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Abstract: We propose a new algorithm and formal description of generative cognition in terms of the multi-label bag-
of-words paradigm. The algorithm, Coherence Net, takes its inspiration from evolutionary strategies, 
genetic programming, and neural networks. We approach generative cognition in spatial reasoning as the 
decompression of images that were compressed into lossy feature sets, namely, conditional probabilities of 
labels. We show that the globally parallel and locally serial optimization technique described by Coherence 
Net is better at accurately generating contextually coherent subsections of the original compressed images 
than a competitive, purely serial model from the literature: Coherencer. 

1 INTRODUCTION 

Generative cognition has been implicated in a broad 
range of cognitive faculties, including but not 
limited to imagination, episodic memory, and spatial 
navigation (Vertolli & Davies, 2013; 2014). By 
generative cognition, we mean the production of 
new output from a given data set that is not 
explicitly stored in the data set. As a cognitively 
salient example, the hippocampus’s ability to 
anticipate new objects and spatial relations from 
those that are remembered would fall under the class 
of generative cognition (Mullally & Maguire, 2013). 
When an individual imagines a new scene on the 
basis of an environmental trigger with elements that 
were not explicitly encoded in memory, this would 
also qualify. It can be viewed as a form of 
decompression where data lost in the compression 
phase is deduced from implicit relations present in 
the compressed data. It is also distinct from 
creativity in that the result can be mundane. 

We chose to approach this problem using a 
multi-label, bag-of-words approach (for review of 
the multi-label literature, see Zhang & Zhou, 2013). 
In place of documents and words, we modeled a 
visual task using images and their associated pixels. 
Each image has labels associated with pixel clusters 
that indicate objects in the image. Since a given 
image can have many objects, each image is given a 
collection of labels instead of one, hence multi-label.  

Unlike the standard bag-of-words approach, we 

are not interested in the labeling process. We assume 
images and their corresponding pixel clusters have 
been correctly labeled. We derive the images and 
associated labels from the Peekaboom database of 
labeled images (Von Ahn, Liu, & Blum, 2006). This 
database is one of the most extensive in the 
literature, with over 50,000 manually labeled 
images. Instead of the standard classification or 
labeling task, we are interested in using associations 
between the labels to select a collection that could be 
used to generate a plausible new image instance.  

According to Zhang and Zhou’s (2013) formal 
description of the multi-label task, generative 
cognition and classifier tasks are the inverse of one 
another. 

2 FORMAL DEFINITION 

Zhang and Zhou (2013) describe the multi-label task 
in the following way. Let ܺ denote the input space 
(e.g., images, documents) and ܻ denote the label 
space of all possible labels. The standard task is to 
learn a function ݄ሺ⋅ሻ that takes as input some 
member ࢞௜ from the input space and returns some 
combination of labels from the label space as output 
(i.e., ݄ ∶ ܺ	 →	2௒). We learn this function from the 
multi-label training set	ܦ, where all ߝ training 
examples are described in terms of their input 
features and corresponding label sets (i.e., ܦ ൌ
	ሼሺ࢞௜, ௜ܻሻ|1	 ൑ ݅	 ൑  ௜ is a࢞ ሽ). Note thatߝ
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d-dimensional feature vector ሺݔ௜ଵ, ,௜ଶݔ … ,  ௜ௗሻ, whereݔ
each feature corresponds to a single dimension in the 
input space. In the standard classification task we 
want to find the function ݄ሺ⋅ሻ, called the classifier, 
in order to predict the correct labels that go with an 
as yet unseen input ࢞. 

