
Going a Step Beyond the Black and White Lists for URL Accesses in the
Enterprise by Means of Categorical Classifiers

A. M. Mora, P. De las Cuevas and J. J. Merelo
Depto. Arquitectura y Tecnologa de Computadores, ETSIIT-CITIC, University of Granada, Granada, Spain

Keywords: Data Mining, Corporate Security Policies, URL request, Machine Learning, Classification.

Abstract: Corporate systems can be secured using an enormous quantity of methods, and the implementation of Black
or White lists is among them. With these lists it is possible to restrict (or to allow) the users the execution
of applications or the access to certain URLs, among others. This paper is focused on the latter option. It
describes the whole processing of a set of data composed by URL sessions performed by the employees of a
company; from the preprocessing stage, including labelling and data balancing processes, to the application of
several classification algorithms. The aim is to define a method for automatically make a decision of allowing
or denying future URL requests, considering a set of corporate security policies. Thus, this work goes a step
beyond the usual black and white lists, since they can only control those URLs that are specifically included
in them, but not by making decisions based in similarity (through classification techniques), or even in other
variables of the session, as it is proposed here. The results show a set of classification methods which get
very good classification percentages (95-97%), and which infer some useful rules based in additional features
(rather that just the URL string) related to the user’s access. This led us to consider that this kind of tool would
be very useful tool for an enterprise.

1 INTRODUCTION

With the diffusion and evolution in the society of the
so-called smartphones, a new scenario defined by the
Bring Your Own Device (BYOD) tendency has been
created, meaning that people do not use their smart
devices for only one purpose (personal life or busi-
ness) anymore. This scenario, in which the devices
that access to the company system are owned by the
users (employees), and that could contain both per-
sonal and professional information, has turned the se-
curity focus on those users, who have become one of
the main threats (even not on purpose) to the corpo-
rate security (Oppliger, 2011).

This has meant the rising of new security issues,
which are normally dealt by means of Corporate Se-
curity Policies (CSPs), which are basically a set of
security rules aimed to protect the company assets, by
defining permissions to be considered for every differ-
ent action to be performed inside the security system.

These CSPs usually include policies that allow or
deny access to non-confident (or non-certified) web
sites (referenced by their URLs in this work). More-
over, several web pages might be also controlled for
productivity or suitability reasons. Thus, some of

the CSPs usually define sets of allowed or denied
pages/sites that could be accessed by the enterprise
users/employees. These sets are usually included in
a White (permitted) or Black (non-permitted) Lists.
These lists act as a good control tool for those URLs
included in them as well as for the complementary,
i.e. the URLs not included in a Whitelist have auto-
matically denial of access, for instance.

In this work we go a step beyond, trying to de-
fine a tool for automatically making an allowance
or denial decision with respect to URLs that are not
included in the aforementioned lists. This decision
would be based in that one made for similar URL ac-
cesses (those with similar features), but considering
other parameters of the request/connection instead of
just the URL string, as those lists do.

Thus, the problem has been transformed into a
classification one, in which we have started from a
set of unlabelled patterns, that model the connection
properties from a huge amount of real1 URL accesses
(known as sessions). Then we have assigned a label
to many of them, considering a set of real2 security

1Taken from a log file given by a volunteer Spanish company.
2The set of rules has been written by the same company, with

respect to its employees.

125Mora A., Cuevas P. and Merelo J..
Going a Step Beyond the Black and White Lists for URL Accesses in the Enterprise by Means of Categorical Classifiers.
DOI: 10.5220/0005170601250134
In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (ECTA-2014), pages 125-134
ISBN: 978-989-758-052-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



rules (CSPs) defined by the Chief Security Officer
(CSO) in the company. The resulting dataset has been
processed by means of different classification meth-
ods, in order to find the best algorithm for dealing
with these data. Previously, data balancing techniques
were applied, namely undersampling and oversam-
pling (Japkowicz and Stephen, 2002), due to the high
imbalance present in the dataset (more than two thirds
of the patterns belonged to the majority class).

Different data partitions have been done in the
experiments, even considering consecutive URL ses-
sions in the training and test files. The results are
quite good, getting classification accuracies around
95-97% in the test phase, even when using the un-
balanced datasets. Then, after analysing the yielded
sets of classification rules and trees, several rules can
be identified, based in other features rather than the
URL itself, which is the aim of this work.

The paper is structured as follows. Next section
describes related work in relation to the application
of Data Mining and Machine Learning techniques to
security issues inside a company. Section 3 presents
the problem we solve and the dataset we have worked
with. The followed methodology is described in Sec-
tion 4, concerning the data preprocessing and a first
round of experiments comparing different classifica-
tion methods. Once the best of them were selected, a
set of experiments have been conducted, and the re-
sults are described and discussed in Section 5. Fi-
nally, the conclusions and future lines of research are
presented in Section 6.

2 STATE OF THE ART

Our work tries to obtain a URL classification tool for
enhancing the security in the client side, as at the end
we want to get if a certain URL is secure or not, hav-
ing as reference a set of rules (derived from a CSP)
that allow or deny a set of known http requests. For
this, Data Mining (DM) and Machine Learning (ML)
techniques have been applied. This section gives an
overview in a number of solutions given to protect the
user, or the company, against unsecure situations.

