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Abstract: We present a decidable logic in which queries can be posed about (i) the degree of belief in a propositional
sentence after an arbitrary finite number of actions and observations and (ii) the utility of a finite sequence of
actions after a number of actions and observations. Another contribution of this work is that a POMDP model
specification is allowed to be partial or incomplete with no restriction on the lack of information specified
for the model. The model may even contain information about non-initial beliefs. Essentially, entailment of
arbitrary queries (expressible in the language) can be answered. A sound, complete and terminating decision
procedure is provided.

1 INTRODUCTION states reflecting its conviction for being in a state, for
each state.
Symbolic logic is good for representing information Traditionally, to make any deductions in POMDP

compactly and it is good for reasoning with that in- theory, a domain model must be completely specified.
formation. However, only in the last two or three Another contribution of this work is that it allows the
decades has research gone into developing ways touser to determine whether or not a set of sentences
employ logic for representing stochastic information. is entailed by an arbitrarily precise specification of a
One formalism for modelling agents in stochastic do- POMDP model. By “arbitrarily precise specification”
mains and for determining ‘good’ sequences of ac- we mean that the transition function, the perception
tions is thepartially observable Markov decision pro-  function, the reward function or the initial belief-state
cess(POMDP) (Smallwood and Sondik, 1973; Mon- might not be completely defined by the logical spec-
ahan, 1982). The popularity of the POMDP approach ification provided. Another view is that the logic al-
is, arguably, due to its relative simplicity and intu- lows for the (precise) specification of and reasoning
itiveness, and its general applicability to a wide range over classes of POMDP models.
of stochastic domains. In this paper, we propose  This work is not meantto be a logic-based version
the Stochastic Decision Logi(SDL), a modal logic ~ of all POMDP theroy; it is meant to be a logic with
with a POMDP semantics. It combines the benefits POMDP semantics for online reasoning in stochastic
of POMDP theory and logic for posing entailment domains.
gueries about stochastic domains. Full-scale planning will not be considered here.
In POMDPs, actions have nondeterministic re- However, as a preliminary step, projections concern-
sults and observations are uncertain. In other words,ing epistemic situations and expected rewards will be
the effect of some chosen action is somewhat unpre-possible. That is, at this stage, we have not developed
dictable, yet may be predicted with a probability of a procedure to produce a reward-maximizing policy
occurrence, and the world is not directly observable: conditioned on observations. There is, however, a
some data are observable and the agent infers howprocedure determine whether some hypothesised sit-
likely it is that the world is in some particular state. uation follows from a knowledge base of the system
The agent may thus believe to some degree—for eachand some beliefs about the system state. More pre-
possible state—that it is in that state, but it is never cisely, with the SDL, an agent can (i) determine the
certain exactly which state it is in. In fact, the agent degree of belief in a propositional sentence after an ar-
typically maintains a probability distribution over the bitrary finite number of actions and observations and
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(ii) the utility® of a finite sequence of actions after a 2010; Wang and Khardon, 2010). They also men-
number of actions and observations. tion that with a logical language for specifying mod-
Imagine a robot that is in need of an oil refill. els, decision-making algorithms can exploit the struc-
There is an open can of oil on the floor within reach ture found in these logical specifications. They are
of its gripper. If there is nothing else in the robot's not presented asgics though, and logical theorem
gripper, it can grab the can (or miss it, or knock it proving is thus not possible for them.
over) and it can drink the oil by lifting the can to De Weerdt et al. (1999) present a modal logic to
its ‘mouth’ and pouring the contents in (or miss its deal with imprecision in robot actions and sensors.
mouth and spill). The robot may also want to con- Their models do not contain an accessibility relation,
firm whether there is anything left in the oil-can by which makes it hard to understand what it means for
weighing its contents with its ‘weight’ sensor. And  an action to be executed. They cannot deal with utili-
once holding the can, the robot may wish to replace ties of actions, and no system for determining truth of
it on the floor. There are also rewards and costs in- statements is provided.
volved, which are epra|.ne_d in thg Examples_secuon Bacchus et al. (1999) supply a theory for reason-
of the paper. The domain is (partially) formalized as jnq with noisy sensors and effectors, with graded be-
follows. The robot has the set of (intended) actions jief, They use the situation calculus (McCarthy, 1963)
A = {grab,drink, weigh,replace} with expected 4 gpecify their approach but some elements fall out-
intuitive meanings. The robot can perceive observa- gige the ogical language. They don’t address utilities
tions only from the sef) = {Nil, Light, Medium, of actions.
Heavy}. Intuitively, when the robot performsiaigh £.5P (Gabaldon and Lakemeyer, 2007) is a con-

2;?\'/%%;&& n':{ .a?:abzez Its V;?'ght S?nf?)?r())t':]\gr'"a?r' struction of Bacchus et al.'s approach with some im-
tions, it will 1egrce%ve(hal':lLuH'll'he rZ?)?t”ex eriences its Di/EDERNT IPSLIEREd O ATCTEIRd S
! P . P Lakemeyer, 2004), which is a fragment of the situa-

Wforlldl (SOEQm) t?:;‘;%?nwﬁ;?ﬁf%nbI)et?)tglrigf - the tion calculus. The semantics of SDL is arguably sim-
{full,holding} g es pler than that ofESP, because it fixes its semantics

oil-canis full and respectively that it is currently hold- on POMDPs. In the long-run, this may be a disad-

ing something in its gripper. vantage of the SDL, though. With any logic based on

¢ tl_n thle foll(iwmg mfor;nal eé(argplre:s, siveral ”syg- the situation calculus or first-order logic, decidability
fgc Ic(j:'e esmep S a2re1rgen>|on§ w :jc‘Te;]re dorma y fe- of entailment comes into question. The SDL's entail-
ined in Section 2.1B¢ > p is rea € degree of - ent procedure is decidable.

belief in ¢ is greater than or equal t@. UA >r is ) . .