By contrast, the generative cognition task is to 
find a function ݃ሺ⋅ሻ that is the inverse of ݄ሺ⋅ሻ (i.e., 
݃ ∶ 2௒ → ܺ). This means that it takes as input a label 
or set of labels and outputs one of the original input 
instances (e.g., image, document). We propose to 
preliminarily achieve this through the parallel task of 
finding a set of labels ௡ܻ ( ଵ݃ ∶ 2௒ → 2௒)—where ݊ 
indexes the current iteration of the algorithm—that 
extend the input ݕ and together indicate some 
instance ࢞௜. We can think of the generation task as 
finding a function ଵ݃ሺ⋅ሻ, called the generator, that 
finds a subset of labels that would be picked by an 
accurate classifier ݄ሺ⋅ሻ for some instance ࢞௜ in the 
input space ܺ. Formally, this means 

.௜࢞∃ ൫݄ሺ࢞௜ሻ ⊇ ݃ଵሺݕሻ൯ (1)

We can take the manual labeling of the Peekaboom 
database as another function (݃ଶ ∶ 2௒ → ܺ) that 
maps a set of labels ௡ܻ to the subsets of features that 
indicated them (e.g., for the label ‘dog,’ a given 
collection of pixels that look like a dog). Thus, the 
composition of ଵ݃ and ݃ଶ meets the requirements of 
the given task (i.e., ݃ ൌ ݃ଶ ∘ ݃ଵ). 

Models of both the generative and classifier tasks 
return a real-valued function ݂ሺ⋅,⋅ሻ that takes an 
instance-label pair ሺ࢞,  ሻ as input and outputs aݕ
number denoting the confidence that the label is 
accurate for that instance (i.e., ݂ ∶ ܺ	 ൈ ܻ → Թ). 
However, in the generative case, we assess the 
confidence of a label ݕ relative to the current 
potential set of labels ௡ܻ. If we think of ௡ܻ as a 
hypothetical instance ࢞, then we get a modified 
version of ݂ሺ⋅,⋅ሻ’s input, or ሺ࢞ ≅ ௡ܻ,  ሻ, for theݕ
model of the generator. For both the generator and 
the classifier tasks, ݂ሺ⋅,⋅ሻ should output a larger 
confidence value on a relevant label ݕ′ than an 
irrelevant label ݕ′′ for a given instance or 
hypothetical instance ࢞, or ݂ሺ࢞, ሻ′ݕ ൐ 	݂ሺ࢞,  ሻ′′ݕ
(Zhang and Zhou, 2013). The multi-label classifier 
݄ሺ⋅ሻ and generator ଵ݃ሺ⋅ሻ can then be derived from 
݂ሺ⋅,⋅ሻ by incorporating a thresholding function that 
determines how large the confidence needs to be for 
a label to be considered accurate for a given instance 
(i.e., ݐ ∶ ܺ → Թ). We then get the output, ݄ሺ࢞ሻ or 
ଵ݃ሺݕሻ, by assessing for a given instance or 

hypothetical instance ࢞ whether each possible label 
 ሻ. Formally, this࢞ሺݐ passes the threshold given by ݕ
means 

݄ሺ࢞ሻ ൌ ሼݕ|݂ሺ࢞, ሻݕ ൐ ,ሻ࢞ሺݐ ݕ ∈ ܻሽ (2)

݃ଵሺݕሻ ൌ ሼݕ|݂ሺ ௡ܻ, ሻݕ ൐ ሺݐ ௡ܻሻ, ݕ ∈ ܻሽ (3)

In effect, both functions use ݐሺ⋅ሻ to dichotomize Y 
into relevant and irrelevant label sets (Zhang and 
Zhou, 2013). However, the generative ݐሺ⋅ሻ is slightly 
more complex as the hypothetical ࢞ ≅ ௡ܻ changes 
with each iteration of the algorithm.  

