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Abstract: Inconsistency-tolerant temporal reasoning with sequential (ordered or hierarchical) information is of gaining
increasing importance in the areas of computer science applications such as medical informatics. A logical
system for representing such reasoning is required for obtaining a theoretical basis for such applications. In
this paper, a new logic called a paraconsistent sequential linear-time temporal logic (PSLTL) is introduced
extending the standard linear-time temporal logic (LTL). PSLTL can appropriately represent inconsistency-
tolerant temporal reasoning with sequential information. The cut-elimination, complexity and completeness
theorems for PSLTL are proved as the main results of this paper.

1 INTRODUCTION

Inconsistency-tolerant temporal reasoning with se-
quential (ordered or hierarchical) information is of
growing importance in the areas of computer science
applications such as medical informatics and agent
communication. A logical system for representing
such reasoning is required for obtaining a concrete
theoretical basis for such applications. But, there was
no logical system that can simultaneously represent
inconsistency, sequentiality and temporality. Thus,
the aim of this paper is to introduce a logical system
for appropriately representing inconsistency-tolerant
temporal reasoning with sequential information.

For this aim, a new logic called aparaconsis-
tent sequential linear-time temporal logic(PSLTL)
is introduced in this paper extending the standard
linear-time temporal logic(LTL) (Pnueli, 1977).
Inconsistency-tolerant reasoning in PSLTL is ex-
pressed by a paraconsistent negation connective, and
sequential information in PSLTL is represented by
some sequence modal operators. Temporal reasoning
in PSLTL is, of course, expressed by some tempo-
ral operators used in LTL. As the main results of this
paper, the cut-elimination, complexity and complete-
ness theorems for PSLTL are proved using some the-
orems for semantically and syntactically embedding
PSLTL into its fragments SLTL and LTL.

The proposed logic PSLTL is regarded as an ex-
tension of both LTL andNelson’s paraconsistent four-

valued logic with strong negation, N4 (Almukdad and
Nelson, 1984; Kamide and Wansing, 2012; Nelson,
1949; Wansing, 1993). On one hand, LTL is known
to be one of the most useful temporal logics for veri-
fying and specifying concurrent systems and temporal
reasoning. On the other hand, N4 is known to be one
of the most important base logics for inconsistency-
tolerant reasoning. Combining the logics LTL and
N4 was studied in (Kamide and Wansing, 2011), and
such a combined logic is called aparaconsistent LTL
(PLTL). PSLTL is obtained from PLTL by adding
some sequence modal operators.

Combining LTL with some sequence modal op-
erators was studied in (Kamide, 2010; Kaneiwa and
Kamide, 2010; Kamide, 2013a), and such a combined
logic was called asequence-indexed LTL(SLTL).
PSLTL is regarded as a modified paraconsistent ex-
tension of SLTL, and hence PSLTL is a modified ex-
tension of both PLTL (Kamide and Wansing, 2011)
and SLTL (Kaneiwa and Kamide, 2010). In the fol-
lowing, we explain an important property of the para-
consistent negation connective and a plausible inter-
pretation of sequence modal operators.

The paraconsistent negation connective∼ used
in PSLTL can suitably be expressed inconsistency-
tolerant reasoning. One reason why∼ is considered
is that it can be added in such a way that the extended
logics satisfy the property ofparaconsistency. A se-
mantic consequence relation|= is called paraconsis-
tent with respect to a negation connective∼ if there
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are formulasα,β such that not{α,∼α} |= β. In the
case of LTL, this implies that there is a modelM and a
positioni of a sequenceσ = t0, t1, t2, ... of time-points
in M with not [(M, i) |= (α∧∼α)→β].

It is known that logical systems with paraconsis-
tency can deal with inconsistency-tolerant and uncer-
tainty reasoning more appropriately than systems that
are non-paraconsistent. For example, we do not desire
that(s(x)∧∼s(x))→d(x) is satisfied for any symptom
s and diseased where∼s(x) means “personx does
not have symptoms” and d(x) means “personx suf-
fers from diseased”, because there may be situations
that support the truth of boths(a) and∼s(a) for some
individuala but do not support the truth ofd(a).

If we cannot determine whether someone is
healthy, then the vague concepthealthy can
be represented by asserting the inconsistent for-
mula: healthy( john) ∧ ∼healthy( john). This is
well-formalized in PSLTL because the formula:
healthy( john)∧∼healthy( john)→hasCancer( john)
where hasCancer( john) means John has cancer is
not valid in PSLTL (i.e., PSLTL is inconsistency-
tolerant). On the other hand, the formula
healthy( john)∧ ¬healthy( john)→hasCancer( john)
where¬ is the classical negation connective is valid
in classical logic (i.e., inconsistency has undesirable
consequences). For more information on paraconsis-
tency, see e.g., (Priest, 2002).

Some sequence modal operators (Kamide and
Kaneiwa, 2009; Kamide, 2010; Kaneiwa and
Kamide, 2010; Kaneiwa and Kamide, 2011; Kamide,
2013a; Kamide, 2013b) used in PSLTL can suitably
be expressed sequential information. A sequence
modal operator[b] represents a sequenceb of sym-
bols. The notion of sequences is useful to represent
the notions of “information,” “trees,” and “ontolo-
gies”. Thus, “sequential (ordered or hierarchical) in-
formation” can be represented by sequences. This is
plausible because a sequence structure gives amonoid
〈M, ;, /0〉 with informational interpretation(Wansing,
1993): (1)M is a set of pieces of (ordered or prior-
itized) information (i.e., a set of sequences), (2) ; is
a binary operator (onM) that combines two pieces
of information (i.e., a concatenation operator on se-
quences), and (3)/0 is the empty piece of information
(i.e., the empty sequence).

A formula of the form[b1 ; b2 ; · · · ; bn]α in PSLTL
intuitively means that “α is true based on a sequence
b1 ; b2 ; · · · ; bn of (ordered or prioritized) informa-
tion pieces.” Further, a formula of the form[ /0]α in
PSLTL, which coincides withα, intuitively means
that “α is true without any information (i.e., it is an
eternal truth in the sense of classical logic).” Using a
sequence modal operator, we can express the formula

[ john ; student; human]F(happy∧∼happy) which
means “a human student, John, will be both happy
and unhappy sometime in the future.” In this formula,
the sequence modal operator[ john ; student; human]
represents the hierarchyJohn⊆ student⊆ human.