read ‘The utility of performing action sequengeis . In Pople (.1998)5 Independgnﬂt Choice Logic us-

greater than’. Given a complete formalizatior Ing t_he s!tuatlon calculus (IG): “The represen_ta-

of the scenario sketched here, a robot may have thelion in this paper can be seen as a representation for

following queries: POMDPs". Belief-states can be e>_<pressed and be_llef
update can be performed (but maintenance of belief-

e Is the degree of belief that I'll have the oil-can  states is not a necessary component of the system).
in my gripper greater than or equal to 0.9, after I Even programs that are sequences of actions condi-
attempt grabbing it twice in a row? That is, does tioned on observations can be expressed for agents to
[grab+obsNil] [grab+obsNil |[Bholding > adopt. The IClscis a relatively rich framework, with
0.9 follow from K? acyclic logic programs which may contain variables,

e After grabbing the can, then perceiving that it has quantification and function symbols. For certain ap-
medium weight, is the utility of drinking the con-  plications, the SDL may be preferred due to its com-
tents of the oil-can, then placing it on the floor, parative simplicity, and it may be easier to understand
more than 6 units? That is, dofggrab+ obsNil] by people familiar with POMDPs. Finally, decidabil-
[weigh+ obsMedium] U[drink][replace] > 6 ity of inferences made in the IG are, in general,
follow from K? not guaranteed.

locchi et al. (2009) present a logic calléth- for

Related Work. Recently, some researchers have in- eéasoning about agents with sensing, qualitative non-
vestigated formal languages for compactly represent-determinism and probabilistic uncertainty in action
ing POMDPs (Boutilier and Poole, 1996; Geffner outcomes. Planning with sensing and uncertain ac-
and Bonet, 1998; Hansen and Feng, 2000; Wang andtions is also dealt with. The application area is plan

Schmolze, 2005; Sanner and Kersting, 2010; Lison, 9eneration for agents with nondeterministic and prob-
abilistic uncertainty. Noisy sensing is not dealt with,

1By "utility”, we mean 'expected rewards'. that is, sensing actions are deterministic. They men-
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tion that although they would like to be able to rep-
resent action rewards and costs as in POMDPs,
does not yet provide the facilities.

PRISM is a framework for model-checking rep-
resentations of systems with a probabilistic charac-
ter (Kwiatkowska et al., 2010). Kwiatkowska et al.
(2010) show how MDPs can be represented with an
extension of Probabilistic Computation Tree Logic

(Hansson and Jonsson, 1994). PRISM can then de-

termine whether the occurrence of some event sat-
isfies a given probability bound. To our know-

ledge, PRISM has not been extended to represent

POMDPs. Moreover, by definition, model-checking
requires full specification of a system. However, we
could learn something from the implementation of
PRISM (www.prismmodelchecker.org) for the future
development of the SDL, or PRISM could be ex-
tended with ideas from the SDL.

There is another sense in which an incomplete
model can be dealt with; it can be learnt. Ross et al.
(2011) outline the Bayes-Adaptive POMDP frame-
work to reinforcement learning, which allows them
to “explicitly target the exploration-exploitation prob-
lem in a coherent mathematical framework.” Our
work is different in that we do not tackle the learn-
ing problem; our work suggests a way for an agent to
make decisions with incomplete models without con-
sidering whether its actions will also help it explore
wisely. There are problems for which an agent should
explore its environment while working on its task.
But there may also be problems for which the agent
should not explore (anymore?) and simply work on
the task at hand with the given information (domain
model).

When it comes to the projection task (in the first-
order setting), work by Shirazi and Amir (2011) con-
cerning “filtering” in the incremental update of the
belief-state, may be important to look at.

Next, our logic is defined. Then in Section 3, we o
describe a decision procedure for checking entailment

queries. In Section 4, a framework for domain spec-
ification is described and some examples of the logic
in use are provided.

2 THE STOCHASTIC DECISION
LOGIC

The SDL's foundations are in the Specification Logic
of Actions with Probability (Rens et al., 2014b) and
the Specification Logic of Actions and Observations
with Probability (Rens et al., 2014a).

2.1 Syntax

The syntax is very carefully designed to provide the
required expressiveness, and no more.

The vocabulary of our language contains six sorts
of objects:

1. afinite set ofluents¥ = {fq,..., fn},

2. a finite set of names of atomiactions 4
{ai1,...,0n},

3. a countable set ofaction variables
{5,

4, a finite set of names of atomabservationf) =
{G,...,Gn},

5. a countable set obbservation variables § =
.V, 1.

6. allreal numbersR,

We refer to elements ol U Q asconstants\We work
in a multi-modal setting, in which we have modal op-
eratorga], one for eachn € 4. And[a+¢] is abelief
update operatofor update operatofor short). Intu-
itively, o+ ¢]© means © holds in the belief-state
resulting from performing actioo and then perceiv-
ing observatiorg. For instancefa; + ¢ [oz2 + ¢
expresses that the agent executethen perceiveg
then executes, then perceives,. B is a modal op-
erator for belief andl is a modal operator for utility.

We first define a languagé, then a useful sub-
languageLsp. C L. The reason why we defing is
because it is easier to define the truth conditiondor
the truth conditions forsp, then follow directly.

Definition 2.1. First the propositional fragment:
G:=F|T|-0|dA, where fe F.

Then the fragmen® used in formulae of the form
¢ = @ (see the definition d® below).

Leta € (VU A),VPeVg,ce VaUQ), VW e Vg,
pe 0,1, reRandxe {<,<,=,>,>}.2
i=¢|a=a|¢=¢|Rewardr) | Cos{a,r) |
[a] e p| (afg)sap | (WP | (W)P| D | DA,
where¢ is defined above.

[a]d > p is read ‘The probability x of reach-
ing a ¢-world after executingx is such that x< p’.
Whereada] is a modal operatorg|a) is a predicate;
(¢la) > p is read ‘The probability x of perceiving
givena was performed is such thatx p’.