Though standard machine learning techniques 
can accurately resolve the standard multi-label 
problem, the generative problem suggests a different 
approach. At minimum, since there are often many 
possible ࢞௜ that might satisfy equation 1 and we are 
not interested in one ࢞௜ over any other, many of the 
standard techniques are more thorough than is really 
required by the task. Thus, the fact that ݃ ∼ ݄ିଵ 
should not necessarily suggest that simply reversing 
the directionality of one of the standard techniques is 
a good solution; though, some researchers have 
effectively taken this approach in similar domains 
(see, for example, Hinton, Osindero, & Teh, 2006). 
Vertolli and Davies (2013; 2014), by contrast, 
showed that generative cognition is amenable to 
heuristic optimization techniques and, thus, we turn 
to this approach in order to address this task. 

We will describe a new, more cognitively 
plausible heuristic optimization algorithm called 
Coherence Net. We will then test how this algorithm 
performs against a competitive, serial, local hill 
searching algorithm called Coherencer that has been 
shown to be competitive in the literature (Vertolli & 
Davies, 2013; 2014). 

3 TASK DESCRIPTION 

In Vertolli and Davies (2013; 2014), the task is to 
imagine a fleshed-out scene from a single word 
query. The model is given a query label (e.g., “car”) 
with which to generate a collection of other labels 
(e.g., “road” and “sky”). This collection needs to be 
semantically coherent: the retrieved labels must 
belong together. For example, a scene containing 
“bow,” “violin,” and “arrow” would be incoherent 
because it mixes two senses of the meaning “bow.”  

Supported by cognitive limitations in working 
memory, Vertolli and Davies restrict these 
collections to 5 labels, including the query. We 
continue in this tradition as it provides a simpler, 
preliminary evaluation than dealing with larger label 
sets or sets of mixed sizes. 

The algorithms select the four other labels by 
their conditional probability ܲ ∶ ܻ	 ൈ ܻ → Թ, which 
they approximate from the conditional relative 
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frequency of pairs of labels. Mainly, for labels	ܽ 
and	ܾ, the conditional relative frequency is the total 
number of image instances that contain both labels 
(ܵ ൌ ሼሺ࢞௜, ௜ܻሻ ∈ ,ܽ|ܦ ܾ ∈ ௜ܻሽ) divided by the total 
number of image instances that contain the given 
label (ܤ ൌ ሼሺ࢞௜, ௜ܻሻ ∈ ܾ|ܦ ∈ ௜ܻሽ). Formally, this 
means 

ܲሺܽ|ܾሻ ≅ 	 |ܵ| ⁄|ܤ|  (4)

One important property of this formalization is that 
it is non-commutative (i.e., P yields a different value 
for a-b than it does for b-a). Parallel research on co-
occurrence in the machine learning literature 
suggests that this is more realistic and that most 
models do not account for it (see Huang, Yu & 
Zhou, 2012; Zhang & Zhou, 2013). 

We describe the cognitive generation task as a 
decompression step in a compression-decompression 
sequence (see Vertolli, Kelly, & Davies, 2014), with 
the classification task as the related compression 
task. That is, we assume that, after the initial 
processing required to derive the labels ܻ, the 
original instances ܺ are no longer explicitly 
accessible. They have been reduced to the triples 
ܲܥ ൌ 	 ൛൫ܽ, ܾ, ܲሺܽ|ܾሻ൯หܽ, ܾ	 ∈ ܻ, ܽ ് ܾൟ in the memory 
of the agent or model. Thus, the condition from 
equation 1, with the modifier that | ଵ݃ሺݕሻ| ൌ 5, is not 
trivial: ଵ݃ሺ⋅ሻ must, from a single input label, output a 
potential instance on the basis of ݂ሺ⋅,⋅ሻ, ݐሺ⋅ሻ, and ܲܥ.  

In summary, the current task requires the 
generative decompression of conditional 
probabilities into a contextually coherent, 5-label 
combination on the basis of a query label that is 
included in the set. The context is accurately 
reproduced if at least one of the original images 
contains the same 5-label combination produced by 
the agent. If none of the original images contain the 
label combination, we assume the context is not 
coherent.  

