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1 OBJECTIVES 

Inverse problems are common in neuroscience and 
neurotechnology, where usually a small amount of 
data is available with respect to the large number of 
parameters needed for modelling the brain activity. 
Classical examples are the EEG/MEG source 
localization and the estimation of effective brain 
connectivity. Many kinds of constraints or prior 
information have been proposed to regularize these 
inverse problems. Combination of smoothness (L2 
norm-based penalties) and sparseness (L1 norm-
based penalties) seem to be a promising approach 
due to its flexibility, but the estimation of optimal 
weights for balancing these constraints became a 
critical issue (Vega-Hernández et al., 2008). Two 
important examples of constraints that combine 
L1/L2 norms are the Elastic Net (Vega-Hernández et 
al., 2008) and the Mixed-Norm L12 (MxN, Gramfort 
et al., 2012). The latter imposes the properties along 
different dimensions of a matrix inverse problem. In 
this work, we formulate an empirical Bayesian 
model based on an MxN prior distribution. The 
objective is to pursue sparse learning along the first 
dimension (along rows) preserving smoothness in 
the second dimension (along columns), by 
estimating both parameter and hyperparameters 
(regularization weights). 

2 METHODS 

The matrix linear Inverse Problem consists in 
inferring an SxT parameter matrix ࡶ in the model 
ࢂ ൌ ࡶࡷ   is ࡷ ,are NxT (noise) ࢿ ,(data) ࢂ where ,ࢿ
NxS, with N<<S, making it an ill-posed problem due 
to its non-uniqueness. One approach to address this 
problem is the Tikhonov regularization which uses a 
penalty function ܲሺࡶሻ to find the inverse solution 
through a penalized least-squares (PLS) regression 
ࡶ	 ൌ ࢂ‖൛݊݅݉݃ݎܽ െ ‖ࡶࡷ

   is the ߙ ሻൟ, whereࡶሺܲߙ
regularization parameter. Another approach is the 
Bayesian theory, where the solution maximizes the 
posterior probability density function (pdf), given by 

the Bayes equation: ሺࡶ, ,ߚ ሻࢂ|ߙ ∝ ,ࡶ|ࢂሺ  ,ሻߙ|ࡶሺሻߚ
which is largely equivalent to the PLS model if we 
set the likelihood of the data to ሺࡶ|ࢂ, ሻߚ ൌ
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మൗ , and the prior 

distribution of the parameters as an exponential 
function ሺߙ|ࡶሻ ൌ ݁ିఈሺࡶሻ ܼ⁄ , where Z is a 
normalizing constant. 
The first approach has led to development of fast 
and efficient algorithms for a wide range of solvers 
ܲሺࡶሻ, but ߙ is determined heuristically using 
information criteria which often do not provide 
optimal values. On the other hand, Bayesian 
approach allows inference on the hyperparameters ߙ 
and ߚ but frequently involving numerical Monte 
Carlo calculations that makes it very slow and 
computationally intensive. However, recent 
developments of approximate models such as 
Variational and Empirical Bayes, allow for fast 
computation of complex models. 
In this work, we propose to use the squared Mixed-
Norm penalty for the parameters, which is defined as 
the L2 norm of the vector obtained from the L1 
norms of all columns ሼࡶ௧ሽ௧ୀଵ்  of ࡶ	 (Gramfort et al., 
2012) and can be written as ‖࢝‖ࡶ;ଵ,ଶଶ ൌ ∑ ௧‖ଵࡶࢃ‖

ଶ
௧ , 

where ࢃ ൌ ݀݅ܽ݃ሺ࢝ሻ is the weights (positive) 
diagonal matrix. The prior pdf for this penalty 
represents a Markov Random Field (MRF) where 
the states of the variable ሼܬ௧ሽୀଵ

ௌ  are not separable. 
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Using Empirical Bayes, we first transform this MRF 
into a Bayesian network, to arrive to a hierarchical 
model (figure 1) by reformulating the pdf of each ܬ௧ 
as ሺܬ௧หܬࣝ௧, ࣝ௧ܬ ሻ, whereߙ ൌ ሼܬ௧ሽஷ. In this way, the 
information received by ܬ௧ from ܬࣝ௧ is contained in 
an auxiliary magnitude ߜ௧ ൌ ∑ ௧|ஷܬ|ݓ , leading to 
a Normal-Laplace joint pdf: 
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Then, using the scaled mixture of Gaussians for the 
Normal-Laplace pdf  (Li  and  Lin  2010),  a  hyper- 
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Figure 1: Hierarchical diagram of the Bayesian network 
obtained for the mixed-norm L12 model. 

parameter ࢽ௧ is introduced to complete the joint 
prior ሺࡶ௧, ,௧ࢽ ሻߙ|௧ࢾ ൌ ܰሺࡶ௧|, ,௧ࢾ|௧ࢽሺ௧ሻࢫ  ሻߙ|௧ࢾሺሻߙ
where the variance matrix for ࡶ௧ is diagonal ࢫ௧ ൌ
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ቁቃ and the pdf for ࢽ௧ is the truncated 

