
Guidelines and Tool for Meaningful OWL-S Services Annotations

Domenico Redavid, Stefano Ferilli, Berardina De Carolis and Floriana Esposito
Computer Science Department, University of Bari “Aldo Moro”, Via E. Orabona, 4, Bari, Italy

Keywords: Semantic Web Services, OWL-S Annotation, OWL, SWRL.

Abstract: The current tools to create OWL-S annotations have been designed starting from the knowledge engineer’s
point of view. Unfortunately, the formalisms underlying Semantic Web languages are often incomprehensible
to the developers of Web services. To bridge this gap, it is desirable that developers are provided with suitable
tools that do not necessarily require knowledge of these languages in order to create annotations on Web
services. With reference to some characteristics of the involved technologies, this work addresses these issues,
proposing guidelines that can improve the annotation activity of Web service developers. Following these
guidelines, we also designed a tool that allows a Web service developer to annotate Web services without
requiring him to have a deep knowledge of Semantic Web languages. A prototype of such a tool is presented
and discussed in this paper.

1 INTRODUCTION

Ontologies are written by knowledge engineers and
require specific skills for their use (Staab and Studer,
2004). Formalisms such as Description Logics
(Baader et al., 2003), underlying the Web Ontology
Language (OWL)1 standards, are incomprehensible
to the developers of Web services (Erl, 2005). As
it happened for the Web, where increasingly power-
ful browsers have allowed ordinary users to use the
Internet without knowing languages such as HTML
or XML, in order to promote the technologies related
to Semantic Web Services (SWS) (McIlraith et al.,
2001), it is desirable that developers are provided with
tools that do not necessarily require knowledge of
languages such as Resource Description Framework
(RDF)2, OWL, OWL for services (OWL-S)3 and Se-
mantic Web Rule Language (SWRL)4.

The objective of this work is to propose solutions
that simplify the process of annotating SWSs in order
to facilitate the operation of automatic service com-
position. The technical experts that are in charge of
writing the Web services must be able to apply for
compositions of services that meet given goals and re-
quirements, and to get results expressed in languages
and formalisms that are easy to understand according
to their knowledge.

1http://www.w3.org/TR/owl2-new-features
2http://www.w3.org/RDF
3http://www.w3.org/Submission/OWL-S
4http://www.w3.org/Submission/SWRL

2 TECHNOLOGICAL
BACKGROUND

A Web service, as defined by the World Wide Web
Consortium (W3C)5 is a software system designed to
support interoperability between different machines
on the same network. It has an interface that de-
scribes the service in a suitable language, through
which other machines can interact with it. This in-
teraction takes place through the exchange of SOAP
messages, formatted according to the XML standard
and typically exchanged using the HTTP protocol.
A Web service is an abstract interface that needs to
be implemented by a software agent. The agent is
the concrete part (software or hardware) that sends
and receives messages, while the Web service is a
resource that contains the abstract set of functional-
ities provided by the agent. In a practical context, the
agent maintaining the same functionalities can vary
continuously. For example, the agent’s implementa-
tion might be modified or rewritten in a different lan-
guage, while the Web service stays unchanged over
time. Thus, a Web service is independent from both
implementation language and platform type. For it to
be used, in general, a service must be described and
advertised (Walsh, 2002). The Web Service Descrip-
tion Language (WSDL) specifications6 have been de-
signed for this purpose. WSDL provides all the de-

5http://www.w3.org
6http://www.w3.org/TR/wsdl

130 Redavid D., Ferilli S., De Carolis B. and Esposito F..
Guidelines and Tool for Meaningful OWL-S Services Annotations.
DOI: 10.5220/0005160601300137
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2014), pages 130-137
ISBN: 978-989-758-049-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

tails needed to invoke the service operations. Once
the WSDL is created, it can be published in a regis-
ter called universal Universal Description Discovery
and Integration (UDDI)7. Using WSDL and UDDI
any requester may seek for an appropriate service
(i.e., having the desired characteristics) and under-
stand how to invoke it.