Due to the nature of the data (URL accesses per-
formed by humans), the used set of data is highly un-
balanced (Chawla, 2005). In order to deal with this
problem there exist several methods in the literature,
but all of them are mainly grouped in three techniques
(Japkowicz and Stephen, 2002):

� Undersampling the Over-sized Classes: i.e. re-
duce the considered number of patterns for the
classes with the majority.

� Oversampling the Small Classes: i.e. introduce
additional (normally synthetic) patterns in the
classes with the minority.

� Modifying the Cost Associated to Misclassifying
the Positive and the Negative Class: to compen-
sate for the imbalance ratio of the two classes. For
example, if the imbalance ratio is 1:10 in favour of
the negative class, the penalty of misclassifying a
positive example should be 10 times greater.

The first option has been applied in some works,
following a random undersampling approach (Guo
et al., 2008), but it has the problem of the loss of valu-
able information.

The second has been so far the most widely
used, following different approaches, such as
SMOTE (Synthetic Minority Oversampling Tech-
nique) (Chawla et al., 2002), a method proposed by
Chawla et al. for creating ‘artificial’ samples for the
minority class, in order to balance the amount of them
with respect. However this technique is based in nu-
merical computations, which consider different dis-
tance measures, in order to generate useful patterns
(i.e. realistic or similar to the existing ones).

The third option implies using a method in which
a cost can be associated to the classifier accuracy at
every step. This was done for instance by Alfaro-Cid
et al. in (Alfaro-Cid et al., 2007), where they used
a Genetic Programming (GP) approach in which the
fitness function was modified in order to consider a
penalty when the classifier makes a false negative (an
element from the minority class was classified as be-
longing to the majority class). However almost all the
approaches deal with numerical (real, integer) data.

One interesting point about URL classification is
that the study of the distance between URLs may be
based in the distance between two strings, but Blanco
et al. (Blanco et al., 2011) argues that the lexical dis-
tance between two URLs is not enough to classify
them. In addition, the heuristic study of URLs for
security purposes in the user side is not a novel prac-
tice. Also, the use of Blacklists (in this work, the de-
nied URLs) and Whitelists (allowed URLs) are very
extended practices. For instance, phishing is a prob-
lem of security that Sheng et al. and Khonki et al.
(Khonji et al., 2011) tried to solve. The first work
uses Blacklists as reference to avoid phishing attacks
made by e-mail; the second one aims for an heuristic
analysis of the URLs domain names and its ranks, in
a way that a phished URL can be detected.

Also, doing some web searching we have found
that a lot of companies stands for the use of one be-
tween Blacklist and Whitelist3. While whitelisting is

3http://kevtownsend.wordpress.com/2011/08/24/whitelisting-

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

126



the more restrictive solution and therefore the more
secure, we think that the best solution is to use both,
and for this reason the set of rules that we used covers
a succession of either allowed and denied web sites.

What refers to the used techniques, DM, as well as
ML, has been used since long ago in many scientific
fields, and given that research in computer security
was growing since the eighties (Anderson, 1980), it
was in the nineties when these techniques began to be
applied to security issues (Clifton and Marks, 1996).

On the one hand, DM helped to develop new solu-
tions to computer forensics (de Vel et al., 2001), being
the researchers able to extract information from large
files with events gathered from infected computers.
Another important advance took place after the 9/11
events, when clustering techniques and social net-
work analysis started to be performed in order to de-
tect pontential crime networks (Chen et al., 2003). On
the other hand, and more focused on the user side like
our approach, there exist some user-centric solutions
to problems like user authentication in a personal de-
vice, who Greenstadt and Beal (Greenstadt and Beal,
2008) proposed to address using collected user bio-
metrics along with machine learning techniques.

Then, when a Information Security Policy (ISP) is
going to be applied, P.G. Kelley et al. (Kelley et al.,
2008) found important to include the user in the ma-
chine learning process for refining the policy model.
They called it user-controllable policy learning. An-
other approach to the refinement of user’s privacy
policies has been described by Danezis in (Danezis,
2009), for he uses ML techniques over the user’s set-
tings in a social network, being capable of restricting
permissions to other people depending on their inter-
action with the user.

In the same line, Lim et al. propose a system (Lim
et al., 2008b; Lim et al., 2008a) that evolves a set
of computer security policies by means of GP, tak-
ing again into account the user’s feedback. Further-
more, Suarez-Tangil et al. (Suarez-Tangil et al., 2009)
take the same approach as Lim et al., but also bringing
event correlation in. These two latter author’s works
are interesting for ours, though they are not focused
on company ISPs - for instance, our case with the al-
lowed or denied http requests -.

Finally, a system named MUSES (from Multiplat-
form Usable Endpoint Security System) (Mora et al.,
2014) is being developed under the European Sev-
enth Framework Programme (FP7). This system will
include event treatment on the user actions inside a
company, DM techniques for applying the set of poli-
cies from the company ISP to the actions, allowing or
denying them, and ML techniques for improving the

vs-blacklisting/

set of rules derived from these policies, according to
user’s feedback and behaviour after the system deci-
sions (Seigneur et al., 2013).