The structure of this paper is then presented as fol-
lows. In Section 2, PSLTL is introduced as a seman-
tics by extending (a semantics of) LTL with a para-
consistent negation connective and some sequence
modal operators. Firstly in this section, LTL is pre-
sented as the standard semantics, and next, SLTL is
presented as the semantics with some sequence modal
operators. Finally, PSLTL is obtained from SLTL by
adding a paraconsistent negation connective similar
to that of N4. In Section 3, a Genten-type sequent
calculus PSLTω for PSLTL is introduced extending a
Gentzen-type sequent calculus LTω for LTL. Firstly
in this section, a Gentzen-type sequent calculus LTω,
which was introduced by Kawai (Kawai, 1987), is
presented, and next, a Gentzen-type sequent calcu-
lus SLTω for SLTL is presented based on (Kamide,
2010; Kaneiwa and Kamide, 2010). Finally, PSLTω
is obtained from SLTω by adding some inference
rules concerning the paraconsistent negation connec-
tive. In Section 4, the cut-elimination, complexity and
completeness theorems for PSLTL (and PSLTω) are
proved using two theorems for semantically and syn-
tactically embedding PSLTL (and PSLTω) into SLTL
(SLTω) and LTL (LTω). In Section 5, this paper is
concluded.

2 SEMANTICS

Formulas of LTL are constructed from countably
many propositional variables,→ (implication), ∧
(conjunction),∨ (disjunction),¬ (negation), X (next),
G (globally) and F (eventually). Lower-case letters
p,q, ... are used to denote propositional variables, and
Greek lower-case lettersα,β, ... are used to denote
formulas. An expressionα ↔ β is used to denote
(α→β)∧(β→α). We writeA≡ B to indicate the syn-
tactical identity betweenA andB. The symbolω is
used to represent the set of natural numbers. Lower-
case lettersi, j andk are used to denote any natural
numbers. The symbol≥ or ≤ is used to represent a
linear order onω.

Definition 2.1. Formulas of LTL are defined by
the following grammar, assuming p represents
propositional variables: α ::= p | α ∧ α | α ∨
α | α→α | ¬α | Xα | Gα | Fα

Definition 2.2 (LTL) . Let S be a non-empty set of
states. A structure M:= (σ, I) is amodelif
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1. σ is an infinite sequence s0,s1,s2, ... of states in S,
2. I is a mapping from the setΦ of propositional

variables to the power set of S.

A satisfaction relation(M, i) |= α for any formula
α, where M is a model(σ, I) and i (∈ ω) represents
some position withinσ, is defined inductively by

1. for any p∈ Φ, (M, i) |= p iff si ∈ I(p),
2. (M, i) |= α∧β iff (M, i) |= α and(M, i) |= β,
3. (M, i) |= α∨β iff (M, i) |= α or (M, i) |= β,
4. (M, i) |= α→β iff (M, i) |= α implies(M, i) |= β,
5. (M, i) |= ¬α iff not-[(M, i) |= α],
6. (M, i) |= Xα iff (M, i +1) |= α,
7. (M, i) |= Gα iff ∀ j ≥ i[(M, j) |= α],
8. (M, i) |= Fα iff ∃ j ≥ i[(M, j) |= α].

A formulaα is valid in LTL if (M,0) |= α for any
model M:= (σ, I).

Formulas of SLTL are obtained from that of LTL
by adding[b] (sequence modal operator) whereb is a
sequence.Sequencesare constructed from countable
atomic sequences,/0 (empty sequence) and ; (com-
position). Lower-case lettersb,c, ... are used for se-
quences. An expression[ /0]α meansα, and expres-
sions [ /0 ; b]α and [b ; /0]α mean[b]α. The set of
sequences (including/0) is denoted as SE. An ex-
pression ˆ[d] is used to represent[d0][d1] · · · [di ] with
i ∈ ω andd0 ≡ /0. Note that ˆ[d] can be the empty se-
quence. Also, an expression̂d is used to represent
d0 ; d1 ; · · · ; di with i ∈ ω.

Definition 2.3. Formulas and sequences ofSLTL
are defined by the following grammar, assuming p
and e represent propositional variables and atomic
sequences, respectively:α ::= p | α ∧ α | α ∨
α | α→α | ¬α | Xα |Gα | Fα | [b]α. b::= e| /0 | b ; b.

Definition 2.4 (SLTL). Let S be a non-empty set of
states. A structure M:= (σ,{I d̂}d̂∈SE) is asequential
modelif

1. σ is an infinite sequence s0,s1,s2, ... of states in S,

2. Id̂ (d̂∈SE) are mappings from the setΦ of propo-
sitional variables to the power set of S.

Satisfaction relations(M, i) |=d̂ α (d̂ ∈ SE) for
any formula α, where M is a sequential model
(σ,{I d̂}d̂∈SE) and i (∈ ω) represents some position
within σ, is defined inductively by

1. for any p∈ Φ, (M, i) |=d̂ p iff si ∈ I d̂(p),

2. (M, i) |=d̂ α∧β iff (M, i) |=d̂ α and(M, i) |=d̂ β,

3. (M, i) |=d̂ α∨β iff (M, i) |=d̂ α or (M, i) |=d̂ β,

4. (M, i) |=d̂ α→β iff (M, i) |=d̂ α implies(M, i) |=d̂

β,

5. (M, i) |=d̂ ¬α iff not-[(M, i) |=d̂ α],
6. (M, i) |=d̂ Xα iff (M, i +1) |=d̂ α,

7. (M, i) |=d̂ Gα iff ∀ j ≥ i[(M, j) |=d̂ α],
8. (M, i) |=d̂ Fα iff ∃ j ≥ i[(M, j) |=d̂ α].
9. for any atomic sequence e,(M, i) |=d̂ [e]α

iff (M, i) |=d̂ ; e α,

10. (M, i) |=d̂ [b ; c]α iff (M, i) |=d̂ [b][c]α.

A formulaα is valid in SLTL if (M,0) |= /0 α for

any sequential model M:= (σ,{I d̂}d̂∈SE).

Some remarks on SLTL are given below.

1. SLTL is an extension of LTL since|=d̂ of SLTL
includes|= of LTL.

2. The following clauses hold for SLTL: For any for-
mulaα and any sequencesc andd̂,

(a) (M, i) |=d̂ [c]α iff (M, i) |=d̂ ; c α,

(b) (M, i) |= /0 [d̂]α iff (M, i) |=d̂ α.