The strengths of Web services can be summarized
as follows:

• they allow interoperability between different
software applications and on different hard-
ware/software platforms;

• they are specified using a text-based data format,
which is more understandable and easier to use for
developers;

• as they are based on the HTTP protocol, no
change is required to the security rules used as
firewall filters;

• once published, they can be combined with each
other (no matter who provides them and where
they are made available) to form integrated com-
plex services;

• they allow reuse of already developed applica-
tions;

• as long as the interface remains constant, the
changes made to the service remain transparent.

Despite their many strengths, Web services have
limitations for which solutions must be found. The
tasks of search, selection, composition and execution
of Web services are delegated to the developers, since
they know the semantics underlying each service. In
this way, they can obtain suitable combinations which
result in complex applications. In this practice lies the
main limitation of the commonly used Web services.
Indeed, since Web services were created to be used
by machines, delegating to humans such tasks as dis-
covery, selection and composition is too strict a con-
straint. To be able to automate these steps, machines
should be able to understand the semantics of the ser-
vices. This is achieved by enriching the existing Web
services with a semantic layer that expresses the func-
tionality of the service in a machine-understandable
way.

The choice of enriching existing resources is
clearly important in the context of the Web, where
rewriting the information architecture is not feasible.
The key to overcoming the syntax limitations is pro-
vided by the Semantic Web(Berners-Lee et al., 2001).
Making the Web machine-understandable is the spe-
cific aim of the Semantic Web. Currently, the ma-
chines maintain information without understanding

7http://www.uddi.org/pubs/uddiv3.htm

its meaning. When a search engine like Google stores
Web pages in its cache, it is not able to distinguish
whether the word ‘espresso’ refers to a train or a type
of coffee, or if ‘verdi’ is a color or the name of a com-
poser. With the Semantic Web this limitation is over-
come, since the resources in the network are associ-
ated with information that specifies their semantics in
a format suitable to be interpreted and processed au-
tomatically.

2.1 OWL-S and SWRL Characteristics

OWL-S enables semantic descriptions of Web ser-
vices using theService Modelontology, that defines
the OWL-S process model. Each process is based
on an IOPR (Inputs, Outputs, Preconditions, and Re-
sults) model. TheInputs represent the information
that is required for the execution of the process. The
Outputsrepresent the information that the process re-
turns to the requester8. Preconditionsare conditions
that are imposed over theInputsof the process and
that must hold for the process to be successfully in-
voked. Since an OWL-S process may have several
results with corresponding outputs, theResultsen-
tity of the IOPR model provides a means to spec-
ify this situation. Each result can be associated to
a result condition, calledinCondition, that specifies
when that particular result may occur. It is assumed
that such conditions are mutually exclusive, so that
only one result can be obtained for each possible sit-
uation. When aninCondition is satisfied, there are
properties associated to this event that specify the cor-
responding output (withOutput property) and, pos-
sibly, theEffects(hasEffectproperties) produced by
the execution of the process.Effectsare changes
in the state of the world. The OWL-S conditions
(Preconditions, inConditionsand Effects) are repre-
sented as logical formulas. Since OWL-DL offers
limited support to formulate constructs such as prop-
erty compositions without becoming undecidable, a
more powerful language is required for the represen-
tation of OWL-S conditions. For this reason, in OWL-
S these logical formulas are represented as simple
string literals or XML literals. The former allow to
use languages such as Planning Domain Definition
Language (PDDL) (McDermott, 1998) and Knowl-
edge Interchange Format (KIF)9, on which efficient
process-oriented reasoning systems can be applied.
Since these systems work under the Closed World As-
sumption, a change of representation language from

8Inputs, Outputs and Local variables (entities used within the
process) are SWRL variables and their types are defined in thedo-
main ontology.

9http://www-ksl.stanford.edu/knowledge-sharing/kif

Guidelines�and�Tool�for�Meaningful�OWL-S�Services�Annotations

131

DL is required. This requirement is the main dis-
advantage, since it generates a change of semantics
where the presence of all necessary semantic con-
structs is not guaranteed (Borgida, 1996). The latter
allows to use languages whose standard encoding is
in XML, such as SPARQL10 and SWRL (Horrocks
et al., 2005). Since these are SW languages, their
use overcomes the loss of semantics. SPARQL, how-
ever, was born as a query language for RDF, there-
fore the OWL-DL representation of effects is prob-
lematic. Moreover, SWRL is undecidable. A solution
for this problem has been proposed in (Motik et al.,
2005), where decidability is achieved by restricting
the application of SWRL rules only to the individu-
als explicitly introduced in the ontology. This kind
of SWRL rules, called DL-safe, makes this language
the best candidate for representing OWL-S condi-
tions (Redavid et al., 2013). Let us now briefly men-
tion the features of SWRL that are relevant to our
aims. WRL extends the set of OWL axioms to in-
cludeHorn-like rules in the form of implications be-
tween an antecedent (body) and consequent (head),
both consist of zero or more conjunctive atoms hav-
ing one of the following forms:

• C(x), with C an OWL class,P(x,y), with P an
OWL property,

• sameAs(x,y) or differentFrom(x,y), equivalent to
the respective OWL properties,

• builtIn(r,z1, . . . ,zn), functions over primitive
datatypes.

wherex, y are variables, OWL individuals or OWL
data values, andr is a built-in relation between
z1, . . . ,zn (e.g.,builtIn(greaterThan,z1,z2)). The in-
tended meaning can be read as: whenever the condi-
tions specified in the antecedent hold, then the con-
ditions specified in the consequent hold also. A rule
with conjunctive consequent can be transformed into
multiple rules by means of Lloyd-Topor transforma-
tions. Each rule has an atomic consequent.

2.2 Related Works

To the best of our knowledge, there are no recent pro-
posal of OWL-S tools for the OWL-S annotation. The
Protégé (Knublauch et al., 2004) plugin called OWL-
S Editor (Elenius et al., 2005) is most popular tool for
the creation of OWL-S descriptions.

The OWL-S tab can be considered as the main
point of user interaction, providing a more direct view
of the OWL-S classes and instances than what Protégé
provides by default. It contains the necessary panel

10http://www.w3.org/TR/rdf-sparql-query

representing all instances of the main OWL-S classes:
Service, Profile, Process, and Grounding. Further-
more, it has the following

• WSDL Support to create a “skeleton” of OWL-S
description based on a preexisting WSDL file.

• IOPR description and management.

• Graphical Overview of the “forest” of relation-
ships.

• an integrated execution environment for the
OWL-S so that developers could verify that their
specifications reflect their intentions, and to try
out different possibilities before deploying their
services.

• Process Modeling to model composite processes.
A composite process is constructed from subpro-
cesses that can in turn be composite, atomic, or
simple.

This plugin is available only for an old version of
Protégé having a limited suport to OWL.

The OWL-S IDE project11 is also concerned with
the development of OWL-S services. The OWL-S
IDE is a plugin for Eclipse12 , which attempts to in-
tegrate the semantic markup with the programming
environment. Developers can write their Java code in
Eclipse, and run an ad hoc tool to generate an OWL-S
“skeleton” directly from the Java sources. The idea
of integrating SWSs more closely with the program-
ming environ- ment used to develop the service im-
plementations is a good one. However, Eclipse does
not support ontology editing, and there is no KB from
which to choose the domain concepts to which the
OWL-S files should relate. Furthermore, it will of-
ten be more useful to generate the semantic markup
before the Java (or other) code, as the semantic de-
scriptions can be seen as a higher level of abstraction
of the programming modules. The OWL-S IDE does
not provide any graphical visualization of services or
processes.

Another OWL-S Editor is presented in (Scicluna
et al., 2004). It is a stand-alone program, providing
WSDL import as well as a graphical editor and visu-
alization for control flow and data flow definition. It
is not integrated with an ontology editor and shares
some of the drawbacks of the OWL-S IDE.

ODE SWS is a tool for editing SWSs “at the
knowledge level” (Gómez-Pérez et al., 2004), de-
scribing services following a Problem-Solving Meth-
ods (PSMs) (Fensel and Motta, 2001) approach. The
annotation task plays a subordinate role in this envi-

11http://projects.semwebcentral.org/projects/owl-s-ide
12www.eclipse.org

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

132

ronment, whereas a simplified vision of the OWL-S
annotation procedure is the main focus of our work.