3 PROBLEM AND DATA
DESCRIPTION

The problem to solve is related with the application
of corporate security policies in order to deal with
potential URL accesses inside an enterprise. To this
end a dataset of URL sessions (requests and accesses)
is analysed. These data are labelled with the corre-
sponding permission or not for that access following
the aforementioned rules. The problem is then trans-
formed into a classification one, in which every new
URL request will be classified, and thus, a grant or
deny action will be assigned to that pattern.

The analysed data come from an access.log of
the Squid proxy application (Team, 2013a), in a real
Spanish company. This open source tool works as
a proxy, but with the advantage of storing a cache
of recent transactions so future requests may be an-
swered without asking the origin server again (Wes-
sels, 2004). Every pattern, namely a URL session
has ten variables associated, which we describe in Ta-
ble 1, indicating if the variable is numeric or nomi-
nal/categorical.

The dependent variable or class is a label which
inherently assigns an decision (and so the following
action) to every request. This can be: ALLOW if the
access is permitted according to the CSPs, or can be
DENY, if the connection is not permitted. These pat-
terns are labelled using an ‘engine’ based in a set of
security rules, that specify the decision to make. This
process is described in Subsection 4.1.

These data were gathered along a period of two
hours, from 8.30 to 10.30 am (30 minutes after the
work started), monitoring the activity of all the em-
ployees in a medium-size Spanish company (80-100
people), obtaining 100000 patterns. We consider this
dataset as quite complete because it contains a very
diverse amount of connection patterns, going from
personal (traditionally addressed at the first hour of
work) to professional issues (the rest of the day).
Moreover, the results derived from the experiments
(described in Section 5) show that this quantity of
data might be big enough, but a more accurate out-
come would be given with, for instance, a 24 hours
long log.

Going�a�Step�Beyond�the�Black�and�White�Lists�for�URL�Accesses�in�the�Enterprise�by�Means�of�Categorical�Classifiers

127



Table 1: Independent Variables corresponding to a URL session (a connection to a URL for some time). The URLs are parsed
as detailed in Subsection 4.2.

Variable name Description Type Rank/Number of Values (if categorical)

http reply code Status of the server response Categorical 20 values
http method Desired action to be performed Categorical 6 values
duration milliseconds Session duration Numerical integer in [0,357170]
content type Media type of the entity-body sent to the recipient Categorical 11 values (main content), 85 values (whole content)
server or cache address IP address Categorical 2343 values
time connection hour (in the day) Date 00:00:00 to 23:59:59
squid hierarchy It indicates how the next-hop cache was selected Categorical 3 values
bytes Number of transferred bytes during the session Numerical integer in [0,85135242]
client address IP address Categorical 105 values
URL Core domain of the URL, not taking into account the TLD Categorical 976 values

4 METHODOLOGY

Before classification techniques are applied, a data
preprocessing step has been performed. First, the raw
dataset is labelled according a set of initial corporate
security rules, i.e. every pattern is assigned to a label
indication if the corresponding URL request/access
would be ALLOWED or DENIED considering these
rules. This step is necessary in order to transform the
problem into a classification one. However, in order
to apply the rules they must be transformed from their
initial format into another one that can be applied in
our programs (a hash in Perl4). This is described in
Subsection 4.1.

Subsection 4.2 details how the patterns of the nav-
igation data log (URL sessions) are also converted to
a Perl hash to perform the matting/labelling process.

At the end of these two steps, the two hashes are
compared in order to obtain which entries of the log
should be ALLOW or DENY, know as the labelling
step. This is similar to perform a decision process
in a security system. This step results in that there
are 38972 pattern belonging to class ALLOW (posi-
tive class) and 18530 of class DENY (negative class),
so just a 67.78% of the samples belong to the major-
ity class. This represents a very important problem,
since a classifier that is trained considering these pro-
portions is supposed to classify all the samples as AL-
LOW, getting a theoretically quite good classification
accuracy equal or greater than 68%. However, in sec-
tion 5 we will see that, despite the fact that some de-
nied patterns are classified as allow, the overall perfor-
mance of the classifiers are better than the expected.

Given that the dataset contains a majority of cate-
gorical/nominal data, we have performed different ap-
proaches for data balancing:
� Undersampling: we will remove random samples

4A hash in Perl is an object that represents a hash table, which
is a set of pairs key-value. Sometimes, the value can be another
hash itself.

of the majority class until the amount in both
classes are similar.

� Oversampling: we will duplicate random samples
of the minority class, in order to get a close num-
ber of patterns in both classes. This has to be done
due to the impossibility of creating synthetic data
when dealing with categorical values (there is not
a proper distance measure between two values in a
category). Actually, since the number of samples
in the majority class is almost twice the minority
one, we have just duplicated all of those belonging
to the minority class.

Finally, in Subsection 4.3 we explain the selec-
tion of the methods to apply in order to classify the
data. We just have considered the patterns correctly
labelled in the preprocessing phase. Thus, a super-
vised classification process (MacQueen et al., 1967)
has been conducted on the balanced datasets. Weka
Data Mining Software5 has been used, in order to se-
lect the best set of methods in order to deal with these
data. These classifiers will be further tested in Section
5.

