Inconsistency and Sequentiality in LTL

Norihiro Kamide

Teikyo University, Faculty of Science and Engineering, Department of Human Information Systems,
Toyosatodai 1-1, Utsunomiya-shi, Tochigi 320-8551, Japan

Keywords: Linear-time Temporal Logic, Paraconsistent Logic, Sequent Calculus, Completeness Theorem, Cut-
elimination Theorem.

Abstract: Inconsistency-tolerant temporal reasoning with sequential (ordered or hierarchical) information is of gaining
increasing importance in the areas of computer science applications such as medical informatics. A logical
system for representing such reasoning is required for obtaining a theoretical basis for such applications. In
this paper, a new logic called a paraconsistent sequential linear-time temporal logic (PSLTL) is introduced
extending the standard linear-time temporal logic (LTL). PSLTL can appropriately represent inconsistency-
tolerant temporal reasoning with sequential information. The cut-elimination, complexity and completeness
theorems for PSLTL are proved as the main results of this paper.

1 INTRODUCTION valued logic with strong negatioiN4 (Almukdad and
Nelson, 1984; Kamide and Wansing, 2012; Nelson,
Inconsistency-tolerant temporal reasoning with se- 1949; Wansing, 1993). On one hand, LTL is known
quential (ordered or hierarchical) information is of (© P& one of the most useful temporal logics for veri-
growing importance in the areas of computer science [Ying and specifying concurrent systems and temporal
applications such as medical informatics and agent €asoning. On the other hand, N4 is known to be one
communication. A logical system for representing ©f the mostimportant base logics for inconsistency-
such reasoning is required for obtaining a concrete flérant reasoning. Combining the logics LTL and
theoretical basis for such applications. But, there was N4 Was studied in (Kamide and Wansing, 2011), and
no logical system that can simultaneously representSUch @ combined logic is calledoaraconsistent LTL
inconsistency, sequentiality and temporality. Thus, (PLTL)- PSLTL is obtained from PLTL by adding
the aim of this paper is to introduce a logical system SOMe sequence modal operators.
for appropriately representing inconsistency-tolerant ~ Combining LTL with some sequence modal op-

temporal reasoning with sequential information. erators was studied in (Kamide, 2010; Kaneiwa and
For this aim, a new logic called paraconsis-  Kamide, 2010; Kamide, 2013a), and such a combined
tent sequential linear-time temporal log{®SLTL) logic was called asequence-indexed LT(SLTL).

is introduced in this paper extending the standard PSLTL is regarded as a modified paraconsistent ex-
linear-time temporal logic(LTL) (Pnueli, 1977). tension of SLTL, and hence PSLTL is a modified ex-

Inconsistency-tolerant reasoning in PSLTL is ex- tension of both PLTL (Kamide and Wansing, 2011)

pressed by a paraconsistent negation connective, and@nd SLTL (Kaneiwa and Kamide, 2010). In the fol-
sequential information in PSLTL is represented by lowing, we explain an important property of the para-
some sequence modal operators. Temporal reasoningonsistent negation connective and a plausible inter-
in PSLTL is, of course, expressed by some tempo- pretation of sequence modal operators.
ral operators used in LTL. As the main results of this The paraconsistent negation connectiveused
paper, the cut-elimination, complexity and complete- in PSLTL can suitably be expressed inconsistency-
ness theorems for PSLTL are proved using some the-tolerant reasoning. One reason whyis considered
orems for semantically and syntactically embedding is that it can be added in such a way that the extended
PSLTL into its fragments SLTL and LTL. logics satisfy the property giaraconsistencyA se-
The proposed logic PSLTL is regarded as an ex- mantic consequence relati¢a is called paraconsis-
tension of both LTL andNelson’s paraconsistent four-  tent with respect to a negation connectivef there
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are formulas, B such that nofa,~a} = B. In the
case of LTL, this implies that there is a modiéland a
positioni of a sequence = ty, 1,1z, ... of time-points
in M with not[(M,i) = (a A ~a)—B].

It is known that logical systems with paraconsis-
tency can deal with inconsistency-tolerant and uncer-
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[john ; student; humanF(happyA ~happy which
means “a human student, John, will be both happy
and unhappy sometime in the future.” In this formula,
the sequence modal operatfwhn; student human
represents the hierarcliphnC studentC human

The structure of this paper is then presented as fol-

tainty reasoning more appropriately than systems thatlows. In Section 2, PSLTL is introduced as a seman-
are non-paraconsistent. For example, we do not desiretics by extending (a semantics of) LTL with a para-

that(s(x) A~s(x))—d(x) is satisfied for any symptom
s and diseasel where~s(x) means “persotx does
not have symptons” and d(x) means “persomn suf-
fers from diseasd”, because there may be situations
that support the truth of bot{a) and~s(a) for some
individuala but do not support the truth affa).