The manage of SWRL rules the most popular tool
is the SWRLTab a development environment inte-
grated in Protégé-OWL13. It supports the editing and
execution of SWRL rules and includes a set of li-
braries that can be used in rules, including libraries
to interoperate with XML documents, and spread-
sheets, and libraries with mathematical, string, RDFS,
and temporal operators. A SWRL-based OWL query
language called SQWRL (Semantic Query-Enhanced
Web Rule Language)(O’Connor and Das, 2008) is
also provided. This plugin was developed for Protégé-
OWL version 3. Although keeps unchanged the
SWRL semantics, it presents some issues: the OWL’s
open world assumption is not guaranteed leading, in
some situations, to nonmonotonicity. Unlike OWL
and SWRL, SQWRL adopts the unique name as-
sumption when querying.

The main difference between these tool and our
proposal lies in the fact that they are oriented to
knowledge engineering rather than a WSDL devel-
oper.

3 GUIDELINES FOR A CORRECT
ANNOTATION

With reference to the OWL-S and SWRL character-
istics described in Sect. 2.1, we propose the follow-
ing guidelines for encoding an OWL-S process into
SWRL rules. These guidelines provide precise indi-
cations to develop a prototype.

1. For every result of the process, there exists anin-
Conditionthat expresses the binding between in-
put variables and that particular result’s (output or
effect) variables.

2. Every inCondition related to a particular result
will appear in the antecedent of each resulting
rule, whilst theResultwill appear in the conse-
quent. AninCondition is valid if it contains all
the variables appearing in theResult.

3. If the Resultcontains anEffectmade up of many
atoms, the rule will be split into as many rules as
the atoms. Each resulting rule will have the same
inCondition as the antecedent and a single atom
as the consequent.

4. ThePreconditionsare conditions that must be true
in order to execute the service. Since these con-
ditions involve only the processInputs, they will

13http://protegewiki.stanford.edu/wiki/Protege-OWL

appear in the antecedent of each resulting rule to-
gether withinConditions. In this work we con-
sider all thePreconditionsas being always true.

The first guideline is necessary because there may
be processes where the binding is implicit. For exam-
ple, consider an atomic process having a single out-
put. Due to the single output, an explicit declaration
of the inCondition is not necessary. However, if the
inCondition is not specified, the second guideline is
not applicable. To overcome this problem, we add a
new inCondition that makes explicit the implied bind-
ing in an atomic processes with one output. This in-
Condition will be represented as an SWRL atom that
is always true, and therefore as an OWL property, that
will bind input and output in explicit way. In addition,
in order to represent SWSs using SWRL rules, one
needs to represent in them also preconditions, inCon-
ditions and effects explicitly declared in the service,
that is, the entire IOPR model. Preconditions, in-
Conditions and effects are represented as SWRL log-
ical formulas (i.e., as an antecedent or a consequent).
These logical formulas can be combined in order to
obtain SWRL rules as reported in Table 1.

Table 1: OWL-S representation by means of a SWRL rule.

BODY HEAD
Preconditions∧ inCondition {Outputs} ∧ Effect

Finally, a general problem concerns how the Web
services are annotated. Web services must be anno-
tated using ontological classes only, without ever us-
ing primitive types (string, int, etc.) as their seman-
tics is too general. For example, consider an SWS for
searching for books, with the following input:

<process:Input rdf:ID="_CAR">
<process:parameterType
rdf:resource="xsd:#string"/>
</process:Input>

*where xsd = http://www.w3.org/2001/XMLSchema

Due to the fact thatprocess:parameterType is
declared as a datatype, the class of this input is an
XML Schema datatype (string) instead of being an
entity belonging to the domain ontology. This prob-
lem becomes critical during the operation of SWS
composition. In fact, suppose that we need to find
a service whose output type is the same as the input
type defined in the example. Since such an input is
of type string, any service returning a string can be
composed with that SWS. In this way, the final result
might be incorrect due to the semantics of the prim-
itive types. The problem is solved by annotating the
parameters of the input and output using ontological
classes without ever using primitive types. Referring

Guidelines�and�Tool�for�Meaningful�OWL-S�Services�Annotations

133

to the previous example, the input parameter should
annotated with the classCar of an ontology describ-
ing vehicles.