4.1 Security Rules Parsing

In this work we have considered Drools (Team,
2013c) as the tool to create, and therefore, manage
rules in a business environment. This so called Busi-
ness Rule Management System (BRMS) has been de-
veloped by the JBoss community under an Apache
License and it is written in Java. Though this plat-
form consist of many components, here we focus on
Drools Expert and the Drools Rule Language (DRL,
(Team, 2013b)). Then, the defined rules for a cer-
tain company are inside of a file with a .drl exten-
sion, the file that needs to be parsed to obtain the fi-
nal set of rules. In Figure 1, (a), there is the typical

5http://www.cs.waikato.ac.nz/ml/weka/

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

128



rule syntax in DRL. Two main things should be ob-
tained from the parsing method: both left and right
sides of the rule, taking into account that the left
side is where the company specifies the conditions re-
quired to apply the action indicated in the right side.
Also, for describing the conditions, Squid syntax is
used (see Section 3), having thus the following struc-
ture: squid:Squid(conditions). Finally, from
the right side of the rule, the ALLOW or DENY label
to apply on the data that matches with the conditions,
will be extracted. The Perl parser that we have imple-
mented applies two regular expressions, one for each
side of the rule, and returns a hash with all the rules
with the conditions and actions defined. The ‘before
and after’ performing the parsing over the .drl file is
in Figure 1.

rule "name"
attributes
when

/* Left
Side of the
Rule */

then
/* Right
Side of the
Rule */

end
(a) Drools Rule

%rules = (
rule =>f

field => xxx
relation =>
xxx
value => xxx
action =>
[allow,
deny]

g,
);

(b) Hash Rule

Figure 1: (a) Structure of a rule in Drools Expert. (b) Re-
sulting rule, after the parsing, in a global hash of rules.

4.2 URL Log Data Parsing

Usually, the instances of a log file have a number of
fields, in order to have a registration of the client who
asks for a resource, the time of the day when the re-
quest is made, and so on. In this case, we have worked
with an access.log (see Section 3) file, converted into
a CSV format file so it could be parsed and trans-
formed in another hash of data. All ten fields of the
Squid log yield a hash like the one depicted in Fig. 2.

Once the two hashes of data were created, they
were compared in such a way that for each rule in the
hash of rules, it was determined how many entries in
the data log hash are covered by the rule, and so they
were applied the label that appears as ‘action’ in the
rule.

One of the problems was to extract from a whole
URL the part that was more interesting for our pur-
poses. It is important to point out that in a log with
thousands of entries, an enormous variety of URLs
can be found, since some can belong to advertise-
ments, images, videos, or even some others does not

have a domain name but are given directly by an
IP address. For this reason, we have taken into ac-
count that for a domain name, many subdomains (sep-
arated by dots) could be considered, and their hier-
archy grows from the right towards the left. The
highest level of the domain name space is the Top-
Level Domain (TLD) at the right-most part of the
domain name, divided itself in country code TLDs
and generic TLDs. Then, a domain and a number
of subdomains follow the TLD (again, from right to
left). In this way, the URLs in the used log are
such as http://subdomain...subdomain.domain.TLD/
other subdirectories. However, for the ARFF6 file to
be created, only the domain (without the subdomains
and the TLD) should be considered, because there are
too many different URLs to take into consideration.
Hence, applying another regular expression, the data
parser implemented in Perl obtains all the core do-
mains of the URLs, which makes 976 domains in to-
tal.

%logdata = (
entry =>f

http reply code => xxx
http method => xxx
duration miliseconds => xxx
content type => xxx
server or cache address => xxx
time => xxx
squid hierarchy => xxx
bytes => xxx
url => xxx
client address => xxx

g,
);

Figure 2: Perl hash with an example entry. The actual hash
used for this work has a total of 100000 entries, with more
than a half labelled as ALLOW or DENY after the compar-
ing process.

4.3 Classification Methods

As said in Section 3, the data used for this work is not
only numerical or nominal, thus, only classification
algorithms that support both types of data have been
considered. Weka has a great number of possible al-
gorithms to work with, so we have conducted a pre-
selection phase trying to choose those which would
yield better results in the experiments. More specif-
ically, we have focused on rule-based and decision-
tree-based algorithms.

In this way, a decision-tree algorithm is a group

6Format of Weka files

Going�a�Step�Beyond�the�Black�and�White�Lists�for�URL�Accesses�in�the�Enterprise�by�Means�of�Categorical�Classifiers

129



of conditions organised in a top-down recursive man-
ner in a way that a class is assigned following a path
of conditions, from the root of the tree to one of its
leaves. Generally speaking, the possible classes to
choose are mutually exclusive. Furthermore, these al-
gorithms are also called “divide-and-conquer” algo-
rithms. On the other hand, there are the “separate-
and-conquer” algorithms, which work creating rules
one at a time, then the instances covered by the cre-
ated rule are removed and the next rule is generated
from the remaining instances.