If we cannot determine whether someone is
healthy, then the vague conceptealthy can
be represented by asserting the inconsistent for-
mula: healthy john) A ~healthy(john). This is
well-formalized in PSLTL because the formula:
healthy{ john) A ~healthy john)—hasCancefjohn)
where hasCancefjohn) means John has cancer is
not valid in PSLTL (i.e., PSLTL is inconsistency-
tolerant). On the other hand, the formula
healthy john) A —healthy john)—hasCancefjohn)
where— is the classical negation connective is valid
in classical logic (i.e., inconsistency has undesirable

consequences). For more information on paraconsis-

tency, see e.g., (Priest, 2002).

Some sequence modal operators (Kamide and
Kaneiwa, 2009; Kamide, 2010; Kaneiwa and
Kamide, 2010; Kaneiwa and Kamide, 2011; Kamide,
2013a; Kamide, 2013b) used in PSLTL can suitably
be expressed sequential information.
modal operatofb] represents a sequenbeof sym-

consistent negation connective and some sequence
modal operators. Firstly in this section, LTL is pre-
sented as the standard semantics, and next, SLTL is
presented as the semantics with some sequence modal
operators. Finally, PSLTL is obtained from SLTL by
adding a paraconsistent negation connective similar
to that of N4. In Section 3, a Genten-type sequent
calculus PSLY, for PSLTL is introduced extending a
Gentzen-type sequent calculusgfor LTL. Firstly

in this section, a Gentzen-type sequent calculus, LT
which was introduced by Kawai (Kawai, 1987), is
presented, and next, a Gentzen-type sequent calcu-
lus SLT,, for SLTL is presented based on (Kamide,
2010; Kaneiwa and Kamide, 2010). Finally, PSLT

is obtained from SLE by adding some inference
rules concerning the paraconsistent negation connec-
tive. In Section 4, the cut-elimination, complexity and
completeness theorems for PSLTL (and PSLare
proved using two theorems for semantically and syn-
tactically embedding PSLTL (and PS§;Jinto SLTL
(SLTy) and LTL (LTy). In Section 5, this paper is
concluded.

A sequence2 SEMANTICS

bols. The notion of sequences is useful to representroymylas of LTL are constructed from countably

” o

the notions of “information,” “trees,” and “ontolo-
gies”. Thus, “sequential (ordered or hierarchical) in-

many propositional variables;» (implication), A
(conjunction),v (disjunction),~ (negation), X (next),

formation” can be represented by sequences. This isg (globally) and F (eventually). Lower-case letters

plausible because a sequence structure givesraid
(M,;,0) with informational interpretation(Wansing,
1993): (1)M is a set of pieces of (ordered or prior-
itized) information (i.e., a set of sequences), (2) ; is
a binary operator (o) that combines two pieces
of information (i.e., a concatenation operator on se-
guences), and (3) is the empty piece of information
(i.e., the empty sequence).

A formula of the form[bs ; by ;- - -; by]a in PSLTL
intuitively means thatd is true based on a sequence
by ; by ;---; by of (ordered or prioritized) informa-
tion pieces.” Further, a formula of the forf@ja in
PSLTL, which coincides witha, intuitively means
that “a is true without any information (i.e., it is an
eternal truth in the sense of classical logic).” Using a

p.,q, ... are used to denote propositional variables, and
Greek lower-case letters, 3,... are used to denote
formulas. An expression < B is used to denote
(a—B)A(B—0a). We writeA = B to indicate the syn-
tactical identity betweer andB. The symbolw is
used to represent the set of natural numbers. Lower-
case letters, j andk are used to denote any natural
numbers. The symbagt or < is used to represent a
linear order orw.

Definition 2.1. Formulas of LTL are defined by
the following grammar, assuming p represents
propositional variables: a :=p | aAa | aV

o] oa—oa|—a|Xa| Ga | Fa

Definition 2.2 (LTL). Let S be a non-empty set of

sequence modal operator, we can express the formulastates. A structure M= (o,1) is amodelif
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1. ois an infinite sequence $1, %, ... of states in S,
2. | is a mapping from the sab of propositional
variables to the power set of S.

A satisfaction relatiorfM, i) = a for any formula
o, where M is a mode{o, 1) and i (€ w) represents
some position withiw, is defined inductively by
1. forany pe ®, (M,i) = piff 5 €1(p),
2. (M,i) EaABiff (M,i) =aand(M,i) =B,

M.i) EaVvBiff (M,i)Eaor(M,i) =B,
i) Ea—=Biff (M,i) = aimplies(M,i) EB,
,1) E—aiff not-[(M,i) E al,

) EXaiff (M)i+1) Eaq,
1) = Gaiff Vi >i[(M, ) Ea,
(M,i) EFa iff 3] >i[(M,]) Ea].

