
A Component Abstraction for Localized, Composable, Machine
Manipulable Enterprise Specification

Vinay Kulkarni1, Tony Clark2 and Balbir Barn2
1Tata Research Development and Design Centre, Tata Consultancy Services, 54B Hadapsar Industrial Estate, Pune, India

2Middlesex University, London, U.K.
vinay.vkulkarni@tcs.com, {t.n.clark, b.barn}@mdx.ac.uk

Keywords: Enterprise Modelling, Component.

Abstract: Enterprise modelling aims to specify an enterprise in terms of high-level models that address key problems
such as business-IT alignment, enterprise transformation and optimal operation. No two situations in real
world enterprises are exactly alike but there may be significant overlap. Relative ignorance of such overlaps
forces essentially the same problem, albeit in a different context, to be repeatedly solved from scratch. This
is a time-, effort- and cost-intensive endeavour. To overcome this problem and facilitate reuse, we propose a
model-centric component abstraction that enables specification of the what, the how and the why concerns
of enterprise in a localized, composable and machine manipulable manner. We present a meta-model,
describe concrete syntax for its textual representation, and discuss the required model processing machinery.

1 INTRODUCTION

Modern enterprises operate in a highly dynamic
environment wherein changes due to a variety of
external change drivers require rapid responses
within a highly constrained setting. This calls for
precise understanding of: what is the enterprise, how
it operates and why it so operates, the set of change
drivers, a set of possible to-be states, and a
quantitative and qualitative to-be state evaluation
criteria. Understanding is typically required at
several levels of granularity: a department, a
business unit, the entire enterprise etc. The scale of a
modern enterprise means this understanding exists
only for highly localized parts and typically in the
form of documents or descriptive models
(Zachmann 1999, TOGAF). Popular enterprise
modelling tools, e.g., ArchiMate (http://www.visual-
paradigm.com) offer little support for the quantitative
or qualitative analysis of enterprise models. As a
result, experts are forced to rely solely on their
experience when faced with a specific problem.
Thus, fractured incomplete knowledge and sole
reliance on human expertise emerge as the principal
contributing factors leading to change responses that
are inaccurate, inefficient and ineffective.

Key decision-makers in enterprises face generic
problems: business-IT alignment, optimizing cost of

IT to business, transformation with certainty etc.
These problems manifest differently in different
contexts and yet share significant commonality. For
instance, the details of wealth management bank
merger differs on a case by case basis; however
cases have much in common both in terms of
problem formulation as well as solution. Current
Enterprise Modelling state-of-the-art as well as of-
practice completely ignores this commonality. As a
result, each problem instance needs to be solved
afresh. This is a highly cost-, time-, and effort-
intensive endeavour.

The problems we seek to solve are: (i) to reduce
excessive dependence on human experts for decision
making, (ii) to address the commonality across
different instances of a generic problem and, (iii) to
address scale and complexity.

Our proposition addresses the problems as
follows: (i) the what, why and how perspectives of
an enterprise are captured in terms of a core
conceptual meta-model, (ii) DSLs and patterns are
used to capture reusable knowledge and translated in
terms of the core concepts into a kernel language,
(iii) the kernel language supports features to address
scale and complexity including composition,
encapsulation, and higher-order features.

Our approach is extensible through the use of a
plug-in architecture supporting DSL-based models
translated to an executable kernel language defined

180
Kulkarni V., Clark T. and Barn B.
A Component Abstraction for Localized, Composable, Machine Manipulable Enterprise Specification.
DOI: 10.5220/0005425801800185
In Proceedings of the Fourth International Symposium on Business Modeling and Software Design (BMSD 2014), pages 180-185
ISBN: 978-989-758-032-1
Copyright c© 2014 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

in terms of a core collection of concepts. Section 2
discusses related work. Section 3 provides an
overview of the different aspects of the approach
and section 4 concludes by describing our progress
to date and our future directions.

Figure 1: Purposive meta-models.