The language of is defined a®:

A [od WAV o]

O:=T|a=a|¢=¢|Conta,q) |Bd < p]|
UA T |[d= @] [a+gO| (WO | (W°)O |
-0|er0|6Ve,

2|0,1] denotesRN [0, 1].
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whered and® are defined above.

The scope of quantifidi/V') is determined in the
same way as is done in first-order logic. A variable
v appearing in a formula® is said to be bound by
quantifier (vV) if and only if v is the same variable
as V and is in the scope dfvV'). If a variable is not
bound by any quantifier, it is free. 1, variables are
not allowed to be free; they are always bound.

Cont(a,q) is read ‘Consciousness continues after
executinga and then perceiving. B¢ < pis read
‘The degree of beliek in ¢ is such thak > p'. Per-
forming A = Jai][az2] - [o;] means thati; is per-
formed, thena, then... thenaz. UA i r is thus
read ‘The utilityx of performingA is such thake<r’.
Evaluating some sentendéafter a sequence afup-
date operations, means thHtwill be evaluated after

2.2 Semantics

Formally, a partially observable Markov decision pro-
cess (POMDP) is a tuplés, 4, T, R, 2, P, b%): a
finite set of states = {s1, &, ..., s}; a finite set
of actions 4 = {ay,ay,...,a}; the state-transition
function whereT (s,a,s) is the probability of being
in s after performing actiora in states; the reward
function whereZ® (a, s) is the reward gained for exe-
cuting a while in states; a finite set of observations
Z={zn,2,...,Zznm}; theobservation functionwhere
P(s,a,2) is the probability of observing in state
s resulting from performing actioa in some other
state; and? is the initial probability distribution over
all states inS.

Letb be a total function frong into R. Each state

the agent's belief-state has been updated according tc® IS associated with a probabilitys) = p € R, such

the sequence

[a+q)--[o'+c]

ztimes

of actions and observationg) = ® is read ‘It is a
general law of the domain tha® holds in all situa-
tions (worlds) which satisfy’.

Definition 2.2. The language of SDL, denotedp,,
is the subset of formulae afexcluding formulae con-
taining subformulae of the form(¢ = ®).

For instance, sentences of the forifip = ®) A
(¢'= P)NOE Lspy, but(p = D)A (Y = D)AB€
LspL- And, for instance,~(¥")(¢ = @)V (¢’ =
P)VO ¢ Lop, but(W)(d=P) V(P = d)vOe
LspL. The reason why’gp, is defined to exclude

(¢ = ®) is because such sentences cause unneces-

sary technical difficulties in the decision procedure.

thatb is a probability distribution over the sgtof all
statesb can be called aelief-state

An important function in POMDP theory is the
function that updates the agent’s belief-state, or the
state estimatiofunctionSE SEa,zb) = by, where
bn(S) is the probability of the agent being in statén
the ‘new’ belief-statdd,, relative toa, zand the ‘old’
belief-stateh. Notice thatSK-) requires a belief-state,
an action and an observation as inputs to determine
the new belief-state.

When the states an agent can be in betief
states (as opposed to objective, single states)in
the reward functior® must be lifted to operate over
belief-states. Thexpectedreward p(a,b) for per-
forming an actiona in a belief-stateb is defined as

Yses R(a,9)b(s).

Letw: F — {0,1} be a total function that assigns
a truth value to each fluent. We calla world. Let

Rens’s doctoral thesis (Rens, 2014, Chap. 8) contain-C be the set of | conceivable worldsthat is, all

ing a detailed explanation.

| abbreviates- T, 8 — & abbreviates-6v 6" and
+ abbreviateg® — 0') A (6 — 6). In grammarsp
and®, @V ¢ abbreviates:(—=@A—¢'), butin grammar
O, V is defined directly, because otherwise its defini-
tion in terms of- andA would involve formulas of the
form —(¢ = @), which are precluded irigp.. — and
< have the weakest bindings, witk just stronger;

and- the strongest. Parentheses enforce or clarify the

scope of operators conventionally.

c = is an equality literalRewardr) is a reward
literal, Cos{a,r) is a cost literal,[a]$ < p is a dy-
namic literal, (¢la) < p is a perception literal, and
¢ = @ is a law literal. Cont(a, ) is a continuity lit-
eral,Bd > pis abelief literal andUA < r is a utility
literal. The negation of all these literals are also liter-
als with the associated names.

possible functionsv.

Definition 2.3. An SDL structure is a tupleD =
(T,P,U) such that

e T:4— {Tq|ae A}, where | : (CxC) —
[0,1] is a total function from pairs of worlds
into the reals. That is, T provides a transi-
tion (accessibility) relation J for each action in
A. For every w € C, it is required that either
(z)\:I\J’fFECTU(WiaWF) =1lor ZWECTG(va) =

o P:A4—{Py|ae A}, whereR:(CxQ)— [0,1]
is a total function from pairs in & Q into the
reals. That is, P provides a perceivability relation

SEither the action is executable and there is a probabil-
ity distribution (the summation is 1) or the action is inexe-
cutable (the summation is 0). Letting the sum equal a num-
ber not 1 or 0 would lead to badly defined semantics.
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P, for each action in4. For all wt € C, if there Some of the conditions for satisfaction are reproduced
exists a w € C such that §(w—,w") > 0, then below.
YccaPa(Wh,q) =1, elsey (cq Pa(W",Q) =0; Dbwl=a=a' < aanda’ are the same element;
¢ U isapair(ReCo), where ReC — Ris a reward Dbwl= ¢=¢ <= candd are the same element;
function and Co is a mapping that provides a cost Dbw = Rewardr) <= Rew) = r:
function Cq : C — R for eacha € 4. ~ 0
Dbw = Cos(a,c) <= Coy(wW) =c;
As in POMDPs, in the SDL, an agent typically
does not know in which worldv € C it actually is,
but for eachw it has a degree of belief that it is in that
world. From now on, leb: C — [0, 1] be a probability
distribution overC, still referred to as delief-state

