾ3, 5ሿ, ٣ሻᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦
	௙௢௥	௫భ,	௫మ,	௫య

∷ 1 ∷  ܥ݋ܦ

ሾ0, 3ሿ			ሾ0, 8ሿ					ሾ5, 15ሿᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ				
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦	௙௢௥	௫భ,௫మ,௫య	

 

… 

} 
 

Once the clauses or terms of the extension of the 
predicate are established, the next step is to 
transform all the arguments, of each clause, into 
continuous intervals. In this phase, it is essential to 
consider the domain of the arguments. As the third 
argument is unknown, its interval will cover all the 
possibilities of the domain. The first argument 
speaks for itself. Therefore, one may have: 

 

{ 
൓ ଵ݂ሺݔଵ, ,ଶݔ ଷሻݔ ⟵ 	ݐ݋݊ ଵ݂ሺݔଵ, ,ଶݔ  ଷሻݔ

ଵ݂ ሺሾ2, 2ሿ, ሾ3, 5ሿ, ሾ5,15ሿሻᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦	௥௔௡௚௘௦

	௙௢௥	௫భ,௫మ,௫య

∷ 1 ∷  ܥ݋ܦ

ሾ0, 3ሿ			ሾ0, 8ሿ					ሾ5, 15ሿᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ				
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦	௙௢௥	௫భ,௫మ,௫య	

 

… 
} 

 

Now, one is in position to calculate the Degree of 
Confidence for each attribute that makes the term´s 
arguments (e.g. for attribute two it denotes one’s 
confidence that the attribute under consideration fits 
into the interval [3,5]). Next, we set the boundaries of 
the arguments intervals to be fitted in the interval [0,1] 
according to the normalization procedure given in 
the procedural form by ሺܻ െ ௠ܻ௜௡ሻ/ሺ ௠ܻ௔௫ െ ௠ܻ௜௡	ሻ, 

where the ௦ܻ stand for themselves. 
 

{ 
൓ ଵ݂ሺݔଵ, ,ଶݔ ଷሻݔ ⟵ 	ݐ݋݊ ଵ݂ሺݔଵ, ,ଶݔ  ଷሻݔ

ଵݔ ൌ ൤
2 െ 0

3 െ 0
,
2 െ 0

3 െ 0
൨ , ଶݔ ൌ ൤

3 െ 0

8 െ 0
,
5 െ 0

8 െ 0
൨,				

ଷݔ ൌ ൤
5 െ 5

15 െ 5
,
15 െ 5

15 െ 5
൨ 

ଵ݂ ቀሾ0.67, 0.67ሿ, ሾ0.375, 0.625ሿ, ሾ0,1ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥቁ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦	௥௔௡௚௘௦	௙௢௥	௫భ,௫మ,௫య

௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ	

∷ 1 ∷  ܥ݋ܦ

												ሾ0, 1ሿ																	ሾ0, 1ሿ									ሾ0, 1ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ	
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦	௙௢௥	௫భ,௫మ,௫య

௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ	

 

… 
} 

 

The Degree of Confidence (DoC) is evaluated using 
the equation ܥ݋ܦ ൌ √1 െ ∆݈ଶ, as it is illustrated in 
Figure 1, where ∆݈ stands for the length of the 
argument´s intervals, once normalized. 

 
Figure 1: Evaluation of the Degree of Confidence. 

{ 

൓ ଵ݂ವ೚಴
ሺݔଵ, ,ଶݔ ଷሻݔ ⟵ 	ݐ݋݊ ଵ݂ವ೚಴ሺݔଵ, ,ଶݔ  ଷሻݔ

ଵ݂ವ೚಴
ሺ1,																	0.97,														0ሻᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௖௢௡௙௜ௗ௘௡௖௘	௩௔௟௨௘௦

௙௢௥	௫భ,௫మ,௫య

∷ 1 ∷ 0.66	 

		ሾ0.67, 0.67ሿሾ0.375, 0.675ሿ	ሾ0,1ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦	௥௔௡௚௘௦	௙௢௥	௫భ,௫మ,௫య

௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ	

 

											ሾ0, 1ሿ													ሾ0, 1ሿ										ሾ0, 1ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ	
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦	௙௢௥	௫భ,௫మ,௫య

௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ	

 

… 
} 

4 A CASE STUDY 

In order to exemplify the applicability of our model, 
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we will look at the relational database model, since 
it provides a basic framework that fits into our 
expectations (Liu and Sun, 2007), and is understood 
as the genesis of the LP approach to Knowledge 
Representation and Reasoning (Neves, 1984). 