3. The following formulas are valid in SLTL: for any
formulasα andβ and anyb,c∈ SE,

(a) [b](α◦β)↔ ([b]α)◦ ([b]β)
where◦ ∈ {∧,∨,→},

(b) [b](♯α)↔ ♯([b]α) where♯ ∈ {¬,X,G,F},
(c) [b ; c]α ↔ [b][c]α.

Formulas of PSLTL are obtained from that of
SLTL by adding∼ (paraconsistent negation).

Definition 2.5. Formulas and sequences ofPSLTL
are defined by the following grammar, assuming p
and e represent propositional variables and atomic
sequences, respectively:α ::= p | α ∧ α | α ∨
α | α→α | ¬α | ∼α | Xα | Gα | Fα | [b]α. b ::=
e | /0 | b ; b.

Definition 2.6 (PSLTL). Let S be a non-empty set of
states. A structure M:= (σ,{I+d̂}d̂∈SE,{I−d̂}d̂∈SE) is
a paraconsistent sequential modelif

1. σ is an infinite sequence s0,s1,s2, ... of states in S,

2. I∗d̂ (∗ ∈ {+,−}, d̂ ∈ SE) are mappings from the
setΦ of propositional variables to the power set
of S.

Satisfaction relations(M, i) |=∗d̂ α (∗ ∈ {+,−},
d̂ ∈ SE) for any formulaα, where M is a paraconsis-
tent sequential model(σ,{I+d̂}d̂∈SE,{I−d̂}d̂∈SE) and
i (∈ ω) represents some position withinσ, are defined
by

1. for any p∈ Φ, (M, i) |=+d̂ p iff si ∈ I+d̂(p),

2. (M, i) |=+d̂ α∧β iff (M, i) |=+d̂ α and(M, i) |=+d̂

β,
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3. (M, i) |=+d̂ α∨β iff (M, i) |=+d̂ α or (M, i) |=+d̂ β,

4. (M, i) |=+d̂ α→β iff (M, i) |=+d̂ α implies

(M, i) |=+d̂ β,

5. (M, i) |=+d̂ ¬α iff not-[(M, i) |=+d̂ α],
6. (M, i) |=+d̂ ∼α iff (M, i) |=−d̂ α,

7. (M, i) |=+d̂ Xα iff (M, i +1) |=+d̂ α,

8. (M, i) |=+d̂ Gα iff ∀ j ≥ i[(M, j) |=+d̂ α],
9. (M, i) |=+d̂ Fα iff ∃ j ≥ i[(M, j) |=+d̂ α],

10. for any p∈ Φ, (M, i) |=−d̂ p iff si ∈ I−d̂(p),

11. (M, i) |=−d̂ α∧β iff (M, i) |=−d̂ α or (M, i) |=−d̂ β,

12. (M, i) |=−d̂ α∨β iff (M, i) |=−d̂ α and(M, i) |=−d̂

β,

13. (M, i) |=−d̂ α→β iff (M, i) |=+d̂ α and(M, i) |=−d̂

β,

14. (M, i) |=−d̂ ¬α iff not-[(M, i) |=−d̂ α],
15. (M, i) |=−d̂ ∼α iff (M, i) |=+d̂ α,

16. (M, i) |=−d̂ Xα iff (M, i +1) |=−d̂ α,

17. (M, i) |=−d̂ Gα iff ∃ j ≥ i[(M, j) |=−d̂ α],
18. (M, i) |=−d̂ Fα iff ∀ j ≥ i[(M, j) |=−d̂ α],
19. for any atomic sequence e and any∗ ∈ {+,−},

(M, i) |=∗d̂ [e]α iff (M, i) |=∗d̂ ; e α,
20. for any∗ ∈ {+,−},

(M, i) |=∗d̂ [b ; c]α iff (M, i) |=∗d̂ [b][c]α.

A formula α is valid in PSLTL iff (M,0) |=+ /0

α for any paraconsistent sequential model M:=
(σ,{I+d̂}d̂∈SE,{I+d̂}d̂∈SE).

Some remarks on PSLTL are given below.

1. The intuitive meanings of|=+d̂ and|=−d̂ are “ver-
ification (or justification) with sequential infor-
mation” and “refutation (or falsification) with se-
quential information,” respectively.

2. F and G are duals of each other not only with re-
spect to¬ but also with respect to∼. X is a self
dual not only with respect to¬ but also with re-
spect to∼. [b] is a self dual not only with respect
to ¬ but also with respect to∼. ¬ and∼ are self-
duals with respect to∼ and¬, respectively.

3. The falsification conditions for¬ may be felt to
be in need of some justification. Suppose thata is
a person who is neither rich nor poor and that, as
a matter of fact, no one is both rich and poor. Let
p stand for the claim thata is poor andr for the
claim thata is rich. Intuitively, a state definitely
verifiesp iff it falsifies r, and vice versa. Suppose
now that¬p is indeed falsified at a statei in model
M: (M, i) |=−d̂ ¬p. This should mean that it is

verified ati that p is poor or neither poor or rich.
But this is the case iffr is not verified ati, which
means thatp is not falsified ati.

4. PSLTL is paraconsistent with respect to∼.
The reason is presented as follows. As-
sume a paraconsistent sequential modelM :=
(σ,{I+d̂}d̂∈SE,{I+d̂}d̂∈SE) such thatsi ∈ I+d̂(p),

si ∈ I−d̂(p) andsi /∈ I+d̂(q) for a pair of distinct
propositional variablesp andq. Then,(M, i) |=+d̂

(p∧∼p)→q does not hold.

5. The following clauses hold for PSLTL: For any
formula α, any sequencesc, d̂ and any ∗ ∈
{+,−},

(a) (M, i) |=∗d̂ [c]α iff (M, i) |=∗d̂ ; c α,

(b) (M, i) |=∗ /0 [d̂]α iff (M, i) |=∗d̂ α.

3 SEQUENT CALCULUS

Greek capital lettersΓ,∆, ... are used to represent fi-
nite (possibly empty) sets of formulas. An expression
X iα for any i ∈ ω is defined inductively by X0α ≡ α
and Xn+1α ≡ XnXα. An expression of the form
Γ ⇒ ∆ is called asequent. An expressionL ⊢ S is
used to denote the fact that a sequentS is provable in
a sequent calculusL. A rule R of inference is said to
beadmissiblein a sequent calculusL if the following

condition is satisfied: for any instance
S1 · · ·Sn

S of R, if
L ⊢ Si for all i, thenL ⊢ S.