2 RELATED WORK

The current state-of-the-art of enterprise modelling
(or specification) can be broadly classified into two:
those that focus on what and how aspects (Clark et
al., 2013, Zachmann 1999, TOGAF, Wisnosky and
Vogel, 2002) and those that focus on why (Yu et al.,
2006, Dardenne et al., 1993, OMG BMM 2010). The
supporting infrastructure for the former, with the
exception of the ArchiMate tool (bit.ly/1s1WyTv) is
best seen as a means to create high level descriptions
for human experts to interpret in the light of
synthesis of their past experience. The Stock-n-Flow
model (Meadows 2008) provides a different
paradigm for modelling what and how aspects and
comes with simulation machinery for quantitative
analysis (http://bit.ly/1hebMvC). Several BPMN tools
providing simulation capability exist but are limited
to the how aspect (http://bit.ly/PdkqVg). Supporting
infrastructure for why (http://bit.ly/Oav0Lm) is
comparatively more advanced in terms of automated
support for analysis. Informed decision making
demands taking into account all the three aspects in
an integrated manner, however, correlating what and
how with why remains a challenge. Given the wide
variance in paradigms as well the supporting
infrastructure, the only recourse available is the use
of a method to string together the relevant set of
tools with the objective of answering the questions
listed earlier. The non-interoperable nature of these
tools further exacerbates automated realization of
the method in practice. As a result, enterprises
continue to struggle in satisfactorily dealing with
critical concerns such as business-IT alignment, IT
systems rationalization, and enterprise
transformation.

3 PROPOSED SOLUTION

We propose a modelling language engineering
solution based on the principles of separation of
concerns (Tar et al., 1999) and purposive meta-
modelling. We posit a core language defined in
terms of generic concepts such as event, property,
interface, component, composition, and goal. They
constitute a minimal set of concepts necessary and
sufficient for enterprise specification. The core
language can be seen as a meta-model template
where the generic concepts are placeholders. In the
proposed approach a template emits the desired
purposive meta-model through a process of
instantiation wherein the placeholder generic
concepts are replaced by purpose-specific concepts.
This makes it possible to establish relationships
across multiple purposive meta-models as shown in
Fig. 1 and also impart consistent semantics.

The meta-modelling approach is suited to the
open-ended problem space of enterprise modelling:
any number of meta-models can be defined,
relationships spanning across the various meta-
models specified and the desired semantic meaning
imparted etc.

3.1 Component Abstraction

A component is a self-contained functional unit with
high coherence and low external coupling. A
component exposes an interface stating the
externally observable goals, expectations from the
environment, mechanisms to interact with the
environment, and encapsulates an implementation
that describes how the exposed goals are met. A
component can make use of several contained
components in order to meet the promised goals. A
component participates in hierarchical composition
structure to accomplish wider goals of the enterprise,
e.g., larger unit or an enterprise. The expectations of
a component from its environment are accompanied
by a quality of service guarantee and together both
constitute a negotiating lever. Thus, a component is
in fact a family of (member) components where all
family members have the same goal and interaction
specifications but differ only in terms of the quality
of service delivered and the expectations from the
environment for delivering the promised quality.
The core concepts of a component abstraction are
depicted in Fig. 2.

D
o
m
ai
n
 m

o
d
e
l i
n
 t
e
rm

s
o
f
co
re
 c
o
n
ce
p
ts
 Business layer model = core

concepts with different labels

System layer model = core
concepts with different labels

satisfies
refines

C
o
n
cep

t m
ap

A Component Abstraction for Localized, Composable, Machine Manipulable Enterprise Specification

181

Figure 2: Component abstraction.

We draw from a set of existing concepts to
derive the component abstraction. Modularization,
reflective component hierarchies and interface-
implementation separation are taken from Fractal
Component Models (Barros et al., 2009). Goal-
directed active behaviour traces are taken from
Agent Behaviour (Bonabeau, 2002). Defining
component state in terms of attributes and traces is
borrowed respectively from object oriented design
patterns (Gamma et al., 1995) and event driven
enterprise architecture modeling (Clark and Barn,
2011). The event driven architecture (Michelson
2006) is a means to support flexible interactions
protocol between components. Finally the concept of
intentional modelling (Yu et al., 2006) is adopted to
enable specification of component goals.

