
A Component Abstraction for Localized, Composable, Machine 
Manipulable Enterprise Specification 

Vinay Kulkarni1, Tony Clark2 and Balbir Barn2 
1Tata Research Development and Design Centre, Tata Consultancy Services, 54B Hadapsar Industrial Estate, Pune, India 

2Middlesex University, London, U.K. 
vinay.vkulkarni@tcs.com, {t.n.clark, b.barn}@mdx.ac.uk 

Keywords: Enterprise Modelling, Component. 

Abstract: Enterprise modelling aims to specify an enterprise in terms of high-level models that address key problems 
such as business-IT alignment, enterprise transformation and optimal operation. No two situations in real 
world enterprises are exactly alike but there may be significant overlap. Relative ignorance of such overlaps 
forces essentially the same problem, albeit in a different context, to be repeatedly solved from scratch. This 
is a time-, effort- and cost-intensive endeavour. To overcome this problem and facilitate reuse, we propose a 
model-centric component abstraction that enables specification of the what, the how and the why concerns 
of enterprise in a localized, composable and machine manipulable manner. We present a meta-model, 
describe concrete syntax for its textual representation, and discuss the required model processing machinery. 

1 INTRODUCTION 

Modern enterprises operate in a highly dynamic 
environment wherein changes due to a variety of 
external change drivers require rapid responses 
within a highly constrained setting. This calls for 
precise understanding of: what is the enterprise, how 
it operates and why it so operates, the set of change 
drivers, a set of possible to-be states, and a 
quantitative and qualitative to-be state evaluation 
criteria. Understanding is typically required at 
several levels of granularity: a department, a 
business unit, the entire enterprise etc. The scale of a 
modern enterprise means this understanding exists 
only for highly localized parts and typically in the 
form of documents or descriptive models 
(Zachmann 1999, TOGAF). Popular enterprise 
modelling tools, e.g., ArchiMate (http://www.visual-
paradigm.com) offer little support for the quantitative 
or qualitative analysis of enterprise models. As a 
result, experts are forced to rely solely on their 
experience when faced with a specific problem. 
Thus, fractured incomplete knowledge and sole 
reliance on human expertise emerge as the principal 
contributing factors leading to change responses that 
are inaccurate, inefficient and ineffective. 

Key decision-makers in enterprises face generic 
problems: business-IT alignment, optimizing cost of 

IT to business, transformation with certainty etc. 
These problems manifest differently in different 
contexts and yet share significant commonality. For 
instance, the details of wealth management bank 
merger differs on a case by case basis; however 
cases have much in common both in terms of 
problem formulation as well as solution. Current 
Enterprise Modelling state-of-the-art as well as of-
practice completely ignores this commonality. As a 
result, each problem instance needs to be solved 
afresh. This is a highly cost-, time-, and effort-
intensive endeavour. 

The problems we seek to solve are: (i) to reduce 
excessive dependence on human experts for decision 
making, (ii) to address the commonality across 
different instances of a generic problem and, (iii) to 
address scale and complexity.  

Our proposition addresses the problems as 
follows: (i) the what, why and how perspectives of 
an enterprise are captured in terms of a core 
conceptual meta-model, (ii) DSLs and patterns are 
used to capture reusable knowledge and translated in 
terms of the core concepts into a kernel language, 
(iii) the kernel language supports features to address 
scale and complexity including composition, 
encapsulation, and higher-order features. 

Our approach is extensible through the use of a 
plug-in architecture supporting DSL-based models 
translated to an executable kernel language defined 
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in terms of a core collection of concepts. Section 2 
discusses related work. Section 3 provides an 
overview of the different aspects of the approach 
and section 4 concludes by describing our progress 
to date and our future directions. 

 

 

Figure 1: Purposive meta-models. 

2 RELATED WORK 

The current state-of-the-art of enterprise modelling 
(or specification) can be broadly classified into two: 
those that focus on what and how aspects (Clark et 
al., 2013, Zachmann 1999, TOGAF, Wisnosky and 
Vogel, 2002) and those that focus on why (Yu et al., 
2006, Dardenne et al., 1993, OMG BMM 2010). The 
supporting infrastructure for the former, with the 
exception of the ArchiMate tool (bit.ly/1s1WyTv) is 
best seen as a means to create high level descriptions 
for human experts to interpret in the light of 
synthesis of their past experience. The Stock-n-Flow 
model (Meadows 2008) provides a different 
paradigm for modelling what and how aspects and 
comes with simulation machinery for quantitative 
analysis (http://bit.ly/1hebMvC). Several BPMN tools 
providing simulation capability exist but are limited 
to the how aspect (http://bit.ly/PdkqVg). Supporting 
infrastructure for why (http://bit.ly/Oav0Lm) is 
comparatively more advanced in terms of automated 
support for analysis. Informed decision making 
demands taking into account all the three aspects in 
an integrated manner, however, correlating what and 
how with why remains a challenge. Given the wide 
variance in paradigms as well the supporting 
infrastructure, the only recourse available is the use 
of a method to string together the relevant set of 
tools with the objective of answering the questions 
listed earlier. The non-interoperable nature of these 
tools further exacerbates automated realization of 
the method in practice. As a result, enterprises 
continue to struggle in satisfactorily dealing with 
critical concerns such as business-IT alignment, IT 
systems rationalization, and enterprise 
transformation. 