<process:Input rdf:ID="_CAR">
<process:parameterType
rdf:resource="&kb;#Car"/>
</process:Input>

*where &kb; is the ontology URI of Car

The Fig. 1 show the correct placing and relations
between Web service and SWS.

Figure 1: SWS abstraction layer.

4 OWL-S SEMANTIC
ANNOTATOR

To ensure the proper annotation of Web services and
a proper division of tasks among different users, we
have developed a tool that allowsad hoc annota-
tion using only the classes in the domain ontolo-
gies, thereby taking into proper consideration the di-
chotomy between the knowledge engineer and the de-
veloper of Web services. Thus, the developer of Web
services will be able to annotate Web services with-
out necessarily knowing the Semantic Web ontology
and rule languages. Moreover, in a context where
there are various professional roles, each in charge of
specific tasks, a clear division of tasks must be en-
sured. For example, there may be users in charge
of annotating Web services and others that must re-
lease them after checking. Once Web services are
annotated, it is necessary to ensure their persistence
in such a way that reusability is guaranteed. In this
way, it will be possible to search for existing OWL-S
descriptions through the Web before creating a new
one. At the end of this section an abstract solution to
manage OWL-S description will be proposed.

To ensure that every user has a defined role that al-

lows him to perform only certain operations, the fol-
lowing subdivision of roles have been identified:

1. Annotators: can only create the OWL-S descrip-
tions.

2. Publishers: can also publish the OWL-S descrip-
tions.

3. Group Leaders: can assign permissions (Anno-
tator, Publisher, Group Leader) to existing users,
edit their data (username and password) or create
new users.

4. Administrators: can perform all the operations of
group leaders, and also manage the settings for the
connection to the repository for the publication of
OWL-S descriptions.

For it to be published, an OWL-S description re-
quires a common Web server that can potentially be
deployed anywhere on the Web. Once it has been cre-
ated, a mechanism is needed that allows the localiza-
tion of the resource on a physical machine which may
be different from the one where the OWL-S annotator
works. Currently, our prototype uses the File Transfer
Protocol (FTP)14 for this purpose.

4.1 A Prototype Implementation

In this section we present the details about the an-
notation procedure of the OWL-S annotator. Start-
ing from a WSDL document, the user can create an
OWL-S service by simply choosing an OWL domain
ontology and annotating every single parameter of the
service with an ontology class selected from the on-
tological class hierarchy (i.e., the taxonomic view of
the ontology). Furthermore, once inputs and outputs
have been annotated, the user can declare logical con-
ditions corresponding to preconditions, inConditions,
and Effects in an intuitive manner.

Figure 2: OWL-S annotator main page.

14http://www.w3.org/Protocols/rfc959/

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

134

The interface shown in Fig. 2 allows to:

1. enter the URL of the WSDL of the Web service to
be annotated;

2. select a local WSDL document to be annotated;

3. load a previously created OWL-S description for
editing purposes.

After loading a WSDL or an existing OWL-S de-
scription, the functionality of the various numbered
items in the graphical interface shown in Fig. 3) is as
follows:

Figure 3: OWL-S annotator core characteristics.

1. allows to choose the domain ontologies to be used
for annotating the parameters;

2. allows to configure the default settings for the
publication of OWL-S (this option is available
only to the Administrator);

3. is a button to access the panel that allows to man-
age users, register new ones, change their user-
name and password and assign a set of permis-
sions;

4. contains the list of all operations in the selected
WSDL (for each of these operations an OWL-S
atomic service can be created);

5. reports the name of the OWL-S service;

6. reports a text description of the OWL-S service;

7. reports the URI of the OWL-S service;

8. is the list of input parameters (for each of them,
the name in OWL-S can be changed and an anno-
tation can be made by clicking in the ’OWL class’
column);

9. is the list of output parameters (for each of them,
the name in OWL-S can be changed and an anno-
tation can be made by clicking in the ’OWL class’
column);

10. is a button to access the panel for the inserting
SWRL logical constructs;

11. is a button for generating the OWL-S description;

12. is a button for publishing the OWL-S description
on the Web (this option is not permitted to Anno-
tator users);

13. is a button to close the application.