3.2 Component Meta-model

The proposed component meta-model is depicted in
Fig 3. A component has two parts – an interface and
implementation: the interface addresses the what and
why aspects, the implementation addresses the how
aspect. Thus a component (C) is a tuple <CI, Impl>.
A Component Interface(CI) is a tuple <inEvent,
outEvent, xGoal, Conf> where inEvent is a set of
events of interest to the component, outEvent is a set
of events generated by the component, xGoal is the
external observable goal of the component and Conf
is a set of configuration variants that conform to the
InEvent, OutEvent and xGoal. Conf is a tuple
<Expect,QoS> where Expect is the set of
expectations from the environment expressed as
name-value pairs, and QoS is the set of QoS
properties to be guaranteed by the component
provided the expectations are met. Implementation
(Impl) is a tuple <iGoal,P,F,T,Content,iEvent>
where: iGoal is the internal goal of the component,

P is a set of properties or attributes, F is set of
functions each encoding a computation, T is a trace
of past consumed and produced events, Content is a
set of its sub-components, and iEvent is set of
internal events used to interact with sub-
components.

Component implementation is necessary and
sufficient to cater to all its variants as specified in
Conf. The control unit CU represents
implementation of a component. It responds to
inEvent set of events, raises outEvent set of events,
and orchestrates the Content sub-components so as
to accomplish the stated iGoal. It records the events
of interest and changes to component properties (P).
The control unit captures the behaviour of
component i.e., a set of handlers for all inEvent.

Event (E) is defined as tuple <Name,EP,
preCond,postCond> where Name is the identifying
label, EP is the set of properties or attributes of the
event, preCond is the condition that must be fulfilled
to recognize the event, and postCond is the condition
that must hold true after completion of the event.
The preCond and postCond are expressions over
events and event properties.

Goal is a tuple <Name, GExpr> where Name is
the identifying label and GExpr is either property
expression (PExpr) or event expression (EExpr) or
goal composition expression (GCExpr). Property
expression is value expression over properties (P
and EP), event expression is an LTL formula over
events, and goal composition expression uses a set
of composition operators over goal expressions. The
goal composition expression enables specification of
limited uncertainty and non-determinism in the goal.

3.3 Language Features

The approach outlined above relies on being able to
represent and process an organisation that is
expressed in terms of a component-based
abstraction. We envisage a product-line approach
(Reinhartz-Berger, 2013) whereby a suite of tools
based on this abstraction is used to facilitate a
collection of different organisation analysis and
simulation activities. Each activity will constitute a
domain, e.g., cost analysis, resource analysis,
mergers and acquisition, regulatory compliance. In
principle, each new domain will require a new
domain specific language to represent the concepts.
How should such a proliferation of domains be
accommodated by a single component abstraction?
Our proposal is to construct an extensible kernel
language that is used as the target of translations
from a range of domain specific languages (DSLs).

Fourth International Symposium on Business Modeling and Software Design

182

Figure 3: Component meta-model.

Each DSL supports an organization analysis and
simulation use-case. We then aim to construct a
virtual machine for the kernel language so that it is
executable. Model execution supports organisation
simulation and some analysis use-cases. Links to
external packages such as model-checkers will
complete the analysis use-cases.

The use of a single kernel language provides a
focus of development effort and can help minimise
the problem of point-to-point integration of analysis
methods. Our proposal is that the concepts defined
by the model in Fig. 3 are a suitable basis for most
types of analysis and simulation use-case and
therefore the kernel language will be defined in
terms of these concepts.

Given its ability to accommodate multiple
simulation and analysis use-cases, we envisage the
language being the basis of a suite of organisational
modelling, simulation and analysis tools, presented
in the form of a single integrated extensible meta-
tool. Since organisational information is likely to be
very large (at least many tens of thousands of model
elements) it is important the tool is efficient,
scalable, supports distributed development and is
flexible in terms of its architecture. To this end we
aim that the language should be compiled to a
machine language running on a dedicated VM, the
language integrates with standard repository
technology, and can run equally well on single
machines, networked machines and via the cloud.

Organisations consist of many autonomous
components that are organized into dynamically
changing hierarchical groups, operate concurrently,
and manage goals that affect their behaviour. We
aim for the kernel language to reflect these features

by having an operational semantics based on the
Actor Model of Computation (AMC) (Hewitt, 2010)
and its relation to organisations, or iOrgs (Hewitt,
2009). Actors have an address and manage an
internal state that is private and cannot be shared
with other actors in the system. Execution proceeds
by sending asynchronous messages from a source
actor to the address of a target actor. Synchronous
messages can be achieved by sending an actor in an
asynchronous message to which the result should be
sent. Each message is handled in a separate
execution thread associated with the target of the
message and the message itself (collectively referred
to as a task). During task-execution an actor may
choose to change its state and behaviour (becoming
a new actor) that is immediately available to process
the next message sent to the target address.

