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Abstract: The purpose of this article is to present a model of the computational intelligence system based on a 
network of coupled phase oscillators. The structure of such a model consists of a net of phase-locked loops 
(PLL) and orthogonal filters based on a Hamiltonian neural network embedded in this net. 

1 INTRODUCTION 

It is well known that true artificial intelligence 
cannot be implemented with traditional hardware. It 
should be clear as well that that in order to be able to 
build machines that learn, reason and recognize, one 
needs power efficient processors with computational 
efficiency unattainable even by supercomputers. 
Two such processors are theoretically known: 
quantum and neuromorphic structures. Up to date, 
several neuromorphic devices using different 
technologies (e.g. spiking, oscillatory and static 
artificial neurons and structures based on them) have 
been proposed (Mcdonnell et al., 2014). Neverthe- 
less, we claim that a biological brain is an almost 
lossless dynamic structure and, hence, the 
neuromorphic system should be sought in a class of 
lossless systems, especially Hamiltonian systems, 
i.e. Hamiltonian neural networks. Therefore, the 
main goal of this paper is to prove the following 
statement: The structure of oscillatory neuromorphic 
processors can be obtained by embedding 
orthogonal filters based on the Hamiltonian neural 
network into a network based on phase-locked 
loops.  Using this method, one obtains an oscillatory 
model of self-sustaining memory, which can 
memorize an input information and simultaneously 
perform a different analysis, e.g. pattern recognition. 
 
 
 

2 HAMILTONIAN NEURAL 
NETWORKS - BASED 
ORTHOGONAL FILTERS 

It is well known that a general description of the 
Hamiltonian network is given by the following 
state–space equation: 

 

H( ) ( )  x J x ν x  (1) 
 

where: x – state vector, 2n
Rx  

 ν(x) – a nonlinear vector field 
 J – skew-symmetric, orthogonal matrix e.g. 
 Poisson matrix. 
 

Function H(x) is  energy absorbed in the network. 
Since Hamiltonian networks are lossless 
(dissipationless), their trajectories in the state space 
can be very complex for t  (-, ). But Eq.(1) 
gives rise to the model of Hamiltonian Neural 
Networks (HNN), as follows (Sienko and Citko, 
2009): 
 

( ) x WΘ x d  (2) 
 

where: W – (2n2n) skew-symmetric, orthogonal 
weight matrix (W2 = -1) 
Θ(x) – vector of activation functions (output 
vector y = (x) ) d – input data 

 and  H( ) Θ(x) x  

One assumes here that activation functions are 
passive i.e. : 
 

328 Citko W. and Sienko W..
Oscillatory Model of Neuromorphic Processors by Embedding Orthogonal Filters.
DOI: 10.5220/0005156603280333
In Proceedings of the International Conference on Neural Computation Theory and Applications (NCTA-2014), pages 328-333
ISBN: 978-989-758-054-3
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



 

 

1 2 1 2

Θ(x)
μ μ  ;  μ ,μ (0, )

x
     (3) 

 

The HNN described by Eq.(1) cannot be realized as 
a macroscopic scale physical object. Nevertheless, 
introducing the negative-feedback loops,  Eq.(2) can 
be reformulated as follows: 
 

 0 ( )w  x W 1 Θ x d  (4) 

where: w0 > 0 
 

and Eq.(4) sets up an orthogonal transformation 
(HNN-based orthogonal filter): 

02
0

1
( w )

1 w
 


y W 1 d  (5) 

where: W2 =-1  
 

Thus, a 8-dim. orthogonal filter, referred to as 
octonionic module, can be synthesized by the 
formula: 
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(6) 

 

i.e. w = Y d 
 

It can be seen that Eq.(6) is a solution of the 
following design problem: for a given input vector  
d = [d1, … , d8]

T and a given output vector y = [y1, 
… , y8]

T find the weight matrix W of the HNN based  
orthogonal filter (octonionic module). Thus: 
 

1 2 3 4 5 6 7

1 3 2 5 4 7 6

2 3 1 6 7 4 5

3 2 1 7 6 5 4

4 5 6 7 1 2 3

5 4 7 6 1 3 2

6 7 4 5 2 3 1

7 6 5 4 3 2 1

8

0  w w w w w w w

w 0  w w w w w w

w w 0  w w w w w

w w w 0  w w w w

w w w w 0  w w w

w w w w w 0  w w

w w w w w w 0  w

w w w w w w w 0  

 
     
    
          
 
    
    
 
     

W

 

(7) 

 

W8- matrix belongs to the family of matrices 
obtained by superposition of Hurwitz-Radon 
matrices. 