As a case study, consider the scenario where a 
relational database is given in terms of the extensions 
of the relations depicted in Figure 2, which stands for 
a situation where one has to manage information 
about thrombophilia risk detection. Under this scenario 
some incomplete and/or default data is also available. 
For instance, in the Venous Thromboembolism 
Predisposing database, the Body Mass Index in case 
1 is unknown, while the Blood Group Predisposition 
ranges in the interval [0.08,0.14]. 

In this study, to ensure the scalability of the 
method, the extension of the relational database 
includes the features, obtained by both objective and 
subjective methods, which were pointed relevant by 
the research done so far. Thus, physicians will fill 
the tables that link to the Venous Thromboembolism 
Predisposing one while executing the health check. 
The clinics may populate some issues, others may be 
perceived by additional exams (e.g. this happens 
with the issues of the Thrombophilia Genic Factors 
(Major) and Molecular Analysis of Mutations/ 
/Polymorphisms tables). 

The Body Mass Index (BMI) is evaluated using 
the equation ܫܯܤ ൌ ݏݏܽܯ	ݕ݀݋ܤ ⁄ଶݐ݄݃݅݁ܪ  (WHO, 
2014). In the Venous Thromboembolism Predisposing 
database, the domain of Body Mass Index column is 
in the range [0,3], wherein 0 (zero) denotes BMI < 25; 
1 (one) stands for a BMI ranging in interval [25,30[; 
and 2 (two) denotes a BMI ≥ 30. Age/Heredity 
Predisposition column is based on Table 1, adapted 
from Sacher (1999). These predisposition values are 
clustered by age group and by heredity. Thus, the 
value of this parameter for the [0,40[ age group is in 
the range [0,0.5] for general population, and in the 
range [0.05,5] for population with genetic antecedents. 
The blood group predisposition parameter, which is 
also evidenced in the Thrombosis Predisposing 
database, is based on Table 2 adapted from Spiezia 
(Spiezia et al. 2013). Its values are in the range 
[0.08,0.14] for O blood group, and in the range 
[0.18,0.30] for non-O blood groups. 

Table 1: Age/Heredity predisposition (‰), adapted from 
(Sacher, 1999). 

Age Group General Population Genetic Predisposition
< 40 [0,0.05] [0.05,0.5] 

[40,75] [0.05,0.5] [0.5,5] 
>75 0.5 5 

Table 2: Blood group predisposition (‰), adapted from 
(Spiezia et al. 2013). 

Blood Group Predisposition 
O [0.08,0.14] 

non-O [0.18,0.30] 
 

The values presented in the remaining columns are 
the sum of the respective databases, ranging between 
[0,3], [0,10], [0,4] and [0,8], respectively for 
Thrombophilia Genic Factor, Thrombotic Risk 
Factors, Mutations/Polymorphisms and Earlier 
Secondary Factors columns. Then, one may have: 
 

,	௡ௗ௘௫ܫ௔௦௦ܯ௢ௗ௬ܤ	:ܾ݉݋ݎ݄ݐ  ,	௉௥௘ௗ௜௦௣௢௦௜௧௜௢௡	௘௥௘ௗ௜௧௬ܪ௚௘ܣ

ீ௥௢௨௣	௟௢௢ௗܤ ௥ܲ௘ௗ௜௦௣௢௦௜௧௜௢௡	, ௛ܶ௥௢௠௕௢௣௛௜௟௜௔ܩ௘௡௘௧௜௖	ி௔௖௧௢௥௦,	  

௛ܶ௥௢௠௕௢௧௜௖ܴ௜௦௞	ி௔௖௧௢௥௦	,ܯ௨௧௔௧௜௢௡௦ ௢ܲ௟௬௠௢௥௣௛௜௦௠௦, 

ி௔௖௧௢௥௦	௔௘௟௜௘௥ܵ௘௖௢௡ௗ௔௥௬ܧ → 	 ሼ0,1ሽ 
 

where thromb stands for the predicate venous 
thromboembolism predisposing, 0 (zero) and 1 (one) 
denote, respectively, the truth values false and true. 
It is now possible to give the extension of the 
predicate thromb, in the form: 