Our claim is that the AMC provides a suitable
basis for execution and analysis of the concepts
defined in Fig. 3 and can be used to represent the
features of a component. The rest of this section lists
the key features that must be supported by the kernel
actor-based language:
[adaptability] Organisational components may
change dynamically during a simulation. Resources,
individuals, and even departments may move
location, and have an affect on results. Furthermore,
the behaviour of a component may change over time
as information changes within the system. Actors
can change behaviour as a result of handling a
message.
[modularity] Each part of an organisation is
intended to perform a business function that can be
expressed in terms of a collection of operations. The
internal organisation in terms of people, IT systems

A Component Abstraction for Localized, Composable, Machine Manipulable Enterprise Specification

183

and the implementation of various business
processes is usually hidden. The AMC provides an
interface of message handlers for each actor. Both
the state and the implementation of the message
interface are hidden from the outside. The
specification of an actor in terms of its external
interface can be expressed in terms of LTL formulas
that constitute the external goal for a component.
[autonomy] A key feature of an organisation is that
the behaviour of each sub-component is
autonomous. A particular department is responsible
for its own behaviour and can generate output
without the need for a stimulus. The AMC is highly
concurrent with each actor being able to spawn
multiple threads and over which other actors have no
control (unless granted by the thread originator).
[distribution] An organisation may be distributed
and this may be an important feature of its
simulation. Furthermore, we have a requirement that
the tooling for organisational analysis and
simulation should support distributed concurrent
development. The AMC is message-based and
seamlessly supports execution in the same address
space, via a network connection or in the cloud.
[intent] In addition to autonomous behaviour, an
organisation component exhibits intent. This might
take the form of an internal goal that guides the
behaviour of the component to ensure that it
contributes to the overall mission of the
organisation. Although actors do not directly
provides support for such goals, we intend to use
results from the field of Multi-Agent Systems (van
der Hoek, 2008) where support for goal-based
reasoning is provided within each agent when
determining how to handle messages.
[composition] An organisation is an assembly of
components. As noted above, the topology of an
organisation may be static or dynamic. Actors can be
nested in more than one way. Actor behaviours are
declared and new actors are dynamically created
with an initial behaviour (much like Java classes).
The scope of actor behaviours can be nested to
provide modularity. Adding a dynamically created
actor to the state of a parent actor provides
composition. Such actors can be sent as part of
messages. If the source actor retains the address,
then the communicated actor becomes shared
between the source and the target of the message.
[extensibility] Our aim is to support a number of
simulation and analysis use-cases. As such the
kernel language will need to support a collection of
independent domains. Whilst we expect the DSLs to
target the kernel language it is likely that each
domain will have its own fundamental concepts and

actions (so-called Therbligs, (Stanton, 2006)). We
envisage such domain-specific features being
defined in the kernel language and then pre-loaded
to form an augmented target language for DSL
translations.
[event-driven] Organisational components cannot
rely on when communications occur and where they
originate. In addition, a component may simply
cause an event to occur without knowing who will
consume the event. This is to be contrasted with
message-based communication where the target is
always known to the source and where sometimes
the message carries information about the source
that becomes available to the target. The AMC is
based on message passing where the source knows
the address of the target. Given that the kernel
language is the target of DSL transformations,
support for event-based communication becomes an
architectural issue where events are simply messages
that are sent to an actor container that is responsible
for delivering event-messages to dynamically
changing collections of actors. Providing that the
transformation establishes the correct assembly of
actors and conforms to an appropriate message
passing protocol then component events are
supported without needing to make them an intrinsic
part of the kernel.

Figure 4: The ESL Kernel.

Fig. 4 shows the kernel features of a language
called ESL that is currently under development. It
has been designed to support the features that are

Fourth International Symposium on Business Modeling and Software Design

184

discussed in this section and, as a result, address the
problems outlined in section 1. The syntax definition
assumes const and id for constants and identifiers,
underlines terminals and uses xy to denote x(yx)*.
In overview, a system consists of a collection of
modules (line 1) that exports a means of
communication. An actor behaviour is introduced as
a binding (line 6) that could be nested as a local
definition (line 12). A behaviour has state and
message handling rules (line 6) and a new actor is
created (line 15) by supplying values for the state
variables. Pattern matching is used to process
messages (pattern is not defined) and to dispatch
to a command. A command can change the
behaviour of the receiver (line 24) or send further
messages (line 26). Data values are constants (line
13), lists (line 17), terms (line 18), actors, functions
(line 10) and procedures (line 11).