3 PROPOSED SOLUTION 

We propose a modelling language engineering 
solution based on the principles of separation of 
concerns (Tar et al., 1999) and purposive meta-
modelling. We posit a core language defined in 
terms of generic concepts such as event, property, 
interface, component, composition, and goal. They 
constitute a minimal set of concepts necessary and 
sufficient for enterprise specification. The core 
language can be seen as a meta-model template 
where the generic concepts are placeholders. In the 
proposed approach a template emits the desired 
purposive meta-model through a process of 
instantiation wherein the placeholder generic 
concepts are replaced by purpose-specific concepts. 
This makes it possible to establish relationships 
across multiple purposive meta-models as shown in 
Fig. 1 and also impart consistent semantics.  

The meta-modelling approach is suited to the 
open-ended problem space of enterprise modelling: 
any number of meta-models can be defined, 
relationships spanning across the various meta-
models specified and the desired semantic meaning 
imparted etc. 

3.1 Component Abstraction 

A component is a self-contained functional unit with 
high coherence and low external coupling. A 
component exposes an interface stating the 
externally observable goals, expectations from the 
environment, mechanisms to interact with the 
environment, and encapsulates an implementation 
that describes how the exposed goals are met. A 
component can make use of several contained 
components in order to meet the promised goals. A 
component participates in hierarchical composition 
structure to accomplish wider goals of the enterprise, 
e.g., larger unit or an enterprise. The expectations of 
a component from its environment are accompanied 
by a quality of service guarantee and together both 
constitute a negotiating lever. Thus, a component is 
in fact a family of (member) components where all 
family members have the same goal and interaction 
specifications but differ only in terms of the quality 
of service delivered and the expectations from the 
environment for delivering the promised quality. 
The core concepts of a component abstraction are 
depicted in Fig. 2.  
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Figure 2: Component abstraction. 

We draw from a set of existing concepts to 
derive the component abstraction. Modularization, 
reflective component hierarchies and interface-
implementation separation are taken from Fractal 
Component Models (Barros et al., 2009).  Goal-
directed active behaviour traces are taken from 
Agent Behaviour (Bonabeau, 2002). Defining 
component state in terms of attributes and traces is 
borrowed respectively from object oriented design 
patterns (Gamma et al., 1995) and event driven 
enterprise architecture modeling (Clark and Barn, 
2011). The event driven architecture (Michelson 
2006) is a means to support flexible interactions 
protocol between components. Finally the concept of 
intentional modelling (Yu et al., 2006) is adopted to 
enable specification of component goals. 

3.2 Component Meta-model 

The proposed component meta-model is depicted in 
Fig 3. A component has two parts – an interface and 
implementation: the interface addresses the what and 
why aspects, the implementation addresses the how 
aspect. Thus a component (C) is a tuple <CI, Impl>. 
A Component Interface(CI) is a tuple <inEvent, 
outEvent, xGoal, Conf> where inEvent is a set of 
events of interest to the component, outEvent is a set 
of events generated by the component, xGoal is the 
external observable goal of the component and  Conf 
is a set of configuration variants that conform to the 
InEvent, OutEvent and xGoal. Conf is a tuple 
<Expect,QoS> where Expect is the set of 
expectations from the environment expressed as 
name-value pairs, and QoS is the set of QoS 
properties to be guaranteed by the component 
provided the expectations are met. Implementation 
(Impl) is a tuple <iGoal,P,F,T,Content,iEvent> 
where: iGoal is the internal goal of the component, 

P is a set of properties or attributes,  F is set of 
functions each encoding a computation, T is a trace 
of past consumed and produced events, Content is a 
set of its sub-components, and iEvent is set of 
internal events used to interact with sub-
components. 

Component implementation is necessary and 
sufficient to cater to all its variants as specified in 
Conf. The control unit CU represents 
implementation of a component. It responds to 
inEvent set of events, raises outEvent set of events, 
and orchestrates the Content sub-components so as 
to accomplish the stated iGoal. It records the events 
of interest and changes to component properties (P). 
The control unit captures the behaviour of 
component i.e., a set of handlers for all inEvent. 