We hypothesize that our software agent, called 
Coherence Net, will outperform Coherencer (a 
competing software agent, described below) by 
capturing the best of both serial and parallel 
functionality described in Vertolli and Davies (2013; 
2014) and Thagard (2000). Coherence Net 
effectively explores a larger portion of the search 
space with a decreased chance of getting stuck on 
local optima by capitalizing on a global, parallel 
architecture with local serial transitions. 

4 IMPLEMENTATION 

We proceed by giving a formal outline of 

Coherencer following Vertolli and Davies (2013; 
2014) and a description of Coherence Net. 

Coherencer is the visual coherence subsystem of 
the SOILIE imagination architecture (Breault, 
Ouellet, Somers, & Davies, 2013; Vertolli, Breault, 
Ouellet, Somers, Gagné, & Davies, 2014). In this 
modality, it is tasked with generating contextually 
coherent label sets corresponding to a single word 
input. Coherencer is a serial algorithm that 
implements a heuristic local hill search.  

ܻ ൌCoherencerሺܲܥ,  ሻݍ
1. Initialize ܳ, ܴ, ܥ, ଵܻ 
2. For ݊ ൌ 1 to |ܳ| െ | ଵܻ| do 
3.   Set ܭ௡, ܭ௡௬ 
4.   ௡ܻାଵ ൌ ሼሽ 
5.   If ∑ ௩ܲ௩∈௄೙ ൐  do ߣ
ሺݐ     .6 ௡ܻሻ ൌ 0 
7.   Else 
ሺݐ     .8 ௡ܻሻ ൌ min൫݂ሺ ௡ܻ, ሻ൯ݕ , ݕ∀ ∈ ௡ܻ 
9.   For ݕ ∈ ௡ܻ do 
10.     If ݂ሺ ௡ܻ, ሻݕ ൐ ሺݐ ௡ܻሻ do 
11.       ௡ܻାଵ ൌ ௡ܻାଵ ∪ ሼݕሽ 
12.     If | ௡ܻାଵ| ൌ 5 do 
13.       Return ௡ܻାଵ ∪ ሼݍሽ 
14.     Else 
15.       ܴ ∪ ሺ ௡ܻ െ ௡ܻାଵሻ 
ܥ       .16 ൌ ܳ െ ܴ 
17.       If |ܥ| ൐ 0 do 
18.         ௡ܻାଵ ൌ ௡ܻାଵ ∪ randሺܥሻ 
19.         ݊ ൌ ݊ ൅ 1 
20.       Else 
21.         Return ݃ଵ′ሺݍሻ ∪ ሼݍሽ 

Figure 1: Pseudocode for Coherencer. 

Coherencer’s algorithm proceeds as follows (see 
Figure 1 for pseudocode). First, the label set ଵܻ of 
the initial hypothetical instance ࢞ଵ in ݂ሺ⋅,⋅ሻ is 
defined as the top-4 labels with the highest 
conditional probability with the query (ݍ) or 

ଵܻ ൌ ሼݖ௞|∀ݕ ∈ ܻ. ܲሺݍ|ݕሻ ൑ ܲሺݖ௞|ݍሻ ൑ ܲ൫ݖ௝|ݍ൯, 1 ൑
݆ ൏ ݇ ൑ 4ሽ	. The function ݂ሺ⋅,⋅ሻ acts on the subset of 
 ௡, that contains the elements in theܭ called ,ܲܥ
current ௡ܻ and their corresponding conditional 
probabilities (i.e., ܭ௡ ൌ  

ቄ൫ܽ, ܾ, ܲሺܽ|ܾሻ൯ ∈ ,ቚܽܲܥ ܾ ∈ ௡ܻ ∪ ሼݍሽቅ). Specifically, 

the function ݂ሺ⋅,⋅ሻ sums over the conditional 
probabilities of the subset of triples in ܭ௡ that 
contain ݕ,  
௡௬ܭ				 ൌ ൛൫ܽ, ܾ, ܲሺܽ|ܾሻ൯ ∈ หሺܽܭ ൌ ሻݕ ∨ ሺܾ ൌ   ሻൟ,  orݕ