A formulaa is valid in LTL if (M,0) = o for any
model M:= (o,1).

Formulas of SLTL are obtained from that of LTL
by adding[b] (sequence modal operator) whéris a
sequenceSequenceare constructed from countable
atomic sequenced) (empty sequence) and ; (com-
position). Lower-case lettefs c, ... are used for se-
qguences. An expressidfija meansa, and expres-
sions [0 ; bla and [b ; 0ja meanbla. The set of
sequences (including) is denoted as SE. An ex-
pression[d] is used to represeritlp|[ds] - - - [di] with
i € wanddy = 0. Note that[a] can be the empty se-
guence. Also, an expressimﬁis used to represent
do;di; .-+ ;dywithi € w.
Definition 2.3. Formulas and sequences &LTL
are defined by the following grammar, assuming p
and e represent propositional variables and atomic
sequences, respectivelyo :=p | aAQ | aV
o|o—a|-a| Xa|Ga|Fa|[bja. b:i=e|0|b;b.
Definition 2.4 (SLTL). Let S be a non-empty set of
states. A structure M= (o, {19} j_¢g) is asequential
modelif
1. ois an infinite sequence $1,S,, ... of states in S,

2. 19 (66 SE) are mappings from the setof propo-
sitional variables to the power set of S.

Satisfaction relationgM, i) ):‘j o (d e S for
any formulaa, where M is a sequential model
(0,{Id}dEsE) and i (€ w) represents some position
within o, is defined inductively by

1. forany pe ®, (M,i) |:d piff 5 € Id(p),
2. (M,i) =9 aApiff (M,i) =9 aand(M,i) =9,
3. (M,i) EYavBiff (M,i) E%aor (M,i) =96,
4. (M,i) EY a—Biff (M,i) =9 aimplies(M, i) =2

By

3. (
4. (M
5. (M
6. (M
7. (M
8.
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M,i) =9 —a iff not-{(M,i) =9 o,

M,i) =9 Xa iff (M,i+1) =9 a,

M, i) =9 Gaiff v >i[(M,j) E9 al,

M,i) =9 Faiff 3 >i[(M, |) =9 al.

. for any atomic sequence e(M,i) |:d [ela
iff (M,i)[=9:¢ea,

-
-
-
-

© 00 N O O

10. (M,i) =9 [b; o iff (M, i) =9 [b][d]a.

A formulaa is valid in SLTL if (M,0) =0 a for

any sequential model M= (0, {19} 4_gp)-

Some remarks on SLTL are given below.

1. SLTL is an extension of LTL sinc%cj of SLTL
includesk= of LTL.

2. The following clauses hold for SLTL: For any for-
mulaa and any sequencesandd,

(@) (W.i) Fd [dJaiff (M,i) =9 ca,
(b) (M,i) =2 [dlaiff (M,i) =4 a.

3. The following formulas are valid in SLTL: for any
formulasa andp and anyb, c € SE,

(a) [bj(aop) < ([bja)o ([b]B)
whereo € {A,V,—},
(b) [b](ta) > £([b]a) wheret € {—,X,G,F},
(c) [b; cJa « [b][c]a.
Formulas of PSLTL are obtained from that of
SLTL by adding~ (paraconsistent negation).

Definition 2.5. Formulas and sequences BSLTL

are defined by the following grammar, assuming p

and e represent propositional variables and atomic

sequences, respectivelyo :=p | aAd | aV

alo—a| -0 |~o| Xa|Ga|Fa|[bla. b::

e|0|b;b.

Definition 2.6 (PSLTL). Let S be a non-empty set of

states. A structure M= (0, {179} 4 o, {1 9} 4esp) IS

a paraconsistent sequential model

1. ois an infinite sequence $1,%, ... of states in S,

2. 19 (x € {+,-}, d € SE) are mappings from the
set® of propositional variables to the power set
of S.