{ 
൓ܾ݉݋ݎ݄ݐሺܫܯܤ, ,ܪܣ ,ܲܤ ,ܩܶ ,ܲܯ,ܴܶ ሻܵܧ ←

,ܫܯܤሺܾ݉݋ݎ݄ݐ	ݐ݋݊ ,ܪܣ ,ܲܤ ,ܩܶ ,ܲܯ,ܴܶ   ሻܵܧ

ܾ݉݋ݎ݄ݐ ቆ٣ ,			0.5, ሾ0.08,0.14ሿ,			0,							0,								0,						2ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦

ቇ 

	∷ 1 ∷    ܥ݋ܦ

				ሾ0,3ሿሾ0,5ሿ		ሾ0.08,0.30ሿሾ0,3ሿሾ0,10ሿሾ0,4ሿሾ0,8ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦

 … 

} 
 

In this program, the first clause denotes the closure 
of predicate thromb. The next clause corresponds to 
patient 1, taken from the extension of the venous 
thromboembolism predisposing relation presented in 
Figure 2. Moving on, the next step is to transform all 
the argument values into continuous intervals and 
then normalize the predicate´s arguments in order to 
obtain the Degree of Confidence of the thromb 
predicate. One may have: 
 

{ 
൓ܾ݉݋ݎ݄ݐሺܫܯܤ, ,ܪܣ ,ܲܤ ,ܩܶ ,ܲܯ,ܴܶ ሻܵܧ ←

,ܫܯܤሺܾ݉݋ݎ݄ݐ	ݐ݋݊ ,ܪܣ ,ܲܤ ,ܩܶ ,ܲܯ,ܴܶ   ሻܵܧ

,൭ሾ0,3ሿܾ݉݋ݎ݄ݐ ሾ0.5,0.5ሿ, ሾ0.08,0.14ሿ, ሾ0,0ሿ, ሾ0,0ሿ, ሾ0,0ሿ, ሾ2,2ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦	௥௔௡௚௘௦

൱ 

∷ 1 ∷   ܥ݋ܦ

		ሾ0,3ሿ				ሾ0,5ሿ						ሾ0.08,0.30ሿ	ሾ0,3ሿ		ሾ0,10ሿሾ0,4ሿ	ሾ0,8ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦

  

… 
} 
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Personal Information  Thrombophilia Genic Factors (Major) 

# Age Gender 
Body Mass 

(Kg) 
Height 

(m) 
Blood 
Group 

Strong Family 
Story 

 # Antithrombin III Protein C Protein S 

1 77 M 88 ٣ O 0  1 0 0 0 
            
n 29 F 65 1,68 A 1  n 0 1 1 

 
Venous Thromboembolism Predisposing

# 
Body Mass 

Index 
Age/Heredity 
Predisposition 

Blood Group 
Predisposition 

Thrombophilia Genic 
Factors 

Thrombotic 
Risk Factors

Mutations/ 
/Polymorphisms 

Earlier Secondary 
Factors 

1 ٣ 0.5 [0.08,0.14] 0 0 0 2 
        
n 0 [0.05,0.5] [0.18,0.30] 2 2 ٣ 1 

 
Molecular Analysis of Mutations/Polymorphisms 

# 
Factor V Leiden 

mutation 
Prothrombin 20210a 

mutation G/A 
Methylenetetrahydrofolate 

reductase 677C/T 
PAI-1 5G/4G Gene 

Polymorphism 675G/A 
1 0 0 0 0 
     
n ٣ ٣ ٣ ٣ 

 
Earlier Secondary Factors Predisposing to Thrombosis 

# Smoke
Immobilization/ 
/Hospitalization 

Air 
travel

Surgery
Liver 

disease
Infection

Oncologic 
pathology

Pregnancy 

1 1 0 1 0 0 0 0 0 
         
n 0 0 0 0 0 0 0 1 

 

