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Abstract: In this paper we propose an innovative and improved variation of genetic operator crossover for the 
classification decision tree models. Our improved crossover operator uses heuristic to choose the tree node 
that is exchanged to construct the children solutions. The algorithm selects a single node based on the 
classification accuracy and the usage of that particular node. We evaluate this method by comparing it with 
the results of the standard crossover method where nodes for exchange are chosen at random. 

1 INTRODUCTION 

The decision tree classification method is one of the 
classifiers used in the machine learning field that is 
notorious for its ease of interpretation by human 
users and the ability to generalize the problem 
solutions (Cantu-Paz & Kamath 2003). Many 
methods for the construction of decision trees were 
proposed in the past, but our paper is focused on the 
evolutionary method of genetic programming. 
Genetic programming is a variation of the genetic 
algorithm where individuals in the generation are 
presented with a tree structure. Each individual 
presents one solution and the process of evolution 
consists of several genetic operators which create 
new individuals (crossover) or try to modify the 
existing ones (mutation) (Koza 1992). Our paper 
focuses on the crossover operator which is a method 
that generates new individuals from the parent trees 
in such a way, that some characteristics from both 
parents are represented in the child tree – therefore 
mimicking the natural process of mating, where 
DNA of humans is constructed from the genetic 
material from both parents. 

Crossover is heavily dependent on the type of 
representation used for individuals. Due to the 
standard representation of decision trees being done 
with a tree structure instead of an array, our focus 
was on the crossover for tree genotype – genetic 
programming. The crossovers on the tree are done 
by exchanging the subtrees from one individual to 
another, with the method of choosing these subtrees 
being the main question. We propose an innovative 

crossover method that tries to eliminate the weak 
parts of the tree individual, based on the partial 
accuracy of the subtrees and usage of that subtree. 

Rest of the paper is organized as follows. We 
start with the background overview of existing 
research done on the crossover operators of the 
decision tree models and other similar tree based 
problems. We continue with the description of the 
proposed improvement in the crossover operator, 
where we present the idea of the innovative 
crossover method. Following that, the experiment on 
the standard benchmark datasets