_ Satisfaction relationgM, i) =da (e {+,-},
d € SE) for any formulaa, where M is a paraconsis-

tent sequential modeb, {| +d}&€SE, {l *d}&SE) and
i (€ w) represents some position within are defined

by
1. for any pe ®, (M,i) |:+& piff 5 ¢ I*‘j(p),
2. (M,i) Et9aABiff (M,i) =+t aand(M,i) =+d



M,i) =+ avBiff (M,i) =+daor (M,i) =+9B,
M,i) 9 asp iff (M) 79 a implies
M,i) =14,

M,i) =9 —a iff not-[(M,i) =9 a],

M.i)

M, i)

M, i)

Ea

i) =t ~aiff (M,i) = Y9a,

i) Bt Xaiff (M,i+1) =da,

i) A Gaiff Vi > i[(M, ) =+ al,

M,i) = Faciff 3) >i[(M, ) =9 al,

for any pc @, (M, i) |:*dA piff 5 € I*d(p),
(M,i) =-daABiff (M,i) =9aor (M,i)="9p
M,i) == davBiff (M,i) =daand(M,i) =~
B,

(M,i) =9 a—Biff (M,i) =t aand(M, i) =9
B,

(
(
(
(
(
(
(
(

© o N oG-

10.
11.
12.

Q->

13,
14. dq],
15,

(M,i) ="¢ i not-[(M,i) =~
(
16. (
(
(

i)

D E 9 ~aiff (M) Y a,

J) =9 Xaiff (M,i+1) =da,

0 9 Gaiff 3j>i[(M,]) = dal,

M.i) =9 Faciff i >i[(M, j) =9 al,

for any atomic sequence e and any {+, -1,
(M.i) =9 [eaift (M,i) =97 e,

for anyx € {+, -},

(M,i) =9 b clariff (M,i) =9 [b][dla.

A formulaa is valid in PSLTL iff (M,0) =*°
a for any paraconS|stent sequential model :M

(01" dese {1 ™ dese)-
Some remarks on PSLTL are given below.

ZZZZ

17.

18.
19.

o.) Q_)

20.

1. The intuitive meanings ¢& ¢ and="1 are “ver-
ification (or justification) with sequential infor-
mation” and “refutation (or falsification) with se-
quential information,” respectively.

2. F and G are duals of each other not only with re-
spect to— but also with respect te-. X is a self
dual not only with respect te: but also with re-
spect to~. [b] is a self dual not only with respect
to — but also with respect te.. — and~ are self-
duals with respect te- and—, respectively.

3. The falsification conditions forr may be felt to
be in need of some justification. Suppose that
a person who is neither rich nor poor and that, as
a matter of fact, no one is both rich and poor. Let
p stand for the claim tha is poor andr for the
claim thata is rich. Intuitively, a state definitely
verifiesp iff it falsifies r, and vice versa. Suppose
now that-pis indeed falsified at a statén model

M: (M,i) ==9 —p. This should mean that it is

Inconsistency and Sequentiality in LTL

verified ati that p is poor or neither poor or rich.
But this is the case iff is not verified ai, which
means thap is not falsified af.

. PSLTL is paraconsistent with respect to.
The reason is presented as follows.
sume a paraconsistent sequential moklet=

(07{|+&}&GSE7{|+&}&ESE) such thats € I+d(p),
s €179(p) ands ¢ 179(q) for a pair of distinct
propositional variablep andg. Then,(M, i) =+9
(pA~p)—qdoes not hold.

. The following clauses hold for PSLTL: For any
formula a, any sequences, d and anyx €

{+-}
(@) (M,i) =d
(b) (M,i) =@ [d]o iff

As-

[Caiff (M,i) =9 Ca,

M,i) £ a.

3 SEQUENT CALCULUS

Greek capital letter§, A, ...-are-used to represent fi-
nite (possibly empty) sets of formulas. An expression
X'a for anyi € wis defined inductively by Xa = a
and X" la = X"Xa. An expression of the form

"= A is called asequent An expressiorL - Siis
used to denote the fact that a sequeis provable in

a sequent calculus. A rule R of inference is said to
beadmissiblen a sequent calculusif the following

S-S
condition is satisfied: for any instantes of R, if
L+ S foralli, thenL+ S

Kawai’'s sequent calculus LJ(Kawai, 1987) for

LTL is presented below.

Definition 3.1 (LT). The initial sequents diT , are
of the form: for any propositional variable p,

X'p=X'p.
The structural rules oET, are of the form:

N=Aa0 aoZ=T
Mz=ATr

r=A
M=Aa

(cut)

Mr=A
o, =A

(we-left)

(we-right).

The logical inference rules &fT , are of the form:

Fr=sXa XgAa=n
Xi(a—B),M,A= 3.1

(—left)

X, =AXB
= A X (a—p)
Xio, M =A
2 TR efty)
Xi(anB),r =A

(—right)

XIB,r=A

2B T2 (Meft2)
X (@AB),T = A
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F=AXa F=AXB
M= A X (aAB)
Xa,r=A XBIr=A
Xi(aVvp),r =A
r=AXa i Fr=AX
_T=AXA oy T AXE
r=AX(avp) r=AX'(avp)
r=AXa Xa,l=A
_=a8A0 (-lefty ———=
X'-a,l = A
XHo T = A r=AaX"a};
XA =B ey L ' bjew
XGa,l = A = A XGo
XHa, =AY [ = A X+kg
X View (Flefty ———"— (Fright).
XIFo,l = A M= A XFa
Some remarks on LJare given below.