4.2 SWRL Annotation

Once all the service parameters have been annotated,
one may create the service or continue with the ad-
dition of SWRL logical formulas by clicking on the
‘SWRL constructs’ panel. More specifically, it:

1. includes a Tab to enter preconditions;

2. includes a Tab to enter output, effects, and under
what conditions they occur;

3. can be used to insert an OWL class in precondi-
tions, selecting it from a tree view of the taxon-
omy (as in the case of record of the parameters of
the service);

4. can be used to insert an OWL Property in precon-
ditions.

5. after selecting a class or property, allows to enter
the process parameter that will be the argument of
the selected class or property;

6. after selecting a class or property, allows to en-
ter the individual who will be the argument of the
selected class or property;

7. displays in a comprehensible way all atoms en-
tered for the SWRL construct;

8. allows to cancel the atoms entered for the SWRL
construct;

9. allows to add the SWRL construct to the process;

10. contains a complete list of all the SWRL con-
structs entered in the process;

11. allows to save the changes.

By opening the ‘Output/Effects’ panel, the win-
dow shown in Fig. 4 is displayed. It consists of a
panel that includes three tabs. These tabs allow to
specify ‘Output’, ‘Effects’ and ‘Conditions’, respec-
tively. In the Output panel the user can select the out-
put to be returned, by clicking on the ‘Output’ but-
ton. Then, if the process returns multiple outputs, he
will be asked to select which output must be returned.
Let us now turn to examine the remaining tabs: ‘Ef-
fects’ and ‘Conditions’. The elements contained in
these tabs are the same as those appearing in the tab
‘Preconditions’. The buttons carry out the same func-
tions as those described for the Preconditions tab, as
well. The difference lies in the fact that by selecting
some items from the Preconditions tab they will be

Guidelines�and�Tool�for�Meaningful�OWL-S�Services�Annotations

135

Figure 4: The “Output / Effects” panel.

added as preconditions of the process, while select-
ing them from the Effects tab they will be added as
the effects of the process, and selecting them from the
Conditions tab they will be added as necessary condi-
tions to return specific effects and/or specific output.

Let us now show an example of insertion. Our
SWRL construct will contain two conditions that are
combined in order to form a logical condition. When
these conditions are verified, the returned output will
belong to a particular OWL class. Specifically, sup-
pose the user wants to define that “the price of Suzuki
cheap cars the service will return must be of type Rec-
ommendedPrice” (an OWL class). Then he must de-
fine the following two conditions on the input param-
eter CAR:

• Suzuki(?CAR),

• CheapCar(?CAR).

To define these conditions he opens the tab ‘Out-
put and Effects’, selects the tab ‘Conditions’ and
clicks on the button to select the class ‘Suzuki’. Once
the class is selected, he clicks on the button ‘Variable’
and selects the parameter. He repeats the same pro-
cedure for the second condition, this time selecting
the class ‘CheapCar’. Now he must define the fact
that the output returned by the service will be of type
‘RecommendedPrice(?CAR)’. To do this, he selects
the tab ‘Output’ and, after clicking on the ‘Output’
button, he selects the class ‘CheapCar’. The entered
SWRL construct will be displayed as shown in Fig. 5.

Figure 5: SWRL construct display panel.

Through this view he may have a summary of the
SWRL atoms included in the construct. After enter-
ing all the constructs he deems as appropriate, he can
go back to the main screen and generate the OWL-
S service he has just created by means of the button
‘Generate OWL-S’. Later, he will also be able to pub-
lish it on the Web using the button ‘Publish’.

5 CONCLUSIONS AND FUTURE
WORKS

This work aimed at providing a tool for manual an-
notation of Web services, that would take into ac-
count the strengths and weaknesses of Semantic Web
technologies. We started from the description of
Web services, by specifying their meaning within
the Web community and describing the WSDL, the
de facto XML-based standard that allows to abstract
away from the concrete implementation of the ser-
vice. Then we analyzed the syntactic limitations of
Web Services, and specifically their constraining hu-
man experts to search, select, compose and execute
the Web Service. The key to overcoming the syn-
tax limitations is provided by the Semantic Web. In
particular, OWL allows to specify formal ontologies
that can be used to attach a meaning to WSDL inputs
and outputs. OWL-S is an OWL ontology that models
Web services at the abstract level by simplifying the
semantic association to the input parameters and out-
put. In order to specify the process model of a service,
rule based languages are necessary. As we have seen,
OWL-S allows to specify logical constructs in SWRL,
an extension of OWL, which enables the description
of preconditions and effects.