Kawai’s sequent calculus LTω (Kawai, 1987) for
LTL is presented below.

Definition 3.1 (LTω). The initial sequents ofLTω are
of the form: for any propositional variable p,

X i p⇒ X i p.

The structural rules ofLTω are of the form:

Γ ⇒ ∆,α α,Σ ⇒ Π
Γ,Σ ⇒ ∆,Π

(cut)

Γ ⇒ ∆
α,Γ ⇒ ∆

(we-left) Γ ⇒ ∆
Γ ⇒ ∆,α

(we-right).

The logical inference rules ofLTω are of the form:

Γ ⇒ Σ,X iα X iβ,∆ ⇒ Π
X i(α→β),Γ,∆ ⇒ Σ,Π

(→left)

X iα,Γ ⇒ ∆,X iβ
Γ ⇒ ∆,X i(α→β)

(→right)

X iα,Γ ⇒ ∆
X i(α∧β),Γ ⇒ ∆

(∧left1)
X iβ,Γ ⇒ ∆

X i(α∧β),Γ ⇒ ∆
(∧left2)
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Γ ⇒ ∆,X iα Γ ⇒ ∆,X iβ
Γ ⇒ ∆,X i(α∧β)

(∧right)

X iα,Γ ⇒ ∆ X iβ,Γ ⇒ ∆
X i(α∨β),Γ ⇒ ∆

(∨left)

Γ ⇒ ∆,X iα
Γ ⇒ ∆,X i(α∨β)

(∨right1)
Γ ⇒ ∆,X iβ

Γ ⇒ ∆,X i(α∨β)
(∨right2)

Γ ⇒ ∆,X iα
X i¬α,Γ ⇒ ∆

(¬left)
Xiα,Γ ⇒ ∆

Γ ⇒ ∆,X i¬α
(¬right)

Xi+kα,Γ ⇒ ∆
XiGα,Γ ⇒ ∆

(Gleft)
{ Γ ⇒ ∆,X i+ j α } j∈ω

Γ ⇒ ∆,X iGα
(Gright)

{ X i+ jα,Γ ⇒ ∆ } j∈ω

X iFα,Γ ⇒ ∆
(Fleft)

Γ ⇒ ∆,X i+kα
Γ ⇒ ∆,X iFα

(Fright).

Some remarks on LTω are given below.

1. The rules (Gright) and (Fleft) have infinite
premises.

2. The sequents of the form: Xiα ⇒ X iα for any for-
mulaα are provable in cut-free LTω. This fact can
be proved by induction on the complexity ofα.

3. The cut-elimination and completeness theorems
for LTω were proved by Kawai (Kawai, 1987).

Prior to introduce a sequent calculus for SLTL,
we have to introduce some notations. The symbol
K is used to represent the set{X}∪ {[b] | b ∈ SE},
and the symbolK∗ is used to represent the set of all
words of finite length of the alphabetK. For example,
X i ˆ[b]X j ˆ[c] is in K∗. Remark thatK∗ includes/0, and
hence{†α | † ∈ K∗} includesα. An expression♯ is
used to represent an arbitrary member ofK∗.

A sequent calculus SLTω for SLTL is then intro-
duced below.

Definition 3.2 (SLTω). The initial sequents ofSLTω
are of the form: for any propositional variable p,

♯p⇒ ♯p.

The structural rules ofSLTω are (cut), (we-left)
and(we-right)in Definition 3.1.

The logical inference rules ofSLTω are of the
form:

Γ ⇒ Σ, ♯α ♯β,∆ ⇒ Π
♯(α→β),Γ,∆ ⇒ Σ,Π

(→lefts)

♯α,Γ ⇒ ∆, ♯β
Γ ⇒ ∆, ♯(α→β)

(→rights)

♯α,Γ ⇒ ∆
♯(α∧β),Γ ⇒ ∆

(∧left1s)
♯β,Γ ⇒ ∆

♯(α∧β),Γ ⇒ ∆
(∧left2s)

Γ ⇒ ∆, ♯α Γ ⇒ ∆, ♯β
Γ ⇒ ∆, ♯(α∧β)

(∧rights)

♯α,Γ ⇒ ∆ ♯β,Γ ⇒ ∆
♯(α∨β),Γ ⇒ ∆

(∨lefts)

Γ ⇒ ∆, ♯α
Γ ⇒ ∆, ♯(α∨β)

(∨right1s)
Γ ⇒ ∆, ♯β

Γ ⇒ ∆, ♯(α∨β)
(∨right2s)

Γ ⇒ ∆, ♯α
♯¬α,Γ ⇒ ∆

(¬lefts)
♯α,Γ ⇒ ∆

Γ ⇒ ∆, ♯¬α
(¬rights)

♯Xkα,Γ ⇒ ∆
♯Gα,Γ ⇒ ∆

(Glefts)
{ Γ ⇒ ∆, ♯X jα } j∈ω

Γ ⇒ ∆, ♯Gα
(Grights)

{ ♯X j α,Γ ⇒ ∆ } j∈ω

♯Fα,Γ ⇒ ∆
(Flefts)

Γ ⇒ ∆, ♯Xkα
Γ ⇒ ∆, ♯Fα

(Frights)

♯[b]Xα,Γ ⇒ ∆
♯X[b]α,Γ ⇒ ∆

(Xleft)
Γ ⇒ ∆, ♯[b]Xα
Γ ⇒ ∆, ♯X[b]α

(Xright).

The sequence inference rules ofSLTω are of the
form:

♯[b][c]α,Γ ⇒ ∆
♯[b ; c]α,Γ ⇒ ∆

(;left)
Γ ⇒ ∆, ♯[b][c]α
Γ ⇒ ∆, ♯[b ; c]α

(;right).

Some remarks on SLTω are given below.

1. The sequents of the form♯α ⇒ ♯α for any formula
α are provable in cut-free SLTω. This fact can be
proved by induction on the complexity ofα.

2. The following rules are admissible in cut-free
SLTω:

♯X[b]α,Γ ⇒ ∆
♯[b]Xα,Γ ⇒ ∆

(Xleft−1)
Γ ⇒ ∆, ♯X[b]α
Γ ⇒ ∆, ♯[b]Xα

(Xright−1).

A sequent calculus PSLTω for PSLTL is intro-
duced below.