(Aright)

(Vvleft)
(vright2)

- —right
F:>A,X'ﬁ0(( ght

(Gright)

1. The rules (Gright) and (Fleft) have infinite

premises.

2. The sequents of the form:&X = X'a for any for-
mulaa are provable in cut-free L. This fact can
be proved by induction on the complexity @f

3. The cut-elimination and completeness theorems

for LT, were proved by Kawai (Kawai, 1987).

Prior to introduce a sequent calculus for SLTL,
we have to introduce some notations. The symbol

K is used to represent the st} U {[b] | b € SE},

and the symboK* is used to represent the set of all

words of finite length of the alphabist For example,
X [b]X1[c] is in K*. Remark thaK* includes0, and
hence{ta | T € K*} includesa. An expressiort is
used to represent an arbitrary membeKof

A sequent calculus SlJ for SLTL is then intro-
duced below.

Definition 3.2 (SLT). The initial sequents dBLT,,
are of the form: for any propositional variable p,

fp=1p.
The structural rules oSLT,, are (cut), (we-left)
and(we-right)in Definition 3.1.
The logical inference rules d8LT,, are of the

form:
M= ta #B,A=1T1

f(a—p),MA=21N
fo, I = A 4B
M= A f(a—B)

(—lefts)

(—right®)

fo,l = A iB,r=A
ganp),l =A f(aAnB),l =A
Mr=Ata =AM1B

M= Ag(aAPB)
fo,F =A $B3,r=A

favp),r =A

(Nleft1®) (Nleft25)

(Aright®)

(Vlefts)
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r=Ata s r=A1B .
S A GVE Aavp) (vright2®) TS AIGVE AGVE) (vright2)
M= A ta s fa,r=A .
arsa () Fo g (right)
gxka, T = A {r=aXld}jeo
Gara (Clef) F=azea  (Cnght)
i ) k
#[b]Xa, T = A wloft M= A b Xa wriaht
iX[bja, = A (Xleft) M= A #X[bla (Xright).

The sequence inference rulesSifT,, are of the
form:
t[bl[cJo.T = A r = Az[b][ca

fbicar=a e FZ b ga CMONY:

Some remarks on Sl Jare given below.

1. The sequents of the forfa = fa for any formula
a are provable in cut-free Sl This fact can be
proved by induction on the complexity af

2. The following rules are admissible in cut-free
SLTe:
¢X[bla,m = A

M= A 8X[b
SbXa,r =4 DO

Xeft™h) T A Ciixa |

Xright™1).

A sequent calculus PSLifor PSLTL is intro-
duced below.

Definition 3.3 (PSLT,). PSLT, is obtained from
SLT,, by adding the initial sequents of the form: for
any propositional variable p,

f~p = t~p,

and adding the logical and sequence inference rules
of the form:

f~a, [ = A (
~fa, = A

fo,F = A
fr~a, = A

M= A t~a
M= A ~ta

r=Afa
= A f~~a (

~tleft) (~fright)

(~r~left) ~r~right)

fo,F = A
f~(a—Pp),l = A
f~B, = A
f~(a—Pp), I = A
Mr=Afa =Afi~B
= A f~(a—P)
f~a, M =A 4~BT=A
f~(aAB),F=A
M= A t~a
M= Af4~(aAB)
r=At~B
M= Af4~(aAB)

(~—leftl)

(~—left2)

(~—right)

(~Aleft)
(~ Arightl)

(~ Aright2)



b, T = A
m (N\/leftl)
BL=D L err)

f~(aVvp),rl =A
M=At~a I=Ai~B
M= Af~(aVvp)
M= At~a f~a,l = A
f~—a, M = A M= A f~—a
{#XI~a, T = A Yjew
8~Ga,l = A
M= A, Xk~
T = A i~Ga
iXKa, M = A
I~Far=a
{T=A8X1I~a e
= A i~Fa
g~[b][cla,F = A (~ileft) I = A f~[b][ca
i~b;ca,l =4 "’ = A t~[b;ca
Some remarks on PSlTare given below.
. The sequents of the forfa = fa for any formula

a are provable in cut-free PSLT This fact can be
proved by induction on the complexity at

. The following rules are admissible in cut-free
PSLT,:

iX[bja,I = A
SbXo,r = A
~fa,l = A
f~a,l = A

(~Vright)

(~—left) (~—right)

(~Gleft)
(~Gright)

(~Fleft)

(~Fright)

(~;right).