 

The octonionic module can be seen as a basic 
building block for the construction of AI processors. 
Moreover, the output y of the filter in Eq.(4) is a 
Haar spectrum of the input vector d. It is worth 
noting that the octonionic module sets up an 
elementary memory module as well. For example, 
designing an orthogonal filter, using Eq.(4) and 
Eq.(5), which performs the following 
transformation: 

0[1] 2
0

1
( w )

1+w
 y W 1 m

 
(8) 

where: y[1] = [1, 1, … , 1]T  i.e. synthesizing by 
Eq.(5) a flat Haar spectrum for a given input 
vector m, so  that  

 

8

i
i=1

m 0  (9) 
 

one gets  implementation of a linear perceptron, as 
shown in Fig.1. 
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Figure 1: Implementation of an elementary memory 
module by the octonionic module. 

Moreover, according to Eq. (5) and (7) the matrix Y 
with y1 = y2 = … = y8 = 1 generates the structures of 
all memory modules. It is also worth noting that the 
transformation in Eq. (5) can be also realized by the 
octonionic modules, as shown in Fig.2. 
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Figure 2: Self-creation of the memory module. 

where: Ys–skew-symmetric part of the matrix Y 
 (Eq.(5))   
 W - weight matrix of memory modules 
 (Eq.(6) and Eq.(7)). 
Such a transformation can be seen as a process of 
self creation of memory modules. To summarize the 
discussion above, one can state that the octonionic 
module is a universal building block realizing very 
large scale orthogonal filters in particular memory 
blocks. Multidimensional, octonionic modules based 
orthogonal filters can be realized by using the family 
of Hurwitz-Radon matrices. Thus, 16-dim 
orthogonal filter can be, for example, determined by 
the following matrix: 
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(10) 

 

where: w8 R <  
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Similarly, for the dimension N = 2k, k = 5, 6, 7, … 
all Hurwitz-Radon matrices can be found, as: 

k-1

k

k-1
K

2

2
2

w 


   
     

W 0 0 1
W

0 W -1 0

 (11) 

 

where: wK  R < . 
 

To conclude, we formulate the following statements: 
 

1. N-dimensional HNN can be created by  
compatible connections of the octonionic 
modules. 

2. The basic function of  orthogonal filters is a Haar 
spectrum analysis of the input data d. 
Particularly, an orthogonal filter performs the 
function of memory, as given by Eq. (8). 

3 ON MODELLING  
OSCILLATORY NEURAL 
NETWORKS 

To our knowledge, the fundamental research in the 
field of oscillatory implementation of neural 
networks has been done by Hoppenstead and 
Izhikevich (Hoppenstead and Izhikevich, 1997, 
2000; Izhikevich, 1999, 2006; Strogatz 2006). To 
review briefly, an oscillator can by described be the 
following state equation: 
 

)(xfx 


, x  Rm, (12) 
 

and it is a nonlinear dynamical system with a limit 
cycle. Hence, a net of weakly coupled oscillators is 
given by: 
 

)ε,,,(ε)( n1iiii xxgxfx 


,ε << 1, i = 1, … , n    (13) 
 

A synchronization phenomenon in such a network is 
one of the most challenging mathematical and 
engineering problems. According to (Izhikevich, 
2006), the sufficient conditions for synchronization 
in the net Eq.(13) can be formulated as follows:  

 

Transforming the state space Eq.(12) onto phase 
equations: 
 

1
i i i 1 n iΩ εh ( , , ,ε),    S   



    (14) 
 

where: i – natural frequency of i-th oscillator (i.e. 
for ε = 0).  

Assuming a weak coupling of oscillators, the state 
equation and phase equation can be simplified, as 
follows: 
 

m
i i i ij i j i

1

( ) ε ( , ) , R
n

j





  x f x g x x x  (15) 
 

and 

i i ij i j
j 1

ε h ( , ),  i=1,...,n
n

  




     (16) 

 

Introducing  a phase deviation Ψi of i-th oscillator 
i.e.: 
 

φi = it + Ψi (17) 
 

and averaging over a period  T= 2π/Ω, the phase 
equation (16) can be formulated as: 
 

i ij i j
j 1

ε H ( ),  i =1,...,n
n



     (18) 
 

where nonlinear functions Hij; i, j = 1, … n 
determine time evolution of momentary frequency 
of coupled oscillators in the net. It is clear that the 
state of synchronization is given by equilibria of 
differential Eq.(18), i.e. : 
 

ij i j
j 1

ε H ( ) 0,  i=1,...,n
n



    (19) 

 

or 
 

i       ; 0)(Hω
ij

jiiji  


n  
(20) 

 

where: Δωi = Hii(0) is a deviation of natural 
frequency i. 