Definition 3.3 (PSLTω). PSLTω is obtained from
SLTω by adding the initial sequents of the form: for
any propositional variable p,

♯∼p⇒ ♯∼p,

and adding the logical and sequence inference rules
of the form:

♯∼α,Γ ⇒ ∆
∼♯α,Γ ⇒ ∆

(∼♯left)
Γ ⇒ ∆, ♯∼α
Γ ⇒ ∆,∼♯α

(∼♯right)

♯α,Γ ⇒ ∆
♯∼∼α,Γ ⇒ ∆

(∼∼left)
Γ ⇒ ∆, ♯α

Γ ⇒ ∆, ♯∼∼α
(∼∼right)

♯α,Γ ⇒ ∆
♯∼(α→β),Γ ⇒ ∆

(∼→left1)

♯∼β,Γ ⇒ ∆
♯∼(α→β),Γ ⇒ ∆

(∼→left2)

Γ ⇒ ∆, ♯α Γ ⇒ ∆, ♯∼β
Γ ⇒ ∆, ♯∼(α→β)

(∼→right)

♯∼α,Γ ⇒ ∆ ♯∼β,Γ ⇒ ∆
♯∼(α∧β),Γ ⇒ ∆

(∼∧ left)

Γ ⇒ ∆, ♯∼α
Γ ⇒ ∆, ♯∼(α∧β)

(∼∧ right1)

Γ ⇒ ∆, ♯∼β
Γ ⇒ ∆, ♯∼(α∧β)

(∼∧ right2)
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♯∼α,Γ ⇒ ∆
♯∼(α∨β),Γ ⇒ ∆

(∼∨ left1)

♯∼β,Γ ⇒ ∆
♯∼(α∨β),Γ ⇒ ∆

(∼∨ left2)

Γ ⇒ ∆, ♯∼α Γ ⇒ ∆, ♯∼β
Γ ⇒ ∆, ♯∼(α∨β)

(∼∨ right)

Γ ⇒ ∆, ♯∼α
♯∼¬α,Γ ⇒ ∆

(∼¬left)
♯∼α,Γ ⇒ ∆

Γ ⇒ ∆, ♯∼¬α
(∼¬right)

{ ♯X j∼α,Γ ⇒ ∆ } j∈ω

♯∼Gα,Γ ⇒ ∆
(∼Gleft)

Γ ⇒ ∆, ♯Xk∼α
Γ ⇒ ∆, ♯∼Gα

(∼Gright)

♯Xk∼α,Γ ⇒ ∆
♯∼Fα,Γ ⇒ ∆

(∼Fleft)

{ Γ ⇒ ∆, ♯X j∼α } j∈ω

Γ ⇒ ∆, ♯∼Fα
(∼Fright)

♯∼[b][c]α,Γ ⇒ ∆
♯∼[b ; c]α,Γ ⇒ ∆

(∼;left)
Γ ⇒ ∆, ♯∼[b][c]α
Γ ⇒ ∆, ♯∼[b ; c]α

(∼;right).

Some remarks on PSLTω are given below.

1. The sequents of the form♯α ⇒ ♯α for any formula
α are provable in cut-free PSLTω. This fact can be
proved by induction on the complexity ofα.

2. The following rules are admissible in cut-free
PSLTω:

♯X[b]α,Γ ⇒ ∆
♯[b]Xα,Γ ⇒ ∆ (Xleft−1)

Γ ⇒ ∆, ♯X[b]α
Γ ⇒ ∆, ♯[b]Xα (Xright−1)

∼♯α,Γ ⇒ ∆
♯∼α,Γ ⇒ ∆ (∼♯left−1)

Γ ⇒ ∆,∼♯α
Γ ⇒ ∆, ♯∼α (∼♯right−1).

4 MAIN RESULTS

In this section, we introduce a translation function
f from SLTL into LTL, and a translation functiong
from PSLTL into SLTL. Using these functions, we
obtain a translation functiong f from PSLTL into
LTL. Using these translation functions, we will show
a theorem for semantically and syntactically embed-
ding PSLTL into SLTL and LTL. Using these em-
bedding theorems, we will show the cut-elimination,
complexity and completeness theorems for PSLTL.

Definition 4.1 (Translation from SLTL into LTL). Let
Φ be a non-empty set of propositional variables and
Φd̂ be the set{pd̂ | p∈ Φ} (d̂ ∈ SE) of propositional
variables where p/0 := p (i.e.,Φ /0 := Φ). The language
L

s (the set of formulas) ofSLTL is defined usingΦ,
[b], ∧,∨,→,¬, X, F andG. The languageL of LTL

is obtained fromL
s by addingΦd̂ and deleting[b].

A mapping f fromL
s to L is defined by:

1. for any p∈ Φ, f( ˆ[d]p) := pd̂ ∈ Φd̂, esp., f(p) =
p∈ Φ /0,

2. f(♯(α◦β)) := f (♯α)◦ f (♯β) where◦ ∈ {∧,∨,→},

3. f(♯†α) := † f (♯α) where†∈ {¬,X,G,F},

4. f(♯[b ; c]α) := f (♯[b][c]α).
An expressionf (Γ) denotes the result of replacing

every occurrence of a formulaα in Γ by an occurrence
of f (α).
Proposition 4.2 ((Kamide, 2010; Kaneiwa and
Kamide, 2010)). Let f be the mapping defined in Def-
inition 4.1.

1. (Semantical embedding): For any formulaα, α is
valid in SLTL iff f (α) is valid inLTL .

2. (Syntactical embedding): For any setsΓ and∆ of
formulas inL

s,

(a) SLTω ⊢ Γ ⇒ ∆ iff LTω ⊢ f (Γ)⇒ f (∆),
(b) SLTω − (cut) ⊢ Γ ⇒ ∆ iff LTω − (cut) ⊢

f (Γ)⇒ f (∆).
3. (Cut-elimination): The rule(cut) is admissible in

cut-freeSLTω.

4. (Completeness): For any formulaα, SLTω ⊢⇒ α
iff α is valid inSLTL.

We now introduce a translation of PSLTL into
SLTL, and by using this translation, we show some
theorems for embedding PSLTL into SLTL. A simi-
lar translation has been used by Vorob’ev (Vorob’ev,
1952), Gurevich (Gurevich, 1977), and Rautenberg
(Rautenberg, 1979) to embed Nelson’s three-valued
constructive logic (Almukdad and Nelson, 1984; Nel-
son, 1949) into intuitionistic logic.