[

I = A #X[ba

YN
M= A ~fa
M= At~a

Xleft~1) Xright™1)

(~tleft™1) (~tright™1).

4 MAIN RESULTS

In this section, we introduce a translation function
f from SLTL into LTL, and a translation functiog
from PSLTL into SLTL. Using these functions, we
obtain a translation functiogf from PSLTL into
LTL. Using these translation functions, we will show
a theorem for semantically and syntactically embed-
ding PSLTL into SLTL and LTL. Using these em-
bedding theorems, we will show the cut-elimination,
complexity and completeness theorems for PSLTL.

Definition 4.1 (Translation from SLTL into LTL) Let
® be a non-empty set of propositional variables and
@9 be the sefp? | p € ®} (d € SE) of propositional
variables where §:= p (i.e.,®% := ®). The language
L5 (the set of formulas) oBLTL is defined usingp,
[b], A,V,—,—, X, FandG. The languager of LTL
is obtained fromcS by adding®® and deletingb.

A mapping f from£S to £ is defined by:
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1. for an@y pe @, f([d]p) = pd e o, esp., {p) =
peod,

2. f(#(aoPB)):=f(ta)o f(4B) whereo € {A,V,—},

3. f(#ta) :=tf(ta) wheret € {—-,X,G,F},

4. f(b; cJa) := f(f[b][c]a).

An expressiorf (I') denotes the result of replacing
every occurrence of a formutain I' by an occurrence
of f(a).

Proposition 4.2 ((Kamide, 2010; Kaneiwa and
Kamide, 2010)) Let f be the mapping defined in Def-
inition 4.1.

1. (Semantical embedding): For any formwlaa is
valid in SLTL iff f (o) is valid inLTL.

2. (Syntactical embedding): For any s€ts&ndA of
formulas inL?,

(@) SLT,FT = Aiff LT, F f(I) = f(4),
(b) SLT, — (cut) = = A iff LT, — (cut) -
f(r) = f(4).
3. (Cut-elimination): The rulécut)is admissible in
cut-freeSLT,,.

4. (Completeness): For any formula SLT, - =
iff aisvalidinSLTL.

We now introduce a translation of PSLTL into
SLTL, and by using this translation, we show some
theorems for embedding PSLTL into SLTL. A simi-
lar translation has been used by Vorob’ev (Vorob’ev,
1952), Gurevich (Gurevich, 1977), and Rautenberg
(Rautenberg, 1979) to embed Nelson'’s three-valued
constructive logic (Almukdad and Nelson, 1984; Nel-
son, 1949) into intuitionistic logic.

Definition 4.3 (Translation from PSLTL into SLTL)
Let ® be a non-empty set of propositional variables
and®’ be the sefp’ | p € ®} of propositional vari-
ables. The languagePs (the set of formulas) of
PSLTLis defined usin@, ~, —,A,V,—, X, F, Gand
[b]. The language’® of SLTL is obtained from£Ps
by adding®’ and deleting-~.

A mapping g from.PSto L5 is defined by

. forany pe @, g(p):=pandd~p) :=p € ¥,
. g(aoB) :=g(a)og(B) whereo € {A,V,—1},

1

2

3. g

4. g(~~a) :=g(a),

5. g(~Ta) := fg(~a) wheret € {=, X, [b]},
6. g~(aAB)) :=g(~a)Vg(~P),

7. g~(aVP)) = g(~a) Ag(~B),

8. g(~(a—P)) :=g(a) Ag(~B),

9. g(~Fa) = Gg(~a),

10. g~Ga) :=Fg(~a)
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We have:g(ta) = #g(a) for any formulaa and
anyg € K*.

The following is a translation example from
PSLTL into LTL, by using the translation functions
f andg.

Example 4.4. We consider a formulas(~([b]p A
~[c]q)) where hc are atomic sequences, andymre
propositional variables.

Firstly, we translate this PSLTL-formula into a
SLTL-formula by the translation function g as follows.

9(G(~([b]pA~[c]a)))
= Gg(~([blpA~[ca))
= G(g(~[b]p) Va(~~[c]q))

= G([bjg(~p) Va([c]a))
= G([b]p' v [clg(a))
= G([b]p’' v [c|a)

where pis a propositional variable irSLTL.
Next, we translate this SLTL-formula into a LTL-
formula by the translation function f as follows.

f(G([b]p' v [cla))

= Gf([b]p’ v [clq)

= G(fgb] p) Vv f([ca))
=G(p”Vvd°)

where @, q¢ are propositional variables ihTL .