Event (E) is defined as tuple <Name,EP, 
preCond,postCond> where Name is the identifying 
label, EP is the set of properties or attributes of the 
event, preCond is the condition that must be fulfilled 
to recognize the event, and postCond is the condition 
that must hold true after completion of the event. 
The preCond and postCond are expressions over 
events and event properties. 

Goal is a tuple <Name, GExpr> where Name is 
the identifying label and GExpr is either property 
expression (PExpr) or event expression (EExpr) or 
goal composition expression (GCExpr). Property 
expression is value expression over properties (P 
and EP), event expression is an LTL formula over 
events, and goal composition expression uses a set 
of composition operators over goal expressions. The 
goal composition expression enables specification of 
limited uncertainty and non-determinism in the goal. 

3.3 Language Features 

The approach outlined above relies on being able to 
represent and process an organisation that is 
expressed in terms of a component-based 
abstraction. We envisage a product-line approach 
(Reinhartz-Berger, 2013) whereby a suite of tools 
based on this abstraction is used to facilitate a 
collection of different organisation analysis and 
simulation activities. Each activity will constitute a 
domain, e.g., cost analysis, resource analysis, 
mergers and acquisition, regulatory compliance. In 
principle, each new domain will require a new 
domain specific language to represent the concepts. 
How should such a proliferation of domains be 
accommodated by a single component abstraction? 
Our proposal is to construct an extensible kernel 
language that is used as the target of translations 
from a range of domain specific languages (DSLs).  
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Figure 3: Component meta-model. 

Each DSL supports an organization analysis and 
simulation use-case. We then aim to construct a 
virtual machine for the kernel language so that it is 
executable. Model execution supports organisation 
simulation and some analysis use-cases. Links to 
external packages such as model-checkers will 
complete the analysis use-cases. 

The use of a single kernel language provides a 
focus of development effort and can help minimise 
the problem of point-to-point integration of analysis 
methods. Our proposal is that the concepts defined 
by the model in Fig. 3 are a suitable basis for most 
types of analysis and simulation use-case and 
therefore the kernel language will be defined in 
terms of these concepts.  

Given its ability to accommodate multiple 
simulation and analysis use-cases, we envisage the 
language being the basis of a suite of organisational 
modelling, simulation and analysis tools, presented 
in the form of a single integrated extensible meta-
tool. Since organisational information is likely to be 
very large (at least many tens of thousands of model 
elements) it is important the tool is efficient, 
scalable, supports distributed development and is 
flexible in terms of its architecture. To this end we 
aim that the language should be compiled to a 
machine language running on a dedicated VM, the 
language integrates with standard repository 
technology, and can run equally well on single 
machines, networked machines and via the cloud.  

Organisations consist of many autonomous 
components that are organized into dynamically 
changing hierarchical groups, operate concurrently, 
and manage goals that affect their behaviour. We 
aim for the kernel language to reflect these features 

by having an operational semantics based on the 
Actor Model of Computation (AMC) (Hewitt, 2010) 
and its relation to organisations, or iOrgs (Hewitt, 
2009). Actors have an address and manage an 
internal state that is private and cannot be shared 
with other actors in the system. Execution proceeds 
by sending asynchronous messages from a source 
actor to the address of a target actor. Synchronous 
messages can be achieved by sending an actor in an 
asynchronous message to which the result should be 
sent. Each message is handled in a separate 
execution thread associated with the target of the 
message and the message itself (collectively referred 
to as a task). During task-execution an actor may 
choose to change its state and behaviour (becoming 
a new actor) that is immediately available to process 
the next message sent to the target address. 