Definition 4.3 (Translation from PSLTL into SLTL).
Let Φ be a non-empty set of propositional variables
andΦ′ be the set{p′ | p∈ Φ} of propositional vari-
ables. The languageL ps (the set of formulas) of
PSLTL is defined usingΦ, ∼, →,∧,∨,¬, X, F, G and
[b]. The languageLs of SLTL is obtained fromL

ps

by addingΦ′ and deleting∼.
A mapping g fromL

ps to L
s is defined by

1. for any p∈ Φ, g(p) := p and g(∼p) := p′ ∈ Φ′,

2. g(α◦β) := g(α)◦g(β) where◦ ∈ {∧,∨,→},

3. g(†α) := †g(α) where†∈ {¬,X,F,G, [b]},

4. g(∼∼α) := g(α),
5. g(∼†α) := †g(∼α) where†∈ {¬,X, [b]},

6. g(∼(α∧β)) := g(∼α)∨g(∼β),
7. g(∼(α∨β)) := g(∼α)∧g(∼β),
8. g(∼(α→β)) := g(α)∧g(∼β),
9. g(∼Fα) := Gg(∼α),

10. g(∼Gα) := Fg(∼α).
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We have:g(♯α) = ♯g(α) for any formulaα and
any♯ ∈ K∗.

The following is a translation example from
PSLTL into LTL, by using the translation functions
f andg.

Example 4.4. We consider a formulaG(∼([b]p∧
∼[c]q)) where b,c are atomic sequences, and p,q are
propositional variables.

Firstly, we translate this PSLTL-formula into a
SLTL-formula by the translation function g as follows.

g(G(∼([b]p∧∼[c]q)))
= Gg(∼([b]p∧∼[c]q))
= G(g(∼[b]p)∨g(∼∼[c]q))
= G([b]g(∼p)∨g([c]q))
= G([b]p′∨ [c]g(q))
= G([b]p′∨ [c]q)

where p′ is a propositional variable inSLTL.
Next, we translate this SLTL-formula into a LTL-

formula by the translation function f as follows.

f (G([b]p′∨ [c]q))
= G f ([b]p′∨ [c]q)
= G( f ([b]p′)∨ f ([c]q))
= G(p′b∨qc)

where p′b,qc are propositional variables inLTL .
Thus, the formulaG(∼([b]p∧∼[c]q)) of PSLTL

is translated into the formulaG(p′b∨qc) of LTL .

Next, we will show a theorem for semantically
embedding PSLTL into SLT. To show this theorem,
we need two lemmas which are presented below.

Lemma 4.5. Let g be the mapping defined in Defini-
tion 4.3, and S be a non-empty set of states. For any
paraconsistent sequential model M:= (σ, {I+d̂}d̂∈SE,

{I−d̂}d̂∈SE) of PSLTL, any satisfaction relations|=∗d̂

(∗ ∈ {+,−}, d̂ ∈ SE) on M, and any state si in σ, we

can construct a sequential model N:= (σ,{I d̂}d̂∈SE)

of SLTL and satisfaction relations|=d̂ on N such that
for any formulaα in L

ps,

1. (M, i) |=+d̂ α iff (N, i) |=d̂ g(α).
2. (M, i) |=−d̂ α iff (N, i) |=d̂ g(∼α).

Proof. Let Φ be a non-empty set of propositional
variables andΦ′ be the set{p′ | p ∈ Φ} of proposi-
tional variables. Suppose thatM is a paraconsistent
sequential model(σ, {I+d̂}d̂∈SE, {I−d̂}d̂∈SE) where

I+d̂ andI−d̂ are mappings fromΦ to the power set of
S. Suppose thatN is a sequential model(σ,{I d̂}d̂∈SE)

whereI d̂ are mappings fromΦ∪Φ′ to the power set
of S. Suppose moreover thatM andN satisfy the fol-
lowing conditions: for anysi in σ and anyp∈ Φ,

1. si ∈ I+d̂(p) iff si ∈ I d̂(p),

2. si ∈ I−d̂(p) iff si ∈ I d̂(p′).

The lemma is then proved by (simultaneous) in-
duction on the complexity ofα.

• Base step: Caseα ≡ p∈ Φ: For (1), we obtain:
(M, i) |=+d̂ p iff si ∈ I+d̂(p) iff si ∈ I d̂(p) iff (N, i) |=d̂

p iff (N, i) |=d̂ g(p) (by the def. ofg). For (2), we
obtain: (M, i) |=−d̂ p iff si ∈ I−d̂(p) iff si ∈ I d̂(p′) iff
(N, i) |=d̂ p′ iff (N, i) |=d̂ g(∼p) (by the def. ofg).

• Induction step: We show some cases.

Caseα ≡ ∼β: For (1), we obtain:(M, i) |=+d̂ ∼β
iff (M, i) |=−d̂ β iff (N, i) |=d̂ g(∼β) (by ind. hypo. for
2). For (2), we obtain:(M, i) |=−d̂ ∼β iff (M, i) |=+d̂ β
iff (N, i) |=d̂ g(β) (by ind. hypo. for 1) iff(N, i) |=d̂

g(∼∼β) (by the def. ofg).

Caseα ≡ Xβ: For (1), we obtain:(M, i) |=+d̂

Xβ iff (M, i + 1) |=+d̂ β iff (N, i + 1) |=d̂ g(β) (by
induction hypothesis for 1) iff(N, i) |=d̂ Xg(β) iff
(N, i) |=d̂ g(Xβ) (by the definition ofg). For (2),
we obtain: (M, i) |=−d̂ Xβ iff (M, i + 1) |=−d̂ β iff
(N, i + 1) |=d̂ g(∼β) (by induction hypothesis for 2)
iff (N, i) |=d̂ Xg(∼β) iff (N, i) |=d̂ g(∼Xβ) (by the
definition ofg).

Caseα ≡ [b]β: For (1), we obtain:(M, i) |=+d̂

[b]β iff (M, i) |=+d̂ ; b β iff (N, i) |=d̂ ; b g(β) (by in-
duction hypothesis for 1) iff(N, i) |=d̂ [b]g(β) iff
(N, i) |=d̂ g([b]β) (by the definition ofg). For (2),
we obtain: (M, i) |=−d̂ [b]β iff (M, i) |=−d̂ ; b β iff
(N, i) |=d̂ ; b g(∼β) (by induction hypothesis for 2) iff
(N, i) |=d̂ [b]g(∼β) iff (N, i) |=d̂ g(∼[b]β) (by the def-
inition of g). Q.E.D.