For the steady state of synchronization the equilibria 
have to be asymptotically stable. Unfortunately, the 
general solution of Eq.(20) is a nontrivial task, for 
n >> 1. In a special case, under the assumption that 
Hij(•) has the form: 
 

Hij(Ψi – Ψj) = H(Ψi – Ψj) = - sin(Ψi – Ψj)       (21) 
 

the solution of Eg.(20) can be analytically found. 
The above case is known and celebrated as the 
Kuramoto model (Strogatz, 2000).  For example, for 
n =2, the Kuramoto model is given by:  
 

)sin(ω
dτ

d

)sin(ω
dτ

d

212
2

211
1





  

(22) 

 

where: τ = ε t. 

It is worth noting that assuming Eq.(12) as a model 
of an oscillatory neuron, the state Eq.(15) describes 
an oscillatory neural network, which can be 
synchronized, as shown above. But, it seems that 
synchronization alone insufficiently determines a 
neural network as the information processor. 
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We claim that neural networks, to be treated as 
information processors, have to function as 
orthogonal filters. The authors of this publication 
have proposed a model of the oscillating net based 
on the structure of appropriately connected phase 
locked-loops (PLL) (Sienko, 1999; Citko and Sienko, 
2008).  Two connected PLLs create the neuron 
structure as shown in Fig. 3. 
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si(t) = ACi sin(it + Ψsi), 
vi(t) = AVi cos(it + Ψi); i = 1, 2. 

Figure 3: The oscillating (PLL) neuron model. 

It is easy to see that the model in Fig. 3. (PLL 
model) consists of two antisymmetrically coupled 
sinusoidal phase oscillators. The input signals si(t),   
i =1, 2 are sinusoidal carriers.  
Thus: 
 

si(t) = ACi sin(it + Ψsi),                    (23) 
 

vi(t) = AVi cos(it + Ψi); i = 1, 2. (24) 
 

Assuming ideal transmittances of loop filters, i.e., 
G1 = G2 ≡ 1, the mean phase equation (Adler 
equation) of this model is as follows (keys k1, k2 
open): 
 

s1 1 s1 1 11 V1 m2 C2 V2

1 V2 m1 C1 V1s2 2 s2 2 2

Ψ Ψ sin(Ψ Ψ ) Δω0 w k k A Ad
2π

w k k A A 0Ψ Ψ sin(Ψ Ψ ) Δωdt

       
               (25) 

 

where: Δωi - frequency deviations of the input si(t) 
signal 
kVi, kmi – sensitivity of VCO and phase-
detector, respectively 

The similarity between Eq. (25) and the Kuramoto 
model is  worth noting. Closing k1, k2- keys in the 
model from Fig. 3. one obtains an elementary PLL 
orthogonal filter described by: 

 
 

s1 1 s1 1 10 V1 m1 C1 V1 1 V1 m2 C2 V2

1 V2 m1 C1 V1 0 V2 m2 C2 V2s2 2 s2 2 2

Ψ Ψ sin(Ψ Ψ ) Δω-w k k A A w k k A Ad
2π

w k k A A -w k k A AΨ Ψ sin(Ψ Ψ ) Δωdt

       
               (25) 

 

where it is assumed that the connection matrix has a 
form: 
 

Wc =W – w01 (27) 
 

with 

               W2 = -1,  WT = W-1 = -W               (28) 
 

and w0  > 0    (W –skew-symmetric, orthogonal) 
 

Let us note that PLL implementation of the 
elementary orthogonal filter from Fig.3. can be  
easily scaled up to n-dimensional space. Such a 
generalization is shown in Fig.4. (Citko and Sienko, 
2008).  
The Adler equation of this model is given by:  
 

s1 1 s1 10 v1 m1 C1 v1 1 v1 m2 C2 v2 k-1 v1 mk Ck vk

s2 2 1 v2 m1 C1 v1 s2 2

2k-1 vk m1 C1 v1 0 vk mk Ck vksk k sk

Ψ Ψ sin(Ψ Ψ )w k k A A w k k A A w k k A A

Ψ Ψ w k k A A sin(Ψ Ψ )d
2π

dt                

w k k A A w k k A AΨ Ψ sin(Ψ

      
       