Thus, the formulaG(~([b]p A ~[c|q)) of PSLTL
is translated into the formul&(p’® v ) of LTL.

Next, we will show a theorem for semantically
embedding PSLTL into SLT. To show this theorem,
we need two lemmas which are presented below.

Lemma 4.5. Let g be the mapping defined in Defini-

2.s5¢€ I*&(p) iff 5 € I&(p’).

The lemma is then proved by (simultaneous) in-
duction on the complexity af.

e Base step: Case = p € ®: For (1), we obtain:
(M,i) =19 piff 5 € 179(p) iff 5 € 19(p) iff (N,i) =9
p iff (N,i) |:‘i g(p) (by the def. ofg). For (2), we
obtain: (M, i) =9 piff 5 € 1-9(p) iff 5  19(p/) iff
(N,i) =9 o/ iff (N,i) =9 g(~p) (by the def. ofg).

e Induction step: We show some cases.

Casea = ~: For (1), we obtain{M,i) )z*dA ~fB
iff (M,i) =9 Biff (N,i) =9 g(~P) (by ind. hypo. for
2). For (2), we obtaintM, i) =9 ~Biff (M,i) =9
iff (N,i) =9 g(B) (by ind. hypo. for 1) iff(N,i) =9
g(~~P) (by the def. ofg).

Casea = XB: For (1), we obtain: (M, i) |:+&
XB iff (M,i+1) 9B iff (N,i+1) =9 g(B) (by
induction hypothesis for 1) ifN,i) =9 Xg(B) iff
(N,i) |:‘j g(XpB) (by the definition ofg). For (2),
we obtain: (M,i) =9 XB iff (M, i+ 1) =9 B iff
(N,i+1) |:‘j g(~B) (by induction hypothesis for 2)
it (N,i) =9 Xg(~B) iff (N.i) ¢ g(~XB) (by the
definition ofg).

Casea = [b|B: For (1), we obtain:(M,i) I:Hi
[bIB iff (Mi) =+ 2 Biiff (N.i) =972 g(B) (by in-
duction hypothesis for 1) iff(N,i) |:‘j [blg(B) iff
(N,i) |:& g([b]B) (by the definition ofg). For (2),
we obtain: (M,i) =9 [b) iff (M,i) =97 b B iff

tion 4.3, and S be a non-empty set of states. For any (N.i) =4+ P g(~B) (by induction hypothesis for 2) iff

paraconsistent sequential model:M (o, {19} j_g,
{I 7&}&€SE) of PSLTL, any satisfaction reIation?*dA
(x € {+,—},d € SE) on M, and any state $n g, we
can construct a sequential model:N (o, {Id}deSE)

of SLTL and satisfaction relations=% on N such that
for any formulaa in £PS,

1. (M,i) =+ aiff (N,i) =9 g(a).
2. (M,i) =9 aiff (N,i) 9 g(~a).
Proof. Let ® be a non-empty set of propositional

variables andp’ be the sef p’ | p € ®} of proposi-
tional variables. Suppose thist is a paraconsistent

sequential mode{a, {I*%}j_se {I %}4ese) Where
I "4 andl ~9 are mappings fron® to the power set of
S. Suppose thalll is a sequential modéb, {19} ;_sg)

whereld are mappings fron® U @’ to the power set
of S. Suppose moreover thist andN satisfy the fol-
lowing conditions: for any in 0 and anyp € @,

1. s el*d(p)iff 5 €19(p),
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(N, ) =9 [b]g(~B) iff (N,i) =9 g(~[b]B) (by the def-
inition of g). Q.E.D.

Lemma 4.6. Let g be the mapping defined in Defini-
tion 4.3, and S be a non-empty set of states. For any

sequential model N= (o, {Id}&€SE) of SLTL and any

satisfaction relationg=4 (d € SE) on N, and any state
s in o, we can construct a paraconsistent sequen-

tial model M:= (0, {1 "9} 4. {1 9} 4.sp) OF PSLTL

and satisfaction relationg="4 (x € {+,—},d € SE)
on M such that

1. (M,i) 9 aiff (N,i) =9 g(a).
2. (M,i) -9 aiff (N,i) =9 g(~a).
Proof. Similar to the proof of Lemma 4.%).E.D.

Theorem 4.7 (Semantical embedding from PSLTL
into SLTL). Let g be the mapping defined in Defini-
tion 4.3. For any formulax, a is valid in PSLTL iff
g(a) is valid in SLTL.

Proof. By Lemmas 4.5 and 4.6.E.D.



Theorem 4.8 (Semantical embedding from PSLTL

into LTL). Let f and g be the mappings defined in
Definitions 4.1 and 4.3, respectively. For any formula
a, ais valid in PSLTLiff fg(a) is valid inLTL.