Our claim is that the AMC provides a suitable 
basis for execution and analysis of the concepts 
defined in Fig. 3 and can be used to represent the 
features of a component. The rest of this section lists 
the key features that must be supported by the kernel 
actor-based language: 
[adaptability] Organisational components may 
change dynamically during a simulation. Resources, 
individuals, and even departments may move 
location, and have an affect on results. Furthermore, 
the behaviour of a component may change over time 
as information changes within the system. Actors 
can change behaviour as a result of handling a 
message. 
[modularity] Each part of an organisation is 
intended to perform a business function that can be 
expressed in terms of a collection of operations. The 
internal organisation in terms of people, IT systems 
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and the implementation of various business 
processes is usually hidden. The AMC provides an 
interface of message handlers for each actor. Both 
the state and the implementation of the message 
interface are hidden from the outside. The 
specification of an actor in terms of its external 
interface can be expressed in terms of LTL formulas 
that constitute the external goal for a component. 
[autonomy] A key feature of an organisation is that 
the behaviour of each sub-component is 
autonomous. A particular department is responsible 
for its own behaviour and can generate output 
without the need for a stimulus. The AMC is highly 
concurrent with each actor being able to spawn 
multiple threads and over which other actors have no 
control (unless granted by the thread originator). 
[distribution] An organisation may be distributed 
and this may be an important feature of its 
simulation. Furthermore, we have a requirement that 
the tooling for organisational analysis and 
simulation should support distributed concurrent 
development. The AMC is message-based and 
seamlessly supports execution in the same address 
space, via a network connection or in the cloud. 
[intent] In addition to autonomous behaviour, an 
organisation component exhibits intent. This might 
take the form of an internal goal that guides the 
behaviour of the component to ensure that it 
contributes to the overall mission of the 
organisation. Although actors do not directly 
provides support for such goals, we intend to use 
results from the field of Multi-Agent Systems (van 
der Hoek, 2008) where support for goal-based 
reasoning is provided within each agent when 
determining how to handle messages. 
[composition] An organisation is an assembly of 
components. As noted above, the topology of an 
organisation may be static or dynamic. Actors can be 
nested in more than one way. Actor behaviours are 
declared and new actors are dynamically created 
with an initial behaviour (much like Java classes). 
The scope of actor behaviours can be nested to 
provide modularity. Adding a dynamically created 
actor to the state of a parent actor provides 
composition. Such actors can be sent as part of 
messages. If the source actor retains the address, 
then the communicated actor becomes shared 
between the source and the target of the message. 
[extensibility] Our aim is to support a number of 
simulation and analysis use-cases. As such the 
kernel language will need to support a collection of 
independent domains. Whilst we expect the DSLs to 
target the kernel language it is likely that each 
domain will have its own fundamental concepts and 

actions (so-called Therbligs, (Stanton, 2006)). We 
envisage such domain-specific features being 
defined in the kernel language and then pre-loaded 
to form an augmented target language for DSL 
translations. 
[event-driven] Organisational components cannot 
rely on when communications occur and where they 
originate. In addition, a component may simply 
cause an event to occur without knowing who will 
consume the event. This is to be contrasted with 
message-based communication where the target is 
always known to the source and where sometimes 
the message carries information about the source 
that becomes available to the target. The AMC is 
based on message passing where the source knows 
the address of the target. Given that the kernel 
language is the target of DSL transformations, 
support for event-based communication becomes an 
architectural issue where events are simply messages 
that are sent to an actor container that is responsible 
for delivering event-messages to dynamically 
changing collections of actors. Providing that the 
transformation establishes the correct assembly of 
actors and conforms to an appropriate message 
passing protocol then component events are 
supported without needing to make them an intrinsic 
part of the kernel. 

 

Figure 4: The ESL Kernel. 

Fig. 4 shows the kernel features of a language 
called ESL that is currently under development. It 
has been designed to support the features that are 
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discussed in this section and, as a result, address the 
problems outlined in section 1. The syntax definition 
assumes const and id for constants and identifiers, 
underlines terminals and uses xy to denote x(yx)*. 
In overview, a system consists of a collection of 
modules (line 1) that exports a means of 
communication. An actor behaviour is introduced as 
a binding (line 6) that could be nested as a local 
definition (line 12). A behaviour has state and 
message handling rules (line 6) and a new actor is 
created (line 15) by supplying values for the state 
variables. Pattern matching is used to process 
messages (pattern is not defined) and to dispatch 
to a command. A command can change the 
behaviour of the receiver (line 24) or send further 
messages (line 26). Data values are constants (line 
13), lists (line 17), terms (line 18), actors, functions 
(line 10) and procedures (line 11). 
 

 

Figure 5: Translation to the Kernel. 

Fig. 5 shows the proposed process where many 
different problem-oriented DSLs are translated in 
terms of the core concepts to the kernel language 
where simulation and analysis can be applied.  

4 SUMMARY AND NEXT STEPS 

We have identified 3 key problems and proposed an 
approach to solving these in order to make decision 
making in organisations more effective. Our 
approach is based on a domain analysis of the core 
concepts and involves supporting multiple DSLs that 
can be understood in terms of these concepts and 
realised in terms of a kernel language used for 
simulation and analysis. To date we have analysed 
several EA use-cases in terms of the core concepts 
and have started to prototype the kernel language. 
Currently we are developing real-world case-studies 
to validate and illustrate the proposed approach. For 
each case-study we will construct: a problem 
specific specialization of the core concepts, a 
business facing language constituting concrete 
syntax for the specialized meta model, and a 
mapping from this language to the kernel language.  
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