Lemma 4.6. Let g be the mapping defined in Defini-
tion 4.3, and S be a non-empty set of states. For any
sequential model N:=(σ,{I d̂}d̂∈SE) ofSLTL and any

satisfaction relations|=d̂ (d̂∈SE) on N, and any state
si in σ, we can construct a paraconsistent sequen-
tial model M:= (σ, {I+d̂}d̂∈SE, {I−d̂}d̂∈SE) of PSLTL

and satisfaction relations|=∗d̂ (∗ ∈ {+,−}, d̂ ∈ SE)
on M such that

1. (M, i) |=+d̂ α iff (N, i) |=d̂ g(α).

2. (M, i) |=−d̂ α iff (N, i) |=d̂ g(∼α).

Proof. Similar to the proof of Lemma 4.5.Q.E.D.

Theorem 4.7 (Semantical embedding from PSLTL
into SLTL). Let g be the mapping defined in Defini-
tion 4.3. For any formulaα, α is valid in PSLTL iff
g(α) is valid inSLTL.

Proof. By Lemmas 4.5 and 4.6.Q.E.D.
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Theorem 4.8 (Semantical embedding from PSLTL
into LTL). Let f and g be the mappings defined in
Definitions 4.1 and 4.3, respectively. For any formula
α, α is valid inPSLTL iff f g(α) is valid inLTL .

Proof. By Proposition 4.2 (1) and Theorem 4.7.
Q.E.D.

Theorem 4.9 (Complexity). PSLTL is PSPACE-
complete.

Proof. By decidability of LTL, for eachα, it is
possible to decide iff g(α) is valid in LTL. Then,
by Theorem 4.8, PSLTL is also decidable. More-
over the mappingf g is a polynomial time transla-
tion, and LTL is know to be PSPACE-complete (Sistla
and Clarke, 1985). Thus, PSLTL is also PSPACE-
complete.Q.E.D.

Theorem 4.10 (Weak syntactical embedding from
PSLTω into SLTω). LetΓ and∆ be sets of formulas in
L

ps, and g be the mapping defined in Definition 4.3.
Then:

1. If PSLTω ⊢ Γ ⇒ ∆, thenSLTω ⊢ g(Γ)⇒ g(∆).
2. If SLTω − (cut) ⊢ g(Γ)⇒ g(∆), thenPSLTω −

(cut)⊢ Γ ⇒ ∆.

Proof. • (1) : By induction on the proofsP of
Γ ⇒ ∆ in PSLTω. We distinguish the cases according
to the last inference ofP, and show some cases.

Case (♯∼p⇒ ♯∼p): The last inference ofP is of
the form: ♯∼p⇒ ♯∼p. In this case, we obtain the
required fact LTω ⊢ g(♯∼p)⇒ g(♯∼p), sinceg(♯∼p)
coincides with♯p′ by the definition ofg.

Case (∼∼left): The last inference ofP is of the
form:

♯α,Γ ⇒ ∆
♯∼∼α,Γ ⇒ ∆ (∼∼left).

By induction hypothesis, we have the required fact:
SLTω ⊢ g(♯α),g(Γ)⇒ g(∆) whereg(♯α) coincides
with g(♯∼∼α) by the definition ofg.

Case (∼;left): The last inference ofP is of the
form:

♯∼[b][c]α,Γ ⇒ ∆
♯∼[b ; c]α,Γ ⇒ ∆

(∼;left).

By induction hypothesis, we have: SLTω ⊢
g(♯∼[b][c]α),g(Γ)⇒ g(∆) whereg(♯∼[b][c]α) coin-
cides with♯∼[b][c]g(α) by the definition ofg. Then,
we obtain:

....
♯∼[b][c]g(α),g(Γ)⇒ g(∆)
♯∼[b ; c]g(α),g(Γ)⇒ g(∆)

(∼;left)

where♯∼[b ; c]g(α) coincides withg(♯∼[b ; c]α) by
the definition ofg.

• (2) : By induction on the proofsQ of
g(Γ)⇒ g(∆) in SLTω. We distinguish the cases ac-
cording to the last inference ofQ, and show some
cases.

Case (;left): The last inference ofQ is (;left).
Subcase (1): The last inference ofQ is of the form:

♯[b][c]g(α),g(Γ)⇒ g(∆)
♯[b ; c]g(α),g(Γ)⇒ g(∆)

(;left)

where♯[b][c]g(α) and♯[b ; c]g(α) respectively coin-
cide withg(♯[b][c]α) andg(♯[b ; c]α) by the definition
of g. By induction hypothesis, we have: PSLTω ⊢
♯[b][c]α,Γ ⇒ ∆, and hence obtain the required fact:

....
♯[b][c]α,Γ ⇒ ∆
♯[b ; c]α,Γ ⇒ ∆

(;left).

Subcase (2): The last inference ofQ is of the form:

♯[b][c]g(∼α),g(Γ)⇒ g(∆)
♯[b ; c]g(∼α),g(Γ)⇒ g(∆)

(;left)

where♯[b][c]g(∼α) and♯[b ; c]g(∼α) respectively co-
incide with g(♯∼[b][c]α) and g(♯∼[b ; c]α) by the
definition of g. By induction hypothesis, we have:
PSLTω ⊢ ♯∼[b][c]α,Γ ⇒ ∆, and hence obtain the re-
quired fact:

....
♯∼[b][c]α,Γ ⇒ ∆
♯∼[b ; c]α,Γ ⇒ ∆

(∼;left).

Q.E.D.

Theorem 4.11 (Cut-elimination). The rule (cut) is
admissible in cut-freePSLTω.

Proof. Suppose PSLTω ⊢ Γ ⇒ ∆. Then, we have
SLTω ⊢ f (Γ)⇒ f (∆) by Theorem 4.10 (1), and hence
SLTω − (cut)⊢ f (Γ)⇒ f (∆) by Proposition 4.2 (3).
By Theorem 4.10 (2), we obtain PSLTω − (cut) ⊢
Γ ⇒ ∆. Q.E.D.