Dbwi=[alp<ip <= T wec Ta(WwW)xip;
Dow =6

Dbw = (gja) > p <= Pa(W,g) > p;
Dbw = Cont(a,q) <= Pryg(a,¢,b) #0;

The degree of belief iw is denoted by the probability DbWEBO <1 p < 5 wec bW) = p;
measurd(w). Dow=¢
Definition 2.4. The probability of reaching the Dowi=Ufa] > r <= RC(a,b) ar;
next belief-state ‘b from the current belief- Dbw = U[a]A a1 =
state b, givena and ¢ is Pms(a,gb) = (RC(a,b)JrzceQ PrNB(a7q7b)~r’) >,
SwecPa(QW) Ywec Ta (W W)b(w). whereDb'w |= UA =1’ for b/ = BU(a, ¢, b);
The above definition is from standard POMDP Dowl= ¢ = 0

theory. forall w € C, if Dbw = ¢ thenDbw = ©;
Definition 2.5. We define abelief updatefunction Dbw = [a+¢© < Pryg(a,g,b) # 0 and
BU(a,¢b) =b'" Db'w = ©, whereb’ = BU(a,¢, b);

) — Pa:0) Suec Ta(Ww)b(w) Dow = (W)Y = DOWEVIE, Ao/ VI

Prns(a, ¢, b) ’ Dow = (WO)Y <= Dbw=YE AL AYE,

for Prng(a, ¢, b) £ 0. whereY'is a formula from the grammap or ©, and

we write Y]¥ to mean the formul&” with all occur-
rences of variableg € (V4 UVgq) appearing in it re-

Given the opportunity to be slightly more clear Placed by constarte AUQ of the right sort.
about the specification of rewards in the SDL, we in- A Sentenced € L is satisfiableif there exists a
terpretR (a,s) of POMDPs asR(s) — C(a,s), where structureD, a bellgf—stateb. a_nd a worldw such that
R(s) provides the positive reward portion &a,s) Dbw = ©, else® is unsatisfiable Let X C L. We
andC(a,s) provides the punishment or cost portion. S&Y thatX entails® (denotedX = ©) if for all struc-
By this interpretation, we assume that simply being tures?, all belief-stated, all w € C: if Dbw = k
in a state has an intrinsic reward (independent of an for €veryk € X, thenDbw = ©. WhenX(is a finite
action), however, that punishment is conditional on SUPset ofZspLand¥ & Lspy, it is easy to show that
actions and the states in which they are executed. X =¥ <= Acex kA —~Wis unsatisfiable. The SDL
There are many other ways to interpgta,s), and decision procedure for entailment is based on this lat-
R (a,9) is not even the most general reward function (€r correspondence.
possible; a more general function®y(s,a,s') mean-
ing that rewards depend on a statean action exe-
cuted ins and a states’ reached due to performiray 3 THE DECISION PROCEDURE
in s. The SDL adopts one of several reasonable ap- FOR SDL ENTAILMENT
proaches. In the semantics of the SDL, we equate a
states with a worldw and an actiora asa € 4, and
interpretR (a,s) asRgw) — Cay (w). We derive a re-
ward function over belief-states for the SDL in a sim-
ilar fashion as we did witip(a, b) of POMDP theory,
however, including the notion of cosiRC(a,b) =

BU(-) has the same intuitive meaning as the state
estimation functiorSK-) of POMDP theory.

Informally, a query is satisfiable if there exists a way

of filling in missing domain information about re-

wards, transitions, perceptions, etcetera, so that the

query is true. And a query should be valid if all ways

S wee(REW) — Cor (W))b(w). or:‘ extending the supplied model information makes
Leta,of € 4, ¢,¢ €Q, pe [0,1] andr € R. Let e querytrue.

f € ¥ and let® be any sentence in. Let e {< We provide a sketch of the (formal) decision pro-
,<,=,>,>}. If © € L is satisfiedat world w and cedure for checking whether entailments of the form

belief-statéh in SDL structureD, we write Dbw}= ©. X E W hold. Our strategy is to set up a tableau tree
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for Axex K AW, and then check whether or notev- 3.1 The Tableau Phase
ery leaf node of the tree after full expansion implies
a contradiction. If every leaf node does not imply a
contradiction, then the original sentence is unsatisfi-
able andX = W holds. A 02.C, )
There are two phases in the decision procedure. 1S 0 ,_%l € -+ = &, then the concatenation of
The first phase uses a tableau approach to (i) catchs and &% €, denoted as LS o is the sequence
traditional’ contradictions, (ii) separate formulaeant 0% o - 0zt o, “S o A noderl is a set of la-

ltlrtgaslzc%?]?j (;I)?] ;Srggarmgeslrllt:ﬁaézrlotrh?srogaflzgg " beled formulae. The initial node to which the tableau
phase. The second phase creates systems of inequaf—mest rr;ustdbe aRr;hed, IS C?.”eclj t;re?rl]c 'tA‘ treke T:js |
ities, checking their feasibility. We shall call this the ‘;’]‘ Osges rggul‘;f]é frc:;anetrr?gsa p'gﬁc‘;tiin ;bjggu ";_‘Sle;’” y
systems of inequalitigS1) phase. to the trunk and subsequent nodes. If one has a tree

An activity sequences Eifger 0 or a sequence of with trunk {(0,%)}, we shall say one has tree for

the form 0°-2% e %25 & --- —>&. Intuitively, an ac- _
tivity sequence represents a hypothetical sequence of A noder is aleaf node of treeT if no tableau
actions and associated perceptions. &heepresent rule has been applied ©in T. A noder is closed

belief-statesg, is an integer which uniquely identifies . . P
; if (Z, L)€l foranyZ. Itis openifitis not closed.
the belief-state reached after the occurrence of the B [ i o T cat o o closed, else

?uenc$h1,c1,a2,c2,”- -éng.Cz.tOf aqtl?nsband obscterr]va- it is open. A rule may not be applied to (i) a closed
lons. Theg are ca ’e clivity pointsS—because IN€y o4t node or (ii) a formula to which it has been applied
represent an agent’s state of mind at some point aﬂerhigher T (o M

a sequence of aphwhe_zs. . Some of the tableau rules follow. LEtbe a leaf
In the following discussion, and also later, we gge.

employ some abbreviations: The set of fluefits=

{full,holding} is abbreviated to{f,h}. The

A labeled formulais a pair(Z,¥), whereW € Lsp.
is any formula, andx is an activity sequence. If

o rule A: If T contains(Z, WA W) or (Z,~(WVW)),

set of actions4 = {grab,drink,weigh} is ab-
breviated to{g,d,w}. The set of observations
Q = {Nil,Light,Medium,Heavy} is abbreviated to
{N,L,M,H}.