݂ሺ ௡ܻ, ሻݕ ൌ ∑ ௨ܲ௨∈௄೙೤   (5)

The function ݐሺ⋅ሻ evaluates the current total context 
 ሻ, outputs 0ߣ௡ and, if it passes a threshold ሺܭ
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allowing the algorithm to return ௡ܻ ∪ ሼݍሽ as a valid 
set of labels for the generated instance ࢞௡. 
Otherwise, it outputs the minimum ݂ሺ⋅,⋅ሻ value in 
௡ܻ, effectively discarding the associated label. We 

can express this formally as  

ሺݐ ௡ܻሻ ൌ 0, if ∑ ௩ܲ௩∈௄೙ ൐ (6) ߣ
ሺݐ ௡ܻሻ ൌ argmin൫݂ሺ ௡ܻ, ሻ൯ݕ , ݕ∀ ∈ ௡ܻ, 

if ∑ ௩ܲ௩∈௄೙ ൏  ߣ
(7)

where argmin returns the lowest ݂ሺ⋅,⋅ሻ value. 
Since | ଵ݃ሺݍሻ| ൌ 5 is a condition for the 

termination of the search, a new label ݕ′ is randomly 
selected from ܥ ൌ ܳ െ ܴ, where 
ܳ ൌ ሼݕᇱ|ܲሺݕᇱ|ݍሻ ൐ 0ሽ, 
ܴ ൌ ሼݕᇱᇱ|݂ሺ ௡ܻ, ᇱᇱሻݕ ൏ ,௡ሻ࢞ሺݐ 1 ൑ ݊ ൑ ሺ|ܳ| െ | ௡ܻ|ሻሽ. 
If at any point |ܥ| ൌ 0, the result will be 

݃ଵ′ሺݍሻ ൌ ቐݕ ∈ ௡ܻቮ
argmax

ᇱ
ቆ෍ ௩ܲ

௩∈௄೙
ቇ ,

1 ൑ ݊ ൑ ሺ|ܳ| െ | ௡ܻ|ሻ
ቑ (8)

where  argmax ′ሺ⋅ሻ selects the index with the highest 
corresponding value. 

Coherence Net is a hybrid of a number of 
features from evolutionary strategies, genetic 
programming, and neural networks. It was inspired 
by an attempt to give an artificial neural network 
representation to the standard evolutionary algorithm 
approach, which was originally inspired by DNA 
replication in a population of chromosomes 
(Holland, 1975).  

Coherence Net represents the standard 
chromosomal abstraction of evolutionary algorithms 
as a five-tiered tree of nodes similar to the derivation 
trees used in grammar guided genetic programming 
(GGGP; for review, see McKay, Hoai, Whigham, 
Shan, & O’Neill, 2010). Each tier ( ఊܶ) for 
1 ൑ ߛ ൑ 5 contains an ordered list of nodes. Each 
node contains a set of integers of cardinality 1, ߱, 2, 
2, and 5, for each respective tier. The integers are all 
in base-10 except for the first tier, which is in base-
2, and they index nodes of the next lowest tier 
( ఊܶିଵ). The parameter ߱ is the minimum number of 
bits needed to create an ordered list with the 
elements of	ܳ randomized, or Գଶ ൈ ܳ. Extra indices 
for a given ߱  are re-indexed modulus |ܳ|. For 
example, ߱ ൌ 12 encodes 4096 options but only 
2974 are needed; if a number, z, is greater than 2973, 
we take z modulus 2974 instead.  