   
      


   

    
  

1

2

kk

Δω

Δω

   

ΔωΨ )

   
   
   
   
   

  


(29) 

 

where :  si(t) = ACi sin(it + Ψsi) 
 vi(t) = AVi cos(it + Ψi) 
 Δωi – frequency deviation 
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Figure 4: A PLL model of the n-dim neural network. 

Equation (29) can be rewritten as: 
 



z = Wc sin z + Δω                        (30) 
 

where: z = [z1, … , zn]
T = [Ψs1 –Ψ1, … ,Ψsn – Ψn]

T 

 Wc – matrix of connections. 

It is worth noting that: 

1. The hold range of a PLL network is 
determined by the stable equilibrium of 
Eq.(30). It means that, for a  given Δω, one 
can find loop gains (kvkmAcAv) such that 
the PLL network attains synchronization in 
the point: │sin zi│< 1, i = 1, … , n. 

2. Under synchronization, the steady-state 
output of the PLL network is given by: 

 

y = sin z = Wc
-1(– Δω). (31) 

Taking the connection matrix Wc as the 
weight matrix in the orthogonal filter, the 
output y gives the Haar spectrum of the 
input vector. Moreover, the PLL network 
from Fig. 4. can be treated as a n-
dimensional FM signal demodulator. 
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3. The PLL network from Fig. 4. can be seen 
as a model of  the neural network with 
dynamical connections. The weight of 
connections can be changed by the 
parameter kv (i.e. sensitivity of VCO). 

4 OSCILLATORY MODEL OF 
NEUROMOPHIC PROCESSORS 
BY EMBEDDING 
ORTHOGONAL FILTERS 

By embedding the HNN-based orthogonal filters 
into the net of PLL, one obtains a novel model of the 
neuromorphic processor. Such a model is presented 
in Fig. 5., where the structure from Fig.4. was 
accordingly utilized. 
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Figure 5: The oscillatory model of the neural network as 
the embedded system. 

It is worth noting that this model consists of the 
network of "synaptic connections" hidden in the 
structure of the orthogonal filter (Eq.4). Hence, it 
could be a justification to name this structure as 
neuromorphic. Moreover, the dynamic of the model 
from Fig. 5 is given by Adler equations (29) and it 
can be seen as a basic bulinding block to create the 
oscillatory nets. The key contribution of this paper 
can be formulated by the following statement: by the 
chain connection of an even number of blocks from 
Fig. 5. one obtains a ring structure performing 
functions of self-sustaining memory with parallel 
analysis of the input information by embedded 
orthogonal filters. 

A number of simulations were  performed by 
using Matlab-Simulink macro-models of phase 
locked-loops. This analysis showed that oscillatory 
memory proposed above exactly performed 
algebraic functions of embedded orthogonal filters.  
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Figure 6: The self-sustaining memory ring with two 
embedded orthogonal filters. 

5 CONCLUSIONS 

The main goal of this paper was to prove the 
following statements: 

An AI compatible processor should be 
formulated in the form of a top-down structure via 
the following hierarchy: the Hamiltonian neural 
network (composed of lossless neurons) – the 
octonionic module (a basic building block).  
Furthermore, it has been confirmed that by using the 
octonionic module based structures, one obtains 
regularized and stable networks for learning. Thus, 
typical for AI tasks, such as realization of classifiers, 
pattern recognizers and memories, could be 
physically implemented for any number N=2k  
(dimension of input vectors). It is clear that the 
octonionic module cannot be ideally realized as an 
orthogonal filter (decoherence-like phenomena). 
Hence, the problem under consideration now is as 
follows: how exactly an octonionic module be 
realized by using  cheap VLSI technology to 
preserve the main properties -orthogonality, power  
efficiency and scaleability. The possibility to 
directly transform the integrator structure in to the 
phase-locked loop (PLL)-based oscillatory structure 
is noteworthy. It is clear, however, that oscillatory 
neural network from Fig. 5. does not mimic the 
biological spiking tissue. Nevertheless, we claim 
that orthogonal filters-based data processing can be 
considered as inspired by biological  solutions. 
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