Theorem 4.12(Syntactical embedding from PSLTω
into SLTω). Let Γ and∆ be sets of formulas inL ps,
and g be the mapping defined in Definition 4.3. Then:

1. PSLTω ⊢ Γ ⇒ ∆ iff SLTω ⊢ g(Γ)⇒ g(∆).
2. PSLTω − (cut) ⊢ Γ ⇒ ∆ iff SLTω − (cut) ⊢

g(Γ)⇒ g(∆).
Proof. • (1). (=⇒): By Theorem 4.10 (1). (⇐=):

Suppose SLTω ⊢ g(Γ)⇒ g(∆). We then have SLTω
− (cut)⊢ g(Γ)⇒ g(∆) by Proposition 4.2 (3). Thus,
we obtain PSLTω − (cut)⊢ Γ ⇒ ∆ by Theorem 4.10
(2). Therefore we have PSLTω ⊢ Γ ⇒ ∆.

• (2). (=⇒): Suppose PSLTω − (cut) ⊢ Γ ⇒ ∆.
Then we have PSLTω ⊢ Γ ⇒ ∆. We then obtain SLTω
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⊢ g(Γ)⇒ g(∆) by Theorem 4.10 (1). Therefore we
obtain SLTω − (cut) ⊢ g(Γ)⇒ g(∆) by Proposition
4.2 (3). (⇐=): By Theorem 4.10 (2).Q.E.D.

Theorem 4.13(Syntactical embedding from PSLTω
into LTω). Let Γ and ∆ be sets of formulas inL ps.
Let f and g be the mappings defined in Definitions
4.1 and 4.3, respectively. Then:

1. PSLTω ⊢ Γ ⇒ ∆ iff SLTω ⊢ f g(Γ)⇒ f g(∆).
2. PSLTω − (cut) ⊢ Γ ⇒ ∆ iff SLTω − (cut) ⊢

f g(Γ)⇒ f g(∆).
Proof. By Proposition 4.2 (2) and Theorem 4.12.

Q.E.D.

Theorem 4.14(Completeness). For any formulaα,

PSLTω ⊢ ⇒ α iff α is valid in PSLTL.

Proof. PSLTω ⊢⇒ α iff SLTω ⊢⇒ g(α) (by The-
orem 4.12) iffg(α) is valid in SLTL (by Proposition
4.2 (4)) iff α is valid in PSLTL (by Theorem 4.7).
Q.E.D.

5 CONCLUSIONS

In this paper, the logic PSLTL (paraconsistent sequen-
tial linear-time temporal logic) was introduced as a
semantics by extending the standard logic (a seman-
tics of) LTL (linear-time temporal logic). PSLTL can
appropriately represent inconsistency-tolerant reason-
ing by the paraconsistent negation connective, and se-
quential (hierarchical) information by some sequence
modal operators. By using the semantical embedding
theorem of PSLTL into LTL, it was shown that PSLTL
is PSPACE-complete. The Gentzen-type sequent cal-
culus PSLTω for PSLTL was introduced, and the cut-
elimination theorem for this calculus was proved us-
ing the syntactical embedding theorem of PSLTω into
its non-paraconsistent fragment SLTω. The complete-
ness theorem for PSLTL (and PSLTω) was proved us-
ing both syntactical and semantical embedding theo-
rems of PSLTL (and PSLTω) into SLTL (and SLTω).
It was thus shown in this paper that PSLTL and
PSLTω are a good theoretical basis for inconsistency-
tolerant temporal reasoning with sequential informa-
tion.

REFERENCES

Almukdad, A. and Nelson, D. (1984). Constructible falsity
and inexact predicates.Journal of Symbolic Logic,
49:231–233.

Gurevich, Y. (1977). Intuitionistic logic with strong nega-
tion. Studia Logica, 36:49–59.

Kamide, N. (2010). A proof system for temporal reason-
ing with sequential information. InProceedings of the
20th Brazilian Symposium on Artificial Intelligence
(SBIA 2010), Lecture Notes in Artificial Intelligence
6404, pages 283–292.

Kamide, N. (2013a). An extended LTL for inconsistency-
tolerant reasoning with hierarchical information: Veri-
fying students’ learning processes.International Jour-
nal of e-Education, e-Business, e-Management and e-
Learning, 3 (3):234–238.

Kamide, N. (2013b). Modeling and verifying
inconsistency-tolerant temporal reasoning with
hierarchical information: Dealing with students’
learning processes. InProceedings of the IEEE
International Conference on Systems, Man, and
Cybernetics (SMC 2013), pages 1859–1864.

Kamide, N. and Kaneiwa, K. (2009). Extended full
computation-tree logic with sequence modal operator:
representing hierarchical tree structures. InProceed-
ings of the 22nd Australasian Joint Conference on Ar-
tificial Intelligence, Lecture Notes in Artificial Intelli-
gence 5866, pages 485–494.

Kamide, N. and Wansing, H. (2011). A paraconsistent
linear-time temporal logic.Fundamenta Informaticae,
106 (1):1–23.

Kamide, N. and Wansing, H. (2012). Proof theory of nel-
son’s paraconsistent logic: A uniform perspective.
Theoretical Computer Science, 415:1–38.

Kaneiwa, K. and Kamide, N. (2010). Sequence-indexed
linear-time temporal logic: Proof system and applica-
tion. Applied Artificial Intelligence, 24:896–913.

Kaneiwa, K. and Kamide, N. (2011). Conceptual modeling
in full computation-tree logic with sequence modal
operator.International Journal of Intelligent Systems,
26 (7):636–651.

Kawai, H. (1987). Sequential calculus for a first order in-
finitary temporal logic.Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 33:423–432.

Nelson, D. (1949). Constructible falsity.Journal of Sym-
bolic Logic, 14:16–26.

Pnueli, A. (1977). The temporal logic of programs. InPro-
ceedings of the 18th IEEE Symposium on Foundations
of Computer Science, pages 46–57.

Priest, G. (2002).Paraconsistent logic, Handbook of Philo-
sophical Logic (Second Edition), Vol. 6, D. Gabbay
and F. Guenthner (eds.). Kluwer Academic Publish-
ers, Dordrecht, pp. 287-393.

Rautenberg, W. (1979).Klassische und nicht-klassische
Aussagenlogik. Vieweg, Braunschweig.

Sistla, A. and Clarke, E. (1985). The complexity of propo-
sitional linear temporal logics.Journal of the ACM,
32 (3):733–749.

Vorob’ev, N. (1952). A constructive propositional calculus
with strong negation (in Russian).Doklady Akademii
Nauk SSR, 85:465–468.

Wansing, H. (1993). The logic of information structures.
In Lecture Notes in Computer Science, volume 681,
pages 1–163.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

54