Functionally, Coherence Net can be thought of as 
a parallelized version of Coherencer (see Figure 2 
for pseudocode). In place of ௡ܻ, we have a collection 
of instances of of ௡ܻ, ௡ܻ

∗ ൌ ሺ ௡ܻଵ, ௡ܻଶ, … , ௡ܻ௠ሻ for 
1 ൑ ݉ ൑ | ସܶ| that is represented by the nodes of ସܶ. 
All the elements of ௡ܻ

∗ are randomly initialized from 

ܳ with the possibility of repetition. ܭ௡
∗ and ࢞௡∗ are 

defined similarly with reference to ݉. The functions 
݂∗ሺ⋅,⋅ሻ and ݐ∗ሺ⋅ሻ differ by acting on ௡ܻ

ହ ⊂ ܻ∗: a 
random, 5 member subset of ௡ܻ

∗ that indicates a 
generalized hypothetical instance. Each ௡ܻ

ହ is 
represented by a node at ହܶ. The resulting function is  

݂∗൫ ௡ܻ
ହ, ௡ܻ௠൯ ൌ ቆ෍ ௩ܲ

௩∈௄೙೘
ቇ ൅ |ሼݑ ∈ |௡௠ܭ ௨ܲ ൐ 0ሽ| (9)

Note that the set added to the sum in ݂∗ሺ⋅,⋅ሻ, by 
acting on Գ while the sum acts on [0,1), places 
greater emphasis on all pairs of labels co-occurring 
at least once (i.e., ܲሺܽ|ܾሻ ൐ 0) than the conditional 
probability sums. This is the first major difference 
from Coherencer. The function ݐ∗ሺ ௡ܻ

∗ሻ indicates a 
constant threshold (߬) that determines acceptance of 
the entire set and termination of the search (like 
Coherencer’s ߣ). If the threshold is not passed, then 

൫∗ݐ ௡ܻ
ହ൯ ൌ argmax ቀ݂∗൫ ௡ܻ

ହ, ௡ܻ௠൯ቁ െ ߳, 

∀ ௡ܻ௠ ∈ ௡ܻ
ହ 

(10)

where ߳ is an infinitesimal. This function effectively 
filters the subset ௡ܻ

ହ to its maximum member in a 
variation of five member tournament selection (for 
the genetic algorithm equivalent, see Miller & 
Goldberg, 1995). If at any point the filtration results 
in the the number of unique tier-4 nodes being less 
than forty percent of ݉, or  |ሼܰ|∀ܰ ∈ ସܶሽ| ൏ 0.4݉, 
a destabilization step repopulates ସܶ such that 
|ሼܰ|∀ܰ ∈ ସܶሽ| ൌ ݉.  

ܻ ൌCoherenceNetሺܲܥ∗,  ሻݍ
1. Initialize ܳ, ܥ∗, ଵܻ

∗ 
2. For ݊ ൌ 1 to ܥ∗ do 
3.   Set ܭ௡

∗ 
4.   For ݉ ൌ 1 to | ସܶ| do 
5.     If ݂∗൫ ௡ܻ

ହ, ௡ܻ௠൯ ൐ ሺ∗ݐ ௡ܻ
∗ሻ do 

6.       Return ௡ܻ௠ ∪ ሼݍሽ 
7.   ௡ܻାଵ

∗ ൌ ሺሻ 
8.   While | ௡ܻାଵ

∗| ൏ | ௡ܻ
∗| do 

9.     Set ௡ܻ
ହ 

10.     If ݂∗൫ ௡ܻ
ହ, ௡ܻ௠൯ ൐ ൫∗ݐ ௡ܻ

ହ൯ do 
11.       ௡ܻାଵ ← ௡ܻ௠ 
22.   If |ሼܰ|∀ܰ ∈ ସܶሽ| ൏ 0.4| ௡ܻ

∗| do 
23.     ସܶ

ᇱ ← ሼܰ|∀ܰ ∈ ସܶሽ 
24.     While |ሼܰ|∀ܰ ∈ ସܶሽ| ൏ | ௡ܻ

∗| do 
25.       ସܶ′ ← 	 randሺԳழ| య்| ൈ Գழ| య்|ሻ 
26.   For ܾ ∈ ଵܶ do 
27.     If ݐ∗∗ሺ ௡ܻ௠ሻ ൏ 1/| ଵܶ| do 
28.       ܾ ൌ ሺܾ ൅ 1ሻmodሺ2ሻ 
29.   ݊ ൌ ݊ ൅ 1 
30. Return ݃ଵ′∗ሺݍሻ 