Thrombotic Risk Factors 

# Prothrombin 
Factor 

VII 
Factor 
VIII 

Factor V 
Leiden 

Fibrinogen Plasminogen
Heparin 

cofactor II
Homocysteine

Phopholipid 
Antibodies 

Previous 
Venous 

Thrombosis
1 0 0 0 0 0 0 0 0 0 0 
           
n 0 0 1 0 1 0 0 0 0 0 

Figure 2: Extension of the Relational Database model. In Molecular Analysis of Mutations/Polymorphisms and Earlier 
Secondary Factors Predisposing to Thrombosis databases, 0 (zero) denotes absence and 1 (one) denotes presence. In 
Thrombophilia Genic Factors (Major) database, 0 (zero) and 1 (one) denotes, respectively, functional and non-functional 
values. In the first eight columns of the Thrombotic Risk Factors database, 0 (zero) and 1 (one) denotes, respectively, 
normal and increased values, while in remaining columns denotes, respectively, absence and presence. 

The logic program referred to above, is now 
presented in the form: 
{ 
൓ܾ݉݋ݎ݄ݐ஽௢஼ሺܫܯܤ, ,ܪܣ ,ܲܤ ,ܩܶ ,ܲܯ,ܴܶ ሻܵܧ
← ,ܫܯܤ஽௢஼ሺܾ݉݋ݎ݄ݐ	ݐ݋݊ ,ܪܣ ,ܲܤ ,ܩܶ ,ܲܯ,ܴܶ  ሻܵܧ

஽௢஼ܾ݉݋ݎ݄ݐ ൭0,									1,										0.96,					1,						1,						1,													1ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௖௢௡௙௜ௗ௘௡௖௘	௩௔௟௨௘௦

൱			

∷ 	1 ∷ 0.85  

		ሾ0,1ሿሾ0.1,0.1ሿሾ0,0.27ሿሾ0,0ሿሾ0,0ሿሾ0,0ሿሾ0.25,0.25ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
																							௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦	௥௔௡௚௘௦	௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ

 

	ሾ0,1ሿ			ሾ0,1ሿ							ሾ0,1ሿ			ሾ0,1ሿሾ0,1ሿሾ0,1ሿ					ሾ0,1ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦	௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ

 

… 
} 

where its terms make the training and test sets of the 
Artificial Neural Network given in Figure 3. 

5 ARTIFICIAL NEURAL 
NETWORKS 

ANNs could be used to model data and capture 
complex relationships. As an example, let us 
consider the last case presented in Figure 2, where 
one may have a situation in which a venous 
thromboembolism predisposition assessment is 
needed, given in the form: 
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{ 

൓ܾ݉݋ݎ݄ݐሺܫܯܤ, ,ܪܣ ,ܲܤ ,ܩܶ ,ܲܯ,ܴܶ ሻܵܧ ← ,ܫܯܤሺܾ݉݋ݎ݄ݐ	ݐ݋݊ ,ܪܣ ,ܲܤ ,ܩܶ ,ܲܯ,ܴܶ   ሻܵܧ

ܾ݉݋ݎ݄ݐ ቆ0, ሾ0.05,0.5ሿ, ሾ0.18,0.30ሿ,				2,							2,					 ٣ ,					1ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦

ቇ 	∷ 1 ∷   ܥ݋ܦ

																						ሾ0,3ሿ			ሾ0,5ሿ						ሾ0.08,0,30ሿ	ሾ0,3ሿሾ0,10ሿሾ0,4ሿሾ0,8ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦

  

 

,൭ሾ0,0ሿܾ݉݋ݎ݄ݐ ሾ0.05,0.5ሿ, ሾ0.18,0.30ሿ, ሾ2,2ሿ, ሾ2,2ሿ, ሾ0,4ሿ, ሾ1,1ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦	௥௔௡௚௘௦

൱ 	∷ 1 ∷   ܥ݋ܦ

																										ሾ0,3ሿ					ሾ0,5ሿ							ሾ0.08,0,30ሿ	ሾ0,3ሿ		ሾ0,10ሿ	ሾ0,4ሿ	ሾ0,8ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦

  

 

ܾ݉݋ݎ݄ݐ ቆሾ0,0ሿ, ሾ0.01,0.1ሿ, ሾ0.45,1ሿ, ሾ0.67,0.67ሿ, ሾ0.2,0.2ሿ, ሾ0,1ሿ, ሾ0,125,0.125ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦	௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ

ቇ 	∷ 1 ∷   ܥ݋ܦ

																									ሾ0,1ሿ							ሾ0,1ሿ								ሾ0,1ሿ											ሾ0,1ሿ												ሾ0,1ሿ					ሾ0,1ሿ									ሾ0,1ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦	௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ

  

 

஽௢஼ܾ݉݋ݎ݄ݐ ൭1,							0.996						0.838,										1,																1,									0,														1ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	௖௢௡௙௜ௗ௘௡௖௘	௩௔௟௨௘௦

൱ 		 ∷ 	1 ∷ 0.83  

																						ሾ0,0ሿሾ0.01,0.1ሿ	ሾ0.45,1ሿሾ0.67,0.67ሿሾ0.2,0.2ሿሾ0,1ሿሾ0.125,0.125ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
																							௔௧௧௥௜௕௨௧௘`௦	௩௔௟௨௘௦	௥௔௡௚௘௦	௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ

  

																						ሾ0,1ሿ					ሾ0,1ሿ								ሾ0,1ሿ									ሾ0,1ሿ										ሾ0,1ሿ				ሾ0,1ሿ								ሾ0,1ሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௔௧௧௥௜௕௨௧௘`௦	ௗ௢௠௔௜௡௦	௢௡௖௘	௡௢௥௠௔௟௜௭௘ௗ

  

} 

In Figure 3 it is shown how the normalized values of 
the interval boundaries and their DoC and QoI 
values work as inputs to the ANN. The output 
translates the venous thromboembolism predisposition 
risk, and DoC the confidence that one has on such a 
happening. In addition, it also contributes to build a 
database of study cases that may be used to train and 
test the ANNs. 

In this study were considered 300 patients from 
the south of Portugal, with an age average of 52 
years, ranging from 27 to 82 years old. The gender 
distribution was 46% and 54% for male and female, 
respectively. To ensure statistical significance of the 

attained results, 20 runs were applied in all tests. In 
each simulation, the available data were randomly 
divided into two mutually exclusive partitions, i.e., 
the training set with two-thirds of the available data 
and, the test set with the remaining one-third of the 
cases. The back propagation algorithm was used in 
the learning process of the ANN. As the output 
function in the pre-processing layer it was used the 
identity one. In the others layers we used the 
sigmoid function.  

The model accuracy was 97.6% for the training 
set (203 correctly classified in 208) and 93.5% for 
test set (86 correctly classified in 92). 
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6 CONCLUSIONS AND FUTURE 
WORK 

Diagnosing venous thromboembolism predisposition 
risk has shown to be a hard task, as the parameters 
that cause the disorder are not fully represented by 
objective data. Therefore, it is mandatory to consider 
many different conditions with intricate relations 
among them. These characteristics put this problem 
into the area of problems that may be tackled by 
Artificial Intelligence based methodologies and 
techniques to problem solving. 

 

 

Figure 3: The Artificial Neural Network topology. 

In this work it is presented the founding of a 
computational framework that uses powerful 
knowledge representation and reasoning techniques 
to set the structure of the information and the 
associate inference mechanisms based in ANNs. 
This finding has several reasons, namely: 

 

• Data is not equal to information; 
• The translation of the raw measurements into 
interpretable and actionable read-outs is 
challenging; and 
• Read-outs can deliver markers and targets 
candidates without pre-conception, i.e., knowing 
how personal conditions and risk factors may 
affect the thrombotic predisposition. 

This methodology for problem solving and the 
computational techniques used have the advantage 
of allowing one to consider incomplete and/or 
unknown information, a marker that is not present in 
existing systems. Future work may recommend that 
the same problem must be approached using others 
computational frameworks like Case Based 
Reasoning (Carneiro et al. 2013), Genetic 
Programming (Neves et al., 2007) or Particle Swarm 
(Mendes et al. 2004), just to name a few. 
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