This paper proposed a set of guidelines for a cor-
rect annotation, and implemented them in a tool that
can be used by a Web service developer that is not an
expert in Semantic Web technologies in order to an-
notate his services. As future works we plan to extend
the ontology management tab in order to further facil-
itate the developer during the annotation procedure,
and to introduce the management of OWL-S compos-
ite processes, a validator that will allow to check the
correctness of the descriptions before generating the
OWL-S service, and a graphical tab to visualize the
complex services. Furthermore, and most important,
we plan to introduce additional modules that exploit
NLP approaches able to suggest the most appropriate
OWL entities to be used for annotation.

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

136

ACKNOWLEDGEMENTS

This work was partially funded by the Ital-
ian PON 2007-2013 project PON02005633489339
‘Puglia@Service’.

REFERENCES

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P., editors (2003).The Description
Logic Handbook. Cambridge University Press.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
Semantic Web.Scientific American.

Borgida, A. (1996). On the relative expressiveness of de-
scription logics and predicate logics.Artif. Intell.,
82(1-2):353–367.

Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J.,
Saadati, S., and Senanayake, R. (2005). The OWL-S
Editor - A Development Tool for Semantic Web Ser-
vices. In Gómez-Pérez, A. and Euzenat, J., editors,
ESWC, volume 3532 ofLecture Notes in Computer
Science, pages 78–92. Springer.

Erl, T. (2005). Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

Fensel, D. and Motta, E. (2001). Structured Development of
Problem Solving Methods.IEEE Trans. Knowl. Data
Eng., 13(6):913–932.

Gómez-Pérez, A., González-Cabero, R., and Lama, M.
(2004). Development of Semantic Web Services at the
Knowledge Level. In Zhang, L.-J., editor,ECOWS,
volume 3250 ofLecture Notes in Computer Science,
pages 72–86. Springer.

Horrocks, I., Patel-Schneider, P. F., Bechhofer, S., and
Tsarkov, D. (2005). OWL rules: A proposal and pro-
totype implementation.J. of Web Semantics, 3(1):23–
40.

Knublauch, H., Fergerson, R. W., Noy, N. F., and Musen,
M. A. (2004). The Protégé OWL Plugin: An Open
Development Environment for Semantic Web Appli-
cations. In McIlraith, S. ., Plexousakis, D., and van,
Harmelen, r. a. n. k., editors,The Semantic Web ISWC
2004, volume 3298 ofLecture Notes in Computer Sci-
ence, chapter 17, pages 229–243. Springer Berlin /
Heidelberg, Berlin, Heidelberg.

McDermott, D. (1998). PDDL — the planning domain def-
inition language.

McIlraith, S. A., Son, T. C., and Zeng, H. (2001). Semantic
Web Services.IEEE Intelligent Systems, 16(2):46–53.

Motik, B., Sattler, U., and Studer, R. (2005). Query An-
swering for OWL-DL with rules.Journal of Web Se-
mantics: Science, Services and Agents on the World
Wide Web, 3(1):41–60.

O’Connor, M. J. and Das, A. K. (2008). SQWRL: A
Query Language for OWL. In Hoekstra, R. and Patel-
Schneider, P. F., editors,OWLED, volume 529 of
CEUR Workshop Proceedings. CEUR-WS.org.

Redavid, D., Ferilli, S., and Esposito, F. (2013). Towards
Dynamic Orchestration of Semantic Web Services.T.
Computational Collective Intelligence, 10:16–30.

Scicluna, J., Abela, C., and Montebello, M. (2004). Vi-
sual Modelling of OWL-S Services. InIADIS Inter-
national Conference WWW/Internet.

Staab, S. and Studer, R., editors (2004).Handbook on
Ontologies. International Handbooks on Information
Systems. Springer.

Walsh, A. E., editor (2002).Uddi, Soap, and Wsdl: The
Web Services Specification Reference Book. Prentice
Hall Professional Technical Reference.

Guidelines�and�Tool�for�Meaningful�OWL-S�Services�Annotations

137