Figure 2: Pseudocode for Coherence Net. 
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In order to search in parallel across the entire 
collection of ௡ܻ’s, we abandoned the sequential 
search in favor of a purely stochastic ‘noise’ step. 
The noise step causes stochastic fluctuations in the 
elements of  ܳ that are being instantiated in ௡ܻ

∗ over 
the course of ݊. Since ܳ can never be exhausted in 
this format, we define a new iteration cap ܥ∗ ൌ 50 
for ݊. As with Coherencer, we define a variation of 
ଵ݃ሺ⋅ሻ 

݃ଵ′∗ሺݍሻ ൌ ቊݕ ∈ ௡ܻቤ
argmax

ᇱ
൫݂∗∗ሺ ௡ܻ௠, ሻ൯ݕ ,

1 ൑ ݊ ൑ ∗ܥ
ቋ ∪ ሼݍሽ (11)

We then define two new functions, ݂∗∗ሺ⋅,⋅ሻ and 
 .ሺ⋅ሻ, in order to account for the noise step∗∗ݐ

The function ݂∗∗ሺ⋅,⋅ሻ is defined on the local 
context ( ௡ܻ௠) and computes the current probability 
that the label ݕ ∈ ௡ܻ௠ will change from fluctuations 
at ଵܶ using the inclusion-exclusion principle. 
Formally this can be described by  

݂∗∗ሺ ௡ܻ௠, ሻݕ ൌ ܲሺ⋃ ௜ܣ
ఠ
௜ୀଵ ሻ ൌ

∑ ܲሺܣ௜ሻ െ
ఠ
௜ୀଵ ∑ ܲ൫ܣ௜ ∩ ௝൯ܣ ൅௜ழ௝

∑ ܲ൫ܣ௜ ∩ ௝ܣ ∩ ௞൯ܣ െ⋯൅௜ழ௝ழ௞

ሺെ1ሻఠିଵܲሺ⋂ ௜ܣ
ఠ
௜ୀଵ ሻ  

(12)

where ߱ is the cardinality of sets in ଶܶ and ܣ௜ ൌ
1/| ଶܶ|, ∀݅ is defined as the probability of a bit 
changing in the noise step. Since the probability of 
each bit changing is independent and, thus, the 
probability of multiple bits changing is the product 
of the constant ܣ௜, equation 10 can be simplified to  

݂∗∗ሺ ௡ܻ௠, ሻݕ ൌ ∑ ሺെ1ሻ௞ିଵ൫௡௞൯1/| ଶܶ|௞
ఠ
௞ୀଵ   (13)

(see Brualdi, 2010). The function ݐ∗∗ሺ ௡ܻ௠ሻ ൌ
randሺ0,1ሻ acts as the pseudo-random number 
generator for the stochastic function ݂∗∗ሺ⋅,⋅ሻ. Since 
the noise step can result in ௡ܻ௠ ∉  mainly ,ܲܥ
൛൫ܽ, ܾ, ܲሺܽ|ܾሻ൯หܽ, ܾ	 ∈ ܻ, ܽ ൌ ܾൟ, we expand ܲܥ to 
∗ܲܥ ൌ ܲܥ ∪ ሼሺܽ, ܾ, െ100ሻ|ܽ, ܾ	 ∈ ܻ, ܽ ൌ ܾሽ in order 
to avoid these invalid sets. 

5 METHOD 

There are two models that were compared: 
Coherencer and Coherence Net. The entire 
Peekaboom database was filtered to remove all 
images with fewer than five labels and any labels 
that only occurred in those images. A total of 8,372 
labels and 23,115 images remained after filtration. 
The images were compressed to ܲܥ and ܲܥ∗. 