A reference to each Weka classifier can be found
at (Frank and Witten, 2011). Below are described
the top five techniques, obtained from the best results
(See Table 2) of the experiments done in this stage,
along with more specific bibliography. Nave Bayes
method (Domingos and Pazzani, 1997) has been in-
cluded as a baseline, normally used in text catego-
rization problems. According to the results, the five
selected classifiers are much better than this method.

Table 2: Results of all the tested classification methods on
balanced data. The best ones are marked in boldface.

Undersampling Oversampling
Nave Bayes 91.12 91.77
Conjunctive Rule 60.14 60.02
Decision Table 94.08 90.29
DTNB 94.75 95.65
JRip 90.08 92.47
NNge 96.49 98.76
One R 93.45 93.70
PART 96.45 97.54
Ridor 87.22 89.87
Zero R 51.39 51.26
AD Tree 77.73 77.68
Decision Stump 60.14 60.02
J48 97.02 98.00
LAD Tree 79.95 79.97
Random Forest 96.87 98.84
Random Tree 95.14 98.35
REP Tree 96.79 97.67

J48. This classifier generates a pruned or unpruned
C4.5 decision tree. Described for the first time in
1993 by (Quinlan, 1993), this machine learning
method builds a decision tree selecting, for each
node, the best attribute for splitting and create the
next nodes. An attribute is selected as ‘the best’
by evaluating the difference in entropy (informa-
tion gain) resulting from choosing that attribute
for splitting the data. In this way, the tree contin-
ues to grow till there are not attributes anymore for
further splitting, meaning that the resulting nodes
are instances of single classes.

Random Forest. This manner of building a decision
tree can be seen as a randomization of the pre-

vious C4.5 process. It was stated by (Breiman,
2001) and consist of, instead of choosing ‘the
best’ attribute, the algorithm randomly chooses
one between a group of attributes from the top
ones. The size of this group is customizable in
Weka.

REP Tree. Is another kind of decision tree, it means
Reduced Error Pruning Tree. Originally stated
by (Quinlan, 1987), this method builds a decision
tree using information gain, like C4.5, and then
prunes it using reduced-error pruning. That means
that the training dataset is divided in two parts:
one devoted to make the tree grow and another
for pruning. For every subtree (not a class/leaf)
in the tree, it is replaced by the best possible leaf
in the pruning three and then it is tested with the
test dataset if the made prune has improved the re-
sults. A deep analysis about this technique and its
variants can be found in (Elomaa and Kaariainen,
2001).

NNge. Nearest-Neighbor machine learning method
of generating rules using non-nested generalised
exemplars, i.e., the so called ‘hyperrectangles’ for
being multidimensional rectangular regions of at-
tribute space (Martin, 1995). The NNge algorithm
builds a ruleset from the creation of this hyper-
rectangles. They are non-nested (overlapping is
not permitted), which means that the algorithm
checks, when a proposed new hyperrectangle cre-
ated from a new generalisation, if it has conflicts
with any region of the attribute space. This is done
in order to avoid that an example is covered by
more than one rule (two or more).

PART. It comes from ‘partial’ decision trees, for it
builds its rule set from them (Frank and Wit-
ten, 1998). The way of generating a partial de-
cision tree is a combination of the two afore-
mentioned strategies “divide-and-conquer” and
“separate-and-conquer”, gaining then flexibility
and speed. When a tree begins to grow, the node
with lowest information gain is the chosen one for
starting to expand. When a subtree is complete (it
has reached its leaves), its substitution by a sin-
gle leaf is considered. At the end the algorithm
obtains a partial decision tree instead of a fully
explored one, because the leafs with largest cover-
age become rules and some subtrees are thus dis-
carded.

These methods will be deeply tested on the dataset
(balanced and unbalanced) in the following section.

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

130



5 EXPERIMENTS AND RESULTS

Several experiments have been conducted, once a sub-
set of classification methods has been chosen in pre-
vious section. To this end, some training and test
datasets have been created from the set of labelled
patterns. It contains 57502 samples, with 38972 be-
longing to class ALLOW and 18530 to class DENY.

In order to better test the methods, two different
divisions (training-test) have been done, namely 90%-
10% and 80%-20%. Moreover, two additional splits
have been considered in every case, using both a ran-
dom and a sequential approach for selecting samples
from the original file. Thus, in the latter, consecutive
patterns have been included in the training file up to
the desired percentage. The rest have composed the
test file. In the first approach, a random selection is
performed.

The aim of the sequential division is to compare
if the online activity of the employees considering
URL sessions could be somehow ‘predicted’, just us-
ing data from previous minutes or hours.

With respect to the data, the initial file was unbal-
anced, as it can be seen in the number of patterns per
class. Hence, as stated in Section 3, two data balanc-
ing methods have been applied to all the files, to get
similar numbers in both classes: undersampling (ran-
dom removal of ALLOW patterns) and oversampling
(duplication of DENY patterns).

Results for unbalanced data are presented in Ta-
ble 3. Three different tests have been done for the
random pattern distribution approach, so the mean
and standard deviation are shown in the correspond-
ing columns.

As it can be seen, all the five methods achieved a
high performance classifying in the right way the test
dataset. Also, these results are not like this by chance,
as shown by a low standard deviation. Although it
was expected that the results from the 90%-10% divi-
sion were slightly better, in the future a more aggres-
sive division will be executed so the methods can be
really proved with much less training data.