Gamma ሺࢽ௧|ࢾ௧, ሻߙ ൌ ,ሺ1/2,1ܩܶ ሾࢾߙ௧
ଶ,∞ሿሻ. The vector 

 ௧ estimated in theࡶ ௧ can be updated from theࢾ
previous iteration. Then we can choose gamma non-
informative priors ሺߙሻ and ሺߚሻ and rewrite the 
joint posterior pdf as: 
 

,௧ࡶሺ ,௧ࢽ ,ߙ ሻࢂ|	ߚ ∝ ,௧ࡶ|ࢂሺ ,௧ࡶሺሻߚ ሻ (3)ߚሺሻߙሺሻߙ|௧ࢽ
 

The maximum a posteriori estimate for the model 
parameters ࡶ௧ is easily derived from the Gaussian pdf 
,ݐࢂหݐࡶ൫		 ,ݐࢽ ,ߙ ൯ߚ ∝ ܰ൫ݐࢂหݐࡶࡷ, ,หݐࡶ൯ܰ൫ࡵߚ ݐ൯	 
=ܰሺࡶ௧/ࣆ௧,  :௧ሻ, with posterior mean and varianceࢳ
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The estimates for the hyperparameters are achieved 
by maximizing the evidence (evidence procedure), 
also known as the type II likelihood L, which is 
obtained by integrating out the parameters ࡶ௧ from 
the joint posterior pdf in (3). 
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with ௧ ൌ
ࡵ

ఉ
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ିଵࡷᇱ. Closed estimates maximizing 

L cannot be obtained due to the nonlinear form of ௧ 
but it can be rearranged in terms of ࣆ௧,  and other ݐࢳ	
differentiable expressions of ሺࢽ, ,ߙ  ሻ, which afterߚ
differentiation leads to the following updates for the 
hyperparameters: 
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where ܫሺݖ ൌ ሺߙௗߜ௧
ଶ ሻଵ/ଶሻ	 is related with the 

normalizing constant for the TG. Similar to the 
Relevance Vector Machine (Tipping 2001), the 
hyperparameter ࢽ௧ controls the sparseness of the 
solution, since it cannot take values equal or below 
௧ߜߙ

ଶ , allowing the ܬ௧ where this conditions holds to 
be set to zero. The iterative estimation of parameters 
and hyperparameters with these formulae (4 and 6) 
is equivalent to an EM algorithm. Here we illustrate 
how this model works with this algorithm (using in-
house code) but future studies will focus in deriving 
faster and more efficient algorithms for estimating 
the model. 

3 RESULTS 

Simulations of a ࡶ matrix (800x30) with different 
waveforms (along columns) in well-localized rows, 
were performed to test the ability of the model to 
estimate simultaneously different levels of 
sparseness and smoothness in both dimensions 
(figure 2, left). The inverse solution was obtained 
(figure 2, right) from data generated using a random 
design matrix ࡷ (100x800, ܭ~N(0,4), SNR=30db), 
converging after 150 iterations (in about 5 min). 
Estimation of relevant rows is shown in figure 3. 
We also considered a more realistic simulation of 
the EEG inverse problem. A ring of 736 cortical 
generators (voxels defined in MNI brain atlas), was 
used to simulate 3 spatio-temporal sources. The 
electric lead field was computed as the 
 

 

Figure 2: Left: Simulated matrix. Right: Estimated ࡶ with 
the Bayesian MxN model, using an EM algorithm. 



 

 
Figure 3: Simulated (true, red circles) and estimated (blue 
line) inverse solution for rows arrowed in figure 2. 

 
Figure 4: Realistic simulation (ring of cortical generators). 
Parameter matrix was formed by simulated sources A (1 
voxel, temporal bell), B (5 voxels, temporal sinusoid) and 
C (spatial bell, temporal sinusoid). Dashed lines mark 
selected time points in the estimated inverse solution. 

 
Figure 5: Simulated and estimated EEG sources in a ring 
of cortical generators at the maximum value for sources A 
(25s), B (122s) and C (1s) as marked in figure 4. 

transformation matrix from the sources to 31 
recording channels (figure 4, top row), and noise 
was added (SNR=30db). Figure 4 (bottom) shows 
the matrix inverse solution estimated with the 
Bayesian MxN model, which converged in 150 
iterations (about 15 min). Figure 5 shows the spatial 
maps for three relevant time points. 

4 DISCUSSION 

The use of the Normal-Laplace distribution as the 
parameters’ prior pdf, theoretically allows to flexible 
estimation of parameters with sparse and smooth 
simultaneous behaviour. Here we proposed an 
Empirical Bayes solution to this analytically 
untreatable model. Simulations showed that the 
method is able to reconstruct solutions that are 
sparse along the first dimension and smooth along 
the second dimension. However, it cannot accurately 
recover non-sparse sources in the spatial dimension. 
The level of sparseness is controlled by just one 
parameter (ߙ) for the whole map, possibly making it 
difficult to estimate situations when the level of 
sparseness changes with time. Also, the EM 
algorithm showed some instability and dependence 
on initial values. Although further validation is 
needed, future efforts will also aimed at improving 
the model to cope with time-varying sparseness and 
developing more efficient and robust algorithms.  
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