Given some initial belief-state, every clause
of a sentence specifies a final belief-state/activity
point. For instanceB(f Ah) = 0.35AB(f A—h) =
0.35AB(=f Ah) = 0.2AB(—f A —h) = 0.1 speci-
fies the belief-stat¢(w;, 0.35), (w2,0.35), (ws3,0.2),
(Wyg,0.1)}, wherewy = fAh, ..., ws = -f A-h.
And [g+ N][w+ M]Bh > 0.85 specifies belief-state
BU(w,M,BU(g,N,b%)), where b® is some initial
belief-state. Now it is obvious that

B(f Ah)=0.35 A B(f A—h) =0.35A
B(-fAh)=02A B(-fA-h)=01—
[9+N][w+M]Bh > 0.85 A [g+N][w+M]Bh < 0.85

is a contradiction, because in the belief-state reached

then create child node’ =T U {(Z,¥),(Z,¥)}, re-
spectivelyl’ =T U{(Z,-W),(Z,-¥")}.

rule Vi If T contains(Z,W Vv W) or (£,~(WYAW)),
then create child noddg =T U{(Z,¥)} andl"” =T U
{(Z, W)}, respectively, child nodds =T U{(Z,-W¥)}
andlr” =T u{(z,-¥)}.

rule = A: If T contains(Z,¢ = ® A @), then create
child nodel” =T U{(Z,¢ = ®), (5,6 = D) }.

rule =: If I contains(Z, [a +¢]¥), then: if[" contains
(2/,W) such that’ =% 25 e, then create nodg’ =

ru{(z’,w)}, else create child node¢ =T u{(z 25
¢,W)}, wheree is a fresh integer.

rule—Z=: If I contains(Z, ~[a +¢]W), then create child
nodel” =T U{(Z,-Cont(a,q) V [a +¢]-¥)}.

Definition 3.1. A branch issaturatedf and only if
every rule that can be applied to its leaf node has been
applied. A tree isaturatedf and only all its branches

after the sequencg,N,w,M, an agent cannot have ;.o saturated.

a degree of belief irh both greater-than and less-
than-or-equal-to 0.85. This is a very simple exam-

ple, but the need for the maintenance of activity se- 3.2 The Sl Phase

guences and activity points becomes much more ap-

parent when one understands that an activity point | ot 1 pe a leaf node of an open branch of a saturated

plays a part in identifying the variables represent- yree. S|(I') is the system of inequalities generated

ing the probabilit_ies of being in the different possible fom the formulae i (as explained below). After

worlds at that point. the tableau phase is completed, the SI phase begins.
LetT be a saturated tree.

10



For each open leaf nod'q'; of T, do the fol-
lowing. If SI(Flj() is infeasible, then create new
leaf nodel} ; = MyU{(0,1)}.

Definition 3.2. A tree is calledfinishedafter the SI
phase is completed.

Definition 3.3. If a tree for =W is closed, we write
F W. If there is a finished tree forW with an open
branch, we write/ V.

The generation o81(I") from the formulae if" is

explained in the rest of this section. All variables are

assumed implicitly non-negative.
Let C* = {wy,ws,...,wn} be an ordering of the

worlds inC. Let wy; be a variable representing the

probability of being in worldwy at activity pointe
(after a number of activity updates). The equation

W+ W+ =1

is in SI(") and represents the initial probability dis-

tribution over the worlds irC.  We may denote an

activity sequence as 25 eto refer to the last action
a, observatiorg and activity pointe in the sequence,

whereZ may be the empty sequence. We may also

denote an activity sequence asto refer only to the
last activity point in the sequence; Xf is the empty
sequence, theais the initial activity point 0.

In the next four subsections, we deal with (i) law
literals involving dynamic and perception literals, (ii)
activity sequences, (iii) belief literals and (iv) laws in-

volving reward and cost literals, and utility literals.

3.2.1 Action and Perception Laws

For every formulae of the for®, o= [a]¢ >aq) € T

and (Z,0= —[a]¢p > q) € T, for everyj such that
w;j [= @ (wherej represents the world in which is

executed),

C1pri'y +Coprio+ -+ caprj,
respectively,

CLPrfq +Coprio+---+Cnpri a4 q
is in SI(I"), such thaty = 1 if wy = ¢, elseck =0,
and thepr?‘k are variables. Adding an equation
Pris+priot: -+ pri,=[priy+pris+--+pri,]

for every j such thatw; |= ¢, will ensure that either
Swew Ra(Wj,W) =1 or 3w Ra(wj,w) = 0, for
everyw; € C, as stated in Definition 2.3.
Letm=|Q|. Let Q¥ = (¢1,¢,...,¢m) be an or-
dering of the observations @. With each observa-
tion in ¢ € QF, we associate a variathJ?, where]j

A Modal Logic for the Decision-Theoretic Projection Problem

represents the world in whiahis perceived. For ev-
ery formulae of the form{Z, ¢ = (¢ja) > q) € I and
(Z,0=—(cla)q) €T, for everyj such thatv; = @,

pr?‘“ 1, respectively,prﬁ“ b4 q
isin SI(I). Adding an equation

pr?l‘q + pr?Z‘u 4+ 4 pr?m‘u =

((prg,j + prg,j + -4 praj)/nl
for everyj such thaw; = @, ensures that for all; €
C, if there exists av; € C such thatRy (w;,wj) > 0,

theny ccq Qu(Wj,q) =1, elsey o Qu(Wj,¢) =0, as
stated in Definition 2.3.