What matters to the results of the experiments
made with the sequential data, they are worse than
the obtained from the random data, but still they are
good (> 85%). This is due to the occurrence of new
patterns from a certain time (maybe there are some re-
quests that are made just at one specific time in a day,
or in settled days), and then there is no sufficient sim-
ilarity between the training data and the classifying of
the test data set may fail. The loss of 5 to 6 points in
the results of the 90%-10% division is the first unex-
pected or unlogical result of the experiments, but they
also reinforce the previous theory.

The technique that lightly stands out over the oth-
ers is Random Forest, being the best in almost every
case, even in the experiments with the most complex
sequential divisions. However, if we focus on the
standard deviation, REP Tree is the chosen one, as its
results present robustness.

For its part, results obtained from unbalanced data
are shown in Table 4. Again the corresponding to the
random partitions come from the mean of three blocks
of experiments, and so are specified the standard de-
viations. The Table illustrates two segments of re-
sults, obtained from the undersampled data and from
the oversampled data. For each one, the 90%-10%
and 80%-20% divisions were also made.

Applying Undersampling. In comparison with
those results from Table 3, these go down one
point (in the case of randomly made divisions) to
six points (sequential divisions). The reason why
this happens is that when randomly removing
ALLOW patterns, we are really losing informa-
tion, i. e. key patterns that could be decisive in a
good classification of a certain set of test patterns.

Applying Oversampling. Here we have duplicated
the DENY patterns so their number could be up
to that of the ALLOW patterns. However, it does
not work as well as in other approaches which
uses numerical computations for creating the new
patterns to include in the minority class. Conse-
quently, the results have been decreased.

In both cases it is noticeable that taking the data
in a sequential way, instead of randomly, lower the
results. It is clear that due to the fact that perform-
ing undersampling some patterns are lost while in the
case of oversampling they all remain, undersampling
results are better. Then, in this case the algorithm
with best performance is J48, though Random For-
est follows its results very closely in random datasets
processing, and REP Tree, which is better than the
rest when working with sequential data. Neverthe-
less, generally speaking and given the aforementioned
reasons, performing data balancing methods yields
worse results.

Furthermore, we have found that for the data
sets taken consecutively, the methods always classify
worse the DENY labels, as they label them as AL-
LOW patterns. This is worth further study because it
is the worst situation. It would be preferable to have
a false positive in a DENY pattern, rather than a false
negative and permit a request that is forbidden in the
ISP.

Regarding the obtained rules/trees, we want to re-
mark that the majority are based on the URL in or-
der to discriminate between the two classes, how-

Going�a�Step�Beyond�the�Black�and�White�Lists�for�URL�Accesses�in�the�Enterprise�by�Means�of�Categorical�Classifiers

131



Table 3: Percentage of correctly classified patterns for non-balanced data.

80% Training - 20% Test 90% Training - 10% Test
Random (mean) Sequential Random (mean) Sequential

J48 97.56 � 0.20 88.48 97.70 � 0.15 82.28
Random Forest 97.68 � 0.20 89.77 97.63 � 0.13 82.59
REP Tree 97.47 � 0.11 88.34 97.57 � 0.01 83.20
NNge 97.23 � 0.10 84.41 97.38 � 0.36 80.34
PART 97.06 � 0.19 89.11 97.40 � 0.16 84.17

Table 4: Percentage of correctly classified patterns for balanced data (under- and oversampling).
80% Training - 20% Test 90% Training - 10% Test

Undersampling Oversampling Undersampling Oversampling
Rand (mean) Sequential Rand (mean) Sequential Rand (mean) Sequential Rand (mean) Sequential

J48 97.05 � 0.25 84.29 97.40 � 0.03 85.66 96.85 � 0.35 76.44 97.37 � 0.06 74.24
Random Forest 96.61 � 0.17 88.59 97.16 � 0.19 89.03 96.99 � 0.13 79.98 97.25 � 0.33 81.33
REP Tree 96.52 � 0.13 85.54 97.13 � 0.25 85.41 96.55 � 0.10 77.65 97.14 � 0.09 76.81
NNge 96.56 � 0.42 85.28 96.90 � 0.28 83.46 96.33 � 0.05 81.93 96.91 � 0.06 78.73
PART 96.19 � 0.14 85.16 96.82 � 0.09 84.50 96.09 � 0.10 79.70 96.68 � 0.11 78.16

ever we also found several ones which consider vari-
ables/features different of this to make the decision.
For instance:
IF server_or_cache_address = "90.84.53.17"
THEN DENY

IF server_or_cache_address = "173.194.78.103"
THEN ALLOW

IF content_type =
"application/vnd.google.safebrowsing-update"
THEN DENY

IF server_or_cache_address = "173.194.78.94"
AND content_type_MCT = "text"
AND content_type = "text/html"
AND http_reply_code = "200"
AND bytes > 772
THEN ALLOW

IF server_or_cache_address = "173.194.34.225"
AND http_method = "GET"
AND duration_milliseconds > 52
THEN ALLOW

IF server_or_cache_address = "90.84.53.49"
AND time <= 33758000
THEN ALLOW

These are the interesting rules for our purposes,
since they are somehow independent of the URL to
which the client requests to access. Thus, it would
be potentially possible to allow or deny the access to
unknown URLs just taking into account some param-
eters of the session.