Figure 5: Translation to the Kernel.

Fig. 5 shows the proposed process where many
different problem-oriented DSLs are translated in
terms of the core concepts to the kernel language
where simulation and analysis can be applied.

4 SUMMARY AND NEXT STEPS

We have identified 3 key problems and proposed an
approach to solving these in order to make decision
making in organisations more effective. Our
approach is based on a domain analysis of the core
concepts and involves supporting multiple DSLs that
can be understood in terms of these concepts and
realised in terms of a kernel language used for
simulation and analysis. To date we have analysed
several EA use-cases in terms of the core concepts
and have started to prototype the kernel language.
Currently we are developing real-world case-studies
to validate and illustrate the proposed approach. For
each case-study we will construct: a problem
specific specialization of the core concepts, a
business facing language constituting concrete
syntax for the specialized meta model, and a
mapping from this language to the kernel language.

REFERENCES

Tarr, P., Ossher, H., Harrison, W., and Sutton, S.(1999). N
degrees of separation: multi-dimensional separation of
concerns. Proceedings of the 21st Int. Conf. on
Software Engineering, pp. 107-119.

Barros, T., Ameur-Boulifa, R., Cansado, A., Ludovic, H.
and MadelaineBarros, E (2009). Behavioural models
for distributed Fractal components. Annales des
Télécommunications 64(1-2).

Bonabeau, Eric (2002). Agent-based modeling: Methods
and techniques for simulating human systems. Proc. of
National Academy of Science, USA, 99(Suppl 3).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design patterns: elements of reusable object-
oriented software. Addison Wesley.

Clark, A., and Barn, B (2011). Event driven architecture
modelling and simulation. SOSE 2011.

Michelson Brenda (2006). Event-Driven Architecture
Overview. Patricia Seybold Group, February 2, 2006.

Yu, E., Strohmaier, M. and Xiaoxue Deng (2006).
Exploring Intentional Modeling and Analysis for
Enterprise Architecture. Enterprise Distributed Object
Computing Conference Workshops. EDOCW '06.

Clark, A., Frank, U., Kulkarni, V., Barn, B. and Turk, D
(2013). Domain specific languages for the model
driven organization. In Proc. of the 1st Workshop on
the Globalization of Domain Specific Languages.

Zachman, J (1999). A framework for information systems
architecture. IBM Systems Journal, vol. 38(2/3), 1999.

The Open Group, TOGAF 9.1 White Paper On Intro. to
TOGAF Version 9.1 http://www.opengroup.org/togaf/

Wisnosky, D. and Vogel J. (2004). DoDAF Wizdom: A
Practical Guide to Planning, Managing and Executing
Projects to Build Enterprise Architectures Using the
Department of Defense Architecture Framework
(DoDAF).

Dardenne, A., Lamsweerde, A. and Fickas, S (1993).
Goal-directed requirements acquisition. Science of
Computer Programming, Volume 20(1–2).

Object Modeling Group, Business Motivation Model
(BMM), v. 1.1, 2010,
http://www.omg.org/spec/BMM/1.1/

Donella Meadows (2008). Thinking in systems: a primer.
Chelsea Green Publishing.

Reinhartz-Berger, I., Cohen, S., Bettin, J., Clark, T., &
Sturm, A. (2013) Domain Engineering: Product Lines,
Languages and Conceptual Models. Springer.

Hewitt, C. (2010). Actor model of computation: scalable
robust information systems. arXiv:1008.1459.

Hewitt, C. (2009). Norms and Commitment for iOrgs
(TM) Information Systems: Direct Logic (TM) and
Participatory Grounding Checking. arXiv:0906.2756.

van der Hoek, W., & Wooldridge, M. (2008) Multi-agent
systems. Handbook of Knowledge Representation,
887-928.

Stanton, N. A. (2006) Hierarchical task analysis:
Developments, applications, and extensions. Applied
ergonomics, 37(1), 55-79.

A Component Abstraction for Localized, Composable, Machine Manipulable Enterprise Specification

185