3.2.2  Belief Update

LetM(en,a,¢) be the abbreviation for the term

d glot & en
o

> pr; an,,-m. ;

=1 i=

which is the probability of reaching the belief-state
after performing belief updafle + ¢J at activity point
en. And letBT(en, k, 0, ¢) be the abbreviation for the

term

¢o <n a ,En
Pre Yi—1 Priwy

M(en,a,¢)
which is the probability of being in worldv after
performing belief updatéa + ¢ at activity pointey,
wheren = [C]|.

Supposes is 0929 g 1% g, ... 1% 1 o gng
> 0. For every formulae of the forfk, W) € I, the
following equations are iSI(I").

wet = BT(en,k, 0, Gn)

fork=1,2,...,nandh=0,1,...,z— 1,
M(en,an,G) # 0
forh=0,1,...,z—1and
W+ P =1
forh=0,1,...,z whereg is 0. Observe that the,

are integers and we enforce the constraint éhat e
iff i < j.

)

3.2.3 Continuity and Belief Literals

For every formula of the forni>e, Cont(a,q)) € " or
(2e,—Conta,q)) €T,

M(ea,q) #0, respectively,MN(ea,q) =0
isinSI(T).
For every formula of the fornize,B < p) € T,
Clwf—I—Cz(Dg—i----—i—anﬁN P,
isin SI(T), whereck = 1 if wi = ¢, elseck = 0.

11
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3.2.4 Rewards, Costs and Utilities 26

/ &

24~ @

For every formula of the fornX, ¢ = Rewardr)) € o 5S¢ N
I and(Z,p=-—-Rewardr)) € I', for everyj such that / \ O(;’/m’ 27
W, =, 13 9, 23 2,¢;

R;j =, respectivelyR; # r \Q S .32 %\ 28
is in SI(M). 25"* S

For every formula of the form(Z,¢ = 33 29

Cosfa,r)) € I and (X, = —Cos{a,r)) € T,

for everyj such thatv; = @ Figure 1: The two utility trees generated frah

o __ i a
Cj =r, respectivelyCj' #r (13%24’ [aa]), (13% 25, [aa]),

is in SI(T). (23%% 26, [az]), (23%% 27, [z,

def
Let RC(a,e) = wf(Ry —CY) + w5(R—C3) + a, ay.
-+ wf(Ry — CY). For every formula of the form (23725 28, [ar]) and (2372 29, [aa])

(ZeU[o]aq) €T, are in&'. And due to(13 2% 24 [os] [a2]), (13 1%
RC(a,€) > 25, [az]|[az]) € &, the following are also id'.
o1, 03,C
is in SI(T). (1375 2479 30, [az]),
_ , (1324 24%% 31 [a]),
To keep track of dependencies between variables o N
in inequalities derived from utility literals of the form (13 % 25%% 30 [az]) and
(Z,U[a]A =< q), we define autility tree. A set of util- (13% 25%3% 33 [as]).

ity trees is induced from a sét which is defined as

follows (examples follow the formal description). For  Note how an activity point is represented by the same
every formula of the form{Ze,U[a]A = q) € T, let integer (for instance, 24) if and only if it is reached
(e as &, M) € A, for everyc € Q, wheree is a fresh via the same sequence of actions and observations (for

integer. Then, for everyg, [a]A) € A (whereA is instance, 13-%).

not empty) for every € Q, if (§,W) € A such that The set of utility trees is generated frakas fol-
&=t a8 €, then(&’',A\) € A, else(§ 25 €5, N) €A, lows. A is partitioned such thde 28 €,N), (¢ LY

whereet is a fresh integer. This finishes the definition €”,/A’) € A are in the same partitioning if and only
of A. The following example should clarify the mean- if e=¢€’. Each partitioning represents a unique util-

ing A and utility trees. ity tree with the first activity point as the root of the
Supposé = {¢1,¢} and tree. For example, one can generate two utility trees
a'c from A’; one with root 13 and one with root 23. Each
(2 — 13 U[as] = 88), activity sequence of the members Mfrepresents a
o' (sub)path starting at the root of its corresponding tree.
(£ %5 13 U[ou] o] > 61), Figure 1 depicts the two utility trees generated from
a’,d N,
(Z = 13 Ulaa]fos][oz] < 62), Before considering the general case, we illustrate
(= ﬂ 13,U[ay][as] = 63), the method of generating, from the utility trees in
. Figure 1, the required inequalities which must be in
(= 15 23 U[aq] [a2] > 64) and SI(r).
= oS 5o U[o2] o] = 65) The formula(Z LA 13 U[ai]az] > 61) el is

represented by

are in some leaf nodg. Then (= =5 13,Ufas] = RC(a1,13) +M(13,a1,¢)RC(az, 24)+
88) is not involved in the definition of\’, neverthe- n(13 R 28 < 61
less,RC(a5,13) = 88 is inSI(I”). (13,01,¢2)RC(a2,25) >

With respect to the other utility literals, in SI(T"). To generate this inequality, the utility tree
13915 24, a 13%1% 25 a rooted at 13 is used: See that is executed at ac-

( o« [oz]). € o« [az]), tivity point 13, a2 is executed at activity point 24 if
(13 1Y 04, [as][az]), (13 1% 25, [as][az]), Q1 is perceived and, is executed at activity point 25

12
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if ¢o is perceived. Moreover, the latter two rewards 4.1 The Framework
must be weighted by the probabilities of reaching the

respective new belief-states/activity points. The framework presented here should be viewed as
The formula(z LN 13 U[ay][as] = 63) €T is providing guidance; the knowledge engineer should
represented by adapt the framework as necessary for the particular

domain being modeled. On the practical side, in the

RC(01,13) + (13,01, 61)RCa14, 24) +- context of the SDL, the domain of interest can be di-

M(13,a1,¢)RC(a4,25) = 63. vided into five parts:
in SI(I"). This time, a4 is executed at the activity Static laws(denoted as the s&il) have the form
points 24 and 25. ¢= ¢, wherepand¢ are propositional sentences, and

Next, the utility tree rooted at 23 is used to find the @ is the condition under whicl is always satisfied.
. o’ , They are the basic laws and facts of the domain. For
representation of= — 23 U[a4][o2] > 64) e .