Each of the 8,372 labels was processed by both 
models 5 times per threshold. Each query plus four 
returned labels are the elements of a new, 
hypothetical image instance. The results for each of 

the algorithms were assessed with regard to the 
original images. If at least one of these images 
contained the five labels that were selected by a 
particular algorithm, including the query, the 
algorithm scored one point. If there were no images 
containing the five labels, they did not score a point. 
The results were averaged for each threshold. 

6 RESULTS 

The results are reported in Figure 3 for each of the 
models across half of the parameter space, which 
ranges from 0 to 1. Both models level off after a 
threshold of 0.5. The adjusted Wald confidence 
interval for binomial (success or fail) proportions 
was used (see Reiczigel, 2003). The max average 
percent correct for Coherence Net is 90.0 (n = 
7533.6) and for Coherencer is 79.3 (n = 6639.8). 
Pearson chi-square test demonstrates that the 
difference in the max number correct was 
statistically significant, χ2(1, N=16744) = 363.63,  
p <.000, φ = 0.15. 

 

Figure 3: Percent correct for each model across the 
threshold parameter space. 

7 DISCUSSION 

The results support the notion that Coherence Net 
outperforms Coherencer at generating hypothetical 
image label sets. It provides one of the first machine 
learning techniques designed for generative 
cognition. This, in turn, lends greater support to both 
the related theories described by Vertolli and Davies 
(2013; 2014) and Thagard (2000). 

Thagard (2000) proposed both serial 
optimization techniques and parallel or connectionist 
techniques as valid approaches for dealing with 
contextual coherence. Thagard argues that the 
parallel structure better approaches the global 
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optimum by avoiding local optima. However, before 
concluding his discussion, Thagard states explicitly 
that serial algorithms are important for 
understanding bounded rationality in humans. 

Vertolli and Davies (2014) have shown that 
functionally serial processing techniques can be 
better than parallel algorithms when the feature set is 
low level (e.g., conditional probabilities), low 
dimensionality (e.g., only one feature), and high 
combinatoric load. However, they leave open the 
possibility that some combination of parallel and 
serial techniques could explain how bounded 
rationality approaches optimal functionality. 

The current work supports and extends these 
authors by implementing a parallelized serial 
processing system with similarities with 
connectionist approaches in its artificial neural 
network representation: Coherence Net. As Thagard 
predicted, greater parallelization increased the 
optimality of the system as a whole. We have also 
extended their work by providing a formal 
description of the task and algorithms. 

It is worth noting that, outside of the quantitative 
testing metric, it is challenging to interpret the literal 
output of each of the models. At times, it is clear 
why Coherence Net outperformed Coherencer. For 
example, given the query ‘robber,’ Coherence Net 
returned ‘steal,’ ‘thief,’ ‘mask,’ and ‘jail’ while 
Coherencer returned ‘steal,’ ‘thief,’ ‘money,’ and 
‘square.’ Coherence Net’s result occurs in an image 
and Coherencer’s does not. However, for the query 
‘bank,’ Coherence Net returned ‘fruit,’ ‘away,’ 
‘keeps,’ and ‘an’ while Coherencer returned ‘hand,’ 
‘atm,’ ‘credit,’ and ‘keeps.’ Though Coherence 
Net’s output does occur in an image and 
Coherencer’s does not, it is not obvious which result 
is actually more desirable as a model of imagination. 

Another caveat is that many of the parameters 
used, especially the number the nodes at each tier, 
are arbitrary. Generally, more nodes improved the 
search space but increased the search time. We used 
1000 nodes for tiers 1 through 3 and 2500 nodes for 
tiers 4 and 5 as we found these numbers worked well 
in a reasonable amount of time. Future work will 
evaluate many of these properties in greater detail. 
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