Of course, some of these features depend on the
session itself, i.e. they will be computed after the
session is over, but the idea in that case would be
’to refine’ somehow the existing set of URLs in the
White List. Thus, when a client requests access to a
Whitelisted URL, this will be allow, but after the ses-
sion is over, and depending on the obtained values,

and on one of these classifiers, the URL could be la-
belled as DENIED for further requests. This could
be a useful decision-aid tool for the CSO in a com-
pany, for instance. In the case that the features con-
sidered in the rule can be known in advance, such as
http method, or server or cache address, for in-
stance, the decision could be made in real-time, and
thus, a granted URL (Whitelisted) could be DENIED
or the other way round.

The tree-based methods also yield several useful
branches in this sense, but they have not been plotted
here because of the difficulty for showing/visualizing
them properly.

6 CONCLUSIONS AND FUTURE
WORK

In this paper a set of classification methods have been
applied in order to perform a decision process inside
a company, according to some predefined corporate
security policies. This decision is focused on allow-
ing or denying URL access requests, but just consid-
ering previous decisions on similar requests, not hav-
ing specific rules in a White/Black List, defined for
those URLs. Thus, the proposed method could al-
low or deny an access to a URL based in additional
terms rather than just the specific URL string. This
could be very useful since new URLs could be auto-
matically ’Whitelisted’ or ’Blacklisted’, just depend-
ing on some of the connection parameters, such as the
content type of the access or the IP of the client
which makes the request.

To this aim, we have started from a big dataset
(100000 patterns) about employees’ URL sessions
information, and considering a set of URL access
permissions, we have composed a labelled dataset

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

132



(57000 patterns). Over that set of data, we have tested
several classification methods, after some data bal-
ancing techniques have been applied. Then, the best
five have been deeply proved over several training and
test divisions, and with two methods: using sequential
patterns (consecutive URL accesses), and taking them
in a randomly way.

The results show that classification accuracies are
between 95% and 97%, even when using the un-
balanced datasets. However, they have been dimin-
ished because of the possible loss of data that comes
from performing an undersampling (removing pat-
terns) method; or taking the training and the data sets
in a sequential way from the main log file, due to the
fact that certain URL requests can be made only at a
certain time.

In this way, we can conclude that the approach has
been successful and it would be a useful tool in an
enterprise.

Future lines of work include conducting a deeper
set of experiments trying to test the generalisation
power of the method, maybe considering bigger data
divisions, bigger data sets (from a whole day or work-
ing day), or adding some kind of ‘noise’ to the dataset.
So that, considering the good classification results ob-
tained in this work, the next step could be the ap-
plication of these methods in the real system from
which data was gathered, counting with the opinion
of expert CSOs, in order to know the real value of
the proposal. The study of other classification meth-
ods could be another research branch, along with the
implementation of a Genetic Programming approach,
which could deal with the imbalance problem using a
modification of the cost associated to misclassifying,
could be done (as the authors did in (Alfaro-Cid et al.,
2007)).

Finally, we also point to extract additional infor-
mation from the URL string, than could be trans-
formed into additional features that could be more
discriminative than the current set. Moreover, a data
process involving summarizing data about sessions
(such as number of requests per client, or average time
connection) will be also considered.

ACKNOWLEDGEMENTS

This paper has been funded in part by European
project MUSES (FP7-318508), along with Span-
ish National project TIN2011-28627-C04-02 (ANY-
SELF), project P08-TIC-03903 (EVORQ) awarded
by the Andalusian Regional Government, and
projects 83 (CANUBE), and GENIL PYR-2014-17,
both awarded by the CEI-BioTIC UGR.

REFERENCES

Alfaro-Cid, E., Sharman, K., and Esparcia-Alczar, A.
(2007). A genetic programming approach for
bankruptcy prediction using a highly unbalanced
database. In Giacobini, M., editor, Applications of
Evolutionary Computing, volume 4448 of Lecture
Notes in Computer Science, pages 169–178. Springer
Berlin Heidelberg.

Anderson, A. J. P. (1980). Computer security threat mon-
itoring and surveillance. Technical report, James P.
Anderson Co., Fort Washington, PA.

Blanco, L., Dalvi, N., and Machanavajjhala, A. (2011).
Highly efficient algorithms for structural clustering of
large websites. In WWW ’11 Proceedings of the 20th
international conference on World wide web., pages
437–446. ACM.

Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.

Chawla, N. (2005). Data mining for imbalanced datasets:
An overview. In Maimon, O. and Rokach, L., edi-
tors, Data Mining and Knowledge Discovery Hand-
book, pages 853–867. Springer US.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: Synthetic minority over-
sampling technique. J. Artif. Int. Res., 16(1):321–357.

Chen, H., Chung, W., Qin, Y., Chau, M., Xu, J. J., Wang, G.,
Zheng, R., and Atabakhsh, H. (2003). Crime data min-
ing: An overview and case studies. In Proceedings of
the 3rd National Conference for Digital Government
Research (dg.o 2003), volume 130, pages 1–5. Digital
Government Society of North America.