, N instance, “A full battery allows me at most four hours
Looking at the utility tree, one can work out that of operation”, “I sink in liquids” and “The charging

RC(a1,23) 4+ M(23 a1, )RC(0, 26)+ station is in sector 14”. Such static laws cannot be
M(23,a1,c2)RC(02,27) > 64 explicitly stated in traditional POMDPs.
) I Action rules(denoted as the s&R) must be spec-
must be mSII(’I'/). ified. In this paper, we ignore the frame problem (Mc-
For (= - 23,U[az][o1] =65) € I, Carthy and Hayes, 1969); a solution in the current set-
ting requires careful machinery and space prohibits
RC(a2,23) +1M(23,02,61)RC(011, 28) + giving it the attention it deserves. We have made pre-
M(23,01,6)RC(07,29) > 64 liminary progress in this direction (Rens et al., 2013).
is in SI(T). For this paper, we identify three kinds of action rules.
Formula The basic kind is theffect axiom For every ac-

o< tion a, effect axioms take the form
(Z — 13, U[aq][as] o] <62 T, (1)

= |a =P A---Afd =
is represented by the inequality shown in Figure 2. = {01621 = Pur [A)¢1n = Pan

The size of the utility tree rooted at 13 is due to (1). %2 = [0]¢21= P21/~~~ Aa]d2n = P2n
Hence, the whole tree is employed to generate the in-
equality. :
In general, for every utility literal of the form @ = [a]dj1=pjrA - A[A]djn = Pjn,
(Z&z, UJaa][az] - [oy] = q). where (i) for every rulé, the sum of transition proba-

in leaf noder”, an inequality can be generated from Pilities pi,..., pin must lie in the rang¢d, 1 (prefer-
an associated utility tree and the inequality must be in 21y 1), (ii) for every rul, for any pair of effectgix
SI(T). We do not have space to go into the details, but 21dPik': ®ik A i = L and (iii) for any pair of condi-

please see the thesis (Rens, 2014, Chap. 8) for detailsions® and@,, @ A @ = L

Theorem 3.1. The decision procedure is sound, com- The knowledge engineer must keep in mind that if

plete and terminating. The SDL is thus decidable with the transition probabilities do not sum to 1, the speci-
. ! fication is incomplete. Suppose, for instance, that for
respect to entailment as defined above.

rulei, pi1+---+ pin < 1. Then one or more tran-
Proof. Please refer to the thesis (Rens, 2014, Chap. 8)sitions from a@-world has not been mentioned and
for the proof. O some logical inferences will not be possible.

The second kind of action rule is ti@executabi-
lity axiom We shall assume that the set of effect ax-
ioms for an action is complete, that is, that the know-
ledge engineer intends that the conditions of these ax-
ioms are the only conditions under which the actions
can be executed. Note thaf T > 0 implies that is
4 DOMAIN SPECIFICATION executable. Therefore, if there is an effect axionofor

with conditiong, then one can assume the presence of

First we present a framework for domain specification an executability axiomp=- [a]T > 0. However, we
with the logic, then we look at some examples of SDL must still specify that an action is inexecutable when
entailment in use. none of the effect axiom conditions is met. Hence, the

Although the SDL vocabulary is finite, the need to
deal with probabilistic information makes the above
decidability result non-trivial.

13
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+ n(1370(1,C1)< RC(as, 24)
RC(a1,13)
|_|(13,01,C2)( RC((Xg,25)

+ M(24,03,¢1) RC(ay,30)
+ MN(24,03,¢2) RC(ap,31)
<62
+ N(25,03,¢1) RC(ay,32)
+ M(25,03,¢2) RC(02,33)

Figure 2: The inequality representifg 8 13 U[aq]os][az] < 62) e T.

following inexecutabilityaxiom is assumed preseht.
(@ V- ve)=[a]T=0

where@, . ..
ioms fora.

Perception rulegdenoted as the s&R) must be
specified. LEIE(C() = {¢1l, ¢12, cey ¢21, ¢22, ceey
djn} be the set of all effects of actiamexecuted un-
der all executable conditions. For every actigrper-
ception rules typically take the form

,@; are the conditions of the effect ax-

P11A -+ A (Gm | &) = Pim
P21/ -+ A (Gom | &) = Pom

¢ = (Cula)=
@ = (Gu|0) =

Oc= (G |a)=pr A A(Gm | A) = Pm,

where (i) the sum of perception probabilities
Pi1, - - ., Pim Of @any rulei must lie in the rangg0, 1]
(preferably 1), (ii) for any pair of conditiong andeqy,
@A@ =Land (i) V@V V&= Vo) 9 If

the sum of perception probabilitigg, .. ., pim of any
rule i is 1, then any observations not mentioned in
rule i are automaticallyinperceivablen a @-world.
However, in the case that the sum is not 1, this de-
duction about unperceivability cannot be made. Then
the knowledge engineer should keep in mind that a
perception rule of the form

@—--A(Cla)=0A---

implies thatg is unperceivable in g-world given that
the world is reachable via. Hence, ifpi1+---+
pim # 1 and unperceivability information is available,
it should be included with a subformula of the form
(¢]a)=0.