Proof. By Proposition 4.2 (1) and Theorem 4.7.
Q.E.D.

Theorem 4.9 (Complexity) PSLTL is PSPACE-
complete.

Proof. By decidability of LTL, for eachq, it is
possible to decide iffg(a) is valid in LTL. Then,
by Theorem 4.8, PSLTL is also decidable. More-
over the mappingfg is a polynomial time transla-
tion, and LTL is know to be PSPACE-complete (Sistla
and Clarke, 1985). Thus, PSLTL is also PSPACE-
completeQ.E.D.

Theorem 4.10 (Weak syntactical embedding from
PSLT, into SLTy,). Letl andA be sets of formulas in
LPS, and g be the mapping defined in Definition 4.3.
Then:

1. If PSLTu F I = A, thenSLT, = 9(F) = g(4).

2. If SLT, — (cut) - g(I') = g(4), thenPSLT, —
(cu)-T = A.

Proof. e (1) : By induction on the proof® of
" = Ain PSLT,. We distinguish the cases according
to the last inference d®, and show some cases.

Case f~p = #~p): The last inference oP is of
the form: f~p=-f~p. In this case, we obtain the
required fact LT, - g(f~p) = 9(f~p), sinceg(f~p)
coincides withip’ by the definition ofg.

Case {~left): The last inference of is of the
form:

fo,l = A

provren ey N )

By induction hypothesis, we have the required fact:
SLT, F g(ta),o(l) = g(A) whereg(ta) coincides
with g(f~~a) by the definition of.
Case {left): The last inference oP is of the
form:
g~[b][cla,T = A
f~[b; cla,l = A

By induction hypothesis, we have: SLTH
g(#~[b][cla),o(I") = g(A) whereg(~[b][c|a) coin-
cides withg~b][c|g(a) by the definition ofg. Then,
we obtain:

(~;left).

i~ Ibicla(a). a() = g(d)
f~[b; clg(a),q(l) = 9(8)

wherefi~[b ; clg(a) coincides withg(f~[b ; c]a) by
the definition ofg.

(~ileft)

Inconsistency and Sequentiality in LTL

e (2) : By induction on the proofsQ of
g(l) = g(4) in SLT,. We distinguish the cases ac-
cording to the last inference @, and show some
cases.

Case (jleft): The last inference @is (;left).

Subcase (1): The last inference@fs of the form:

gb][c]g(@),9(T) = g(8)

8lb; cJg(a).g(M) = 9(B)
wheret[b][c]g(a) andt[b ; c]g(a) respectively coin-
cide withg(t[b][c]a) andg([b; c|a) by the definition
of g. By induction hypothesis, we have: PSLF
g[bj[cla,I” = A, and hence obtain the required fact:

(left)

{1l = A

b; cla,l = A

Subcase (2): The last inference@fs of the form:

gb][c]g(~ar), (") = g(A)

ilb; clg(~a),g(T) = g(8)
wheret[b][c]g(~a) andi[b; c|g(~a) respectively co-
incide with g(#~[b][cja) and g(i~[b ; cja) by the

definition of g. By induction hypothesis, we have:

PSLT, - #~[b][cla,I = A, and hence obtain the re-
quired fact:

(;left).

(;left)

ﬂw[b][c]c:x,l' =A

f~[b; cla,l = A (~ileft)

Q.E.D.

Theorem 4.11 (Cut-elimination) The rule (cut) is
admissible in cut-fre@SLT,,.

Proof. Suppose PSLJ+ I' =~ A. Then, we have
SLT,+ f(I) = f(A) by Theorem 4.10 (1), and hence
SLT, — (cut)k f(I') = f(A) by Proposition 4.2 (3).
By Theorem 4.10 (2), we obtain PSL,T— (cut) -
M= A. Q.E.D.

Theorem 4.12(Syntactical embedding from PSL,T
into SLT,). Letl andA be sets of formulas i Ps,
and g be the mapping defined in Definition 4.3. Then:
1. PSLT, FT = Aiff SLT,Fg(M) = g(A).

2. PSLT, — (cut) - F'=A iff SLT, — (cut) +

9(r) = 9(4).

Proof. e (1). (): By Theorem 4.10 (1).<):
Suppose SLE + g(I') = g(A). We then have SLF
— (cut) - g(I") = g(A) by Proposition 4.2 (3). Thus,
we obtain PSLY, — (cut)- I = A by Theorem 4.10
(2). Therefore we have PSLT-T = A.

¢ (2). (=): Suppose PSLJ — (cut) - T = A.
Then we have PSIJFT = A. We then obtain SLJ
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