Clifton, C. and Marks, D. (1996). Security and privacy im-
plications of data mining. In ACM SIGMOD Work-
shop on Research Issues on Data Mining and Knowl-
edge Discovery, pages 15–19.

Danezis, G. (2009). Inferring privacy policies for so-
cial networking services. In Proceedings of the 2Nd
ACM Workshop on Security and Artificial Intelligence,
AISec ’09, pages 5–10, New York, NY, USA. ACM.

de Vel, O., Anderson, A., Corney, M., and Mohay, G.
(2001). Mining e-mail content for author identifica-
tion forensics. SIGMOD Record, 30(4):55–64.

Domingos, P. and Pazzani, M. (1997). On the optimality
of the simple bayesian classifier under zero-one loss.
Machine Learning, 29:103–137.

Elomaa, T. and Kaariainen, M. (2001). An analysis of re-
duced error pruning. Artificial Intelligence Research,
15(-):163–187.

Frank, E. and Witten, I. H. (1998). Generating accurate
rule sets without global optimization. In Shavlik, J.,
editor, Fifteenth International Conference on Machine
Learning, pages 144–151. Morgan Kaufmann.

Frank, E. and Witten, I. H. (2011). Data Mining: Practi-
cal Machine Learning Tools and Techniques. Morgan
Kaufmann Publishers, third edition.

Greenstadt, R. and Beal, J. (2008). Cognitive security for
personal devices. In Proceedings of the 1st ACM
Workshop on Workshop on AISec, AISec ’08, pages
27–30, New York, NY, USA. ACM.

Going�a�Step�Beyond�the�Black�and�White�Lists�for�URL�Accesses�in�the�Enterprise�by�Means�of�Categorical�Classifiers

133



Guo, X., Yin, Y., Dong, C., Yang, G., and Zhou, G. (2008).
On the class imbalance problem. In Natural Compu-
tation, 2008. ICNC ’08. Fourth International Confer-
ence on, volume 4, pages 192–201.

Japkowicz, N. and Stephen, S. (2002). The class imbal-
ance problem: A systematic study. Intell. Data Anal.,
6(5):429–449.

Kelley, P. G., Hankes Drielsma, P., Sadeh, N., and Cranor,
L. F. (2008). User-controllable learning of security
and privacy policies. In Proceedings of the 1st ACM
Workshop on Workshop on AISec, AISec ’08, pages
11–18, New York, NY, USA. ACM.

Khonji, M., Jones, A., and Iraqi, Y. (2011). A novel phish-
ing classification based on url features. In GCC Con-
ference and Exhibition (GCC), pages 221–224. IEE.

Lim, Y. T., Cheng, P. C., Clark, J., and Rohatgi, P. (2008a).
Policy evolution with genetic programming: A com-
parison of three approaches. In Evolutionary Com-
putation, 2008. CEC 2008. (IEEE World Congress
on Computational Intelligence). IEEE Congress on,
pages 1792–1800.

Lim, Y. T., Cheng, P. C., Rohatgi, P., and Clark, J. A.
(2008b). Mls security policy evolution with genetic
programming. In Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computa-
tion, GECCO ’08, pages 1571–1578, New York, NY,
USA. ACM.

MacQueen, J. et al. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, number 14, pages 281–297.
California, USA.

Martin, B. (1995). Instance-based learning: Nearest neigh-
bor with generalization. Master’s thesis, University of
Waikato, Hamilton, New Zealand.

Mora, A., De las Cuevas, P., Merelo, J., Zamarripa, S.,
Juan, M., Esparcia-Alczar, A., Burvall, M., Arfwed-
son, H., and Hodaie, Z. (2014). MUSES: A corpo-
rate user-centric system which applies computational
intelligence methods. In et al., D. S., editor, 29th Sym-
posium On Applied Computing, pages 1719–1723.

Oppliger, R. (2011). Security and privacy in an online
world. IEEE Computer, 44(9):21–22.

Quinlan, J. R. (1987). Simplifying decision trees. Man-
Machine Studies, 27(3):221–234.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers, San Mateo, CA.

Seigneur, J.-M., Kölndorfer, P., Busch, M., and Hochleitner,
C. (2013). A Survey of Trust and Risk Metrics for a
BYOD Mobile Working World. In Third International
Conference on Social Eco-Informatics.

Suarez-Tangil, G., Palomar, E., Fuentes, J., Blasco, J., and
Ribagorda, A. (2009). Automatic rule generation
based on genetic programming for event correlation.
In Herrero, l., Gastaldo, P., Zunino, R., and Corchado,
E., editors, Computational Intelligence in Security for
Information Systems, volume 63 of Advances in Intel-
ligent and Soft Computing, pages 127–134. Springer
Berlin Heidelberg.

Team, S. (2013a). Squid website.

Team, T. J. D. (2013b). Drools documentation. version
6.0.1.final.

Team, T. J. D. (2013c). Drools website.
Wessels, D. (2004). Squid: The Definitive Guide. O’Reilly

Media, Inc., 1 edition.

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

134