Utility rules (denoted as the seXR) must be spec-

ified. Utility rules typically take the form
¢ = Rewardry), ..., @ = Rewardrj),

meaning that in all worlds wherg is satisfied, the

agent gets; units of reward. And for every actiam,
@ = Cos{a,r1), ..., @ = Cosf{a,rj),

“4Inexecutability axioms are also calledndition closure
axioms.
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meaning that the cost for performirg in a world
whereq is satisfied isrj units. The conditions are
disjoint as for action and perception rules.

The fifth part of the domain specification is the
agent’s initial belief-statéB. That is, a specification
of the worlds the agent should believe it is in when
it becomes active, and probabilities associated with
those worlds should be provided. In general, an initial
belief-state specification should have the form

Bbixapr A Booxipy A

where ()< € {<,<,=,>,>} and (ii) thed; are mu-
tually exclusive propositional sentences (i.e., for all
1<i)j<nsti#j,¢iAnd;=1). For afull/complete
specification of garticular initial belief-state, all the
<1 must be= andp; + p2+ ...+ pn must equal 1.

The union ofSL, AR, PR and UR is referred to
as an agent’®ackground knowledgand is denoted
BK. In practical terms, the question to be answered
in the SDL is whetheBK = IB — ©~ holds, where

BK C Lspy, IB is as described above, a@d e Lg"b,_

is some sentence of interest, Wh&E@L is the subset
of formulae of Lgp_ excluding law literals.

A Bbn<ipn,

4.2 Examples

This section states three entailment queries based on
the oil-drinking scenario. Except for the initial belief-
stat®, the following is a full specification of the
POMDP model.

Action Rules
ﬁhé[g](f/\h) 08/\[g](—|f h) 0.1A
[gl(~f A=h) = =[gT=
hé[d](—'f/\h) 095 [d}(ﬂf/\ﬂh) 0.05;

fAh=[w|(fAh)=1;
-fAh= [w](=fAh)=1;

Perception Rules

f A=h=[w](f A=h) =1,
-~fA=h=[w](=f A-h)=

T=(N|g)=1A(N|d) =1

fAh= (L|w) =0.1A(M|w)=02A(H |w)=0.7.
~fAh= (L|w)=05A(M |w)=03A(H|w)=02
—h= (We)~ (Vo =N) — (V% |w) = 3.

5Probabilities used for specifying the initial belief-stat
are assumed given by a knowledge engineer or computed in
an earlier process.
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Utility Rules
f = Reward0); —fAh=-Reward10);

—f A=h=-Reward —5).
T = (WY)W =gvwW =d) — Cos{V’*,1);
f = Cos(w,2); —f = Cos{w,0.8).

The robot gets 10 units of reward for holding the
can while it is not full (implying the robot drank the
oil), and it gets—5 units of reward for not holding
the can while it is not full. Otherwise, the robot gets
no rewards. It costs two units to weigh the can when
the can is full, else it costs 0.8 units. Grabbing and
drinking always costs one unit.

Suppose that the initial belief-state is specified as

Bf =0.7AB(-fAh)=0.2AB(—-f A—h) =0.1.
Note that it is not fully specified. We determined that
BK entails
Bf =0.7AB(—f Ah)=02AB(=f A=h)=0.1—

[9+ N][w+ M]Bh > 0.85.

That is, the agent’s degree of belief that it is hold-
ing the can is greater than85 after grabbing the can
and then weighing and perceiving that it has medium

weight follows fromBK, given an initial belief-state
Bf =0.7A---=0.1. We draw the reader’s attention

to the fact that sensible entailments can be queried,

even with a partially specified initial belief-state.

In the next example, we provide a complete speci-
fication of the initial belief-state, but we under-specify
the perception probabilities. Suppose that instead o
perception rulef Ah= (L |w) =01A(M|w) =
0.2A(H |w) =0.7 € BK, we have onlyf Ah= (H |
w) = 0.7 € BK'. Also assume the perception rule
f Ah= (M |w) > 0.2 BK. (Thatis, we modify
BK to becomeBK'.) Then

B(f Ah)=0.35A B(f A—h) =0.35A
B(~f Ah) =02 A B(~f A=h)=0.1—
[g+N][w+ M]Bh > 0.85

is entailed byBK'.
Finally, we have shown th&K entails
Bf =0.7AB(-f Ah)=02AB(=-f A-h)=0.1—
[9+NJU[d][d] <7,
where, the initial belief-state is under-specified. This
example shows that non-trivial entailments about the

utility of sequences of actions can be confirmed, even
without full knowledge about the initial belief-state.

5 CONCLUDING REMARKS

We presented a modal logic with a POMDP seman-

tics for representing stochastic domains and reason-
ing about noisy actions and observations. Entailment

queries can be answered as a solution to certain kinds
of projection problems, even with incomplete domain
specifications. The procedure for deciding entailment
is proved sound, complete and terminating. As a
corollary, the entailment question for the SDL is de-
cidable.

Our work can likely be enhanced in several dimen-
sions by further studying the ongoing research in the
field of probabilistic logics, stochastic/probabilistic
satisfiability, relational (PO)MDPs and symbolic dy-
namic programming (Saad, 2009; Wang and Khardon,
2010; Sanner and Kersting, 2010; Lison, 2010; Shi-
razi and Amir, 2011). As espoused by Wang et al.
(2008), for instance, there are advantages to being
able to model a domain with relational predicates and
not only propositions. The SDL thus needs to be lifted
to a first-order fragment.

Automatic plan generation is highly desirable in
cognitive robotics and for autonomous systems mod-
eled as POMDPs. In future work, we would like to
take the SDL as the basis for developing a language
or framework with which plans can be generated, in
the fashion of DTGolog (Boutilier et al., 2000).

POMDP methods do not deal with the problem of
belief maintenance over incomplete models, and this
is why the problem is interesting, provided that the so-
lution can lead to methods that are at least, minimally
effective. Littman et al. (2001)’s article seems like a

£good starting point for the investigation to determin-

ing the computational complexity of the procedure,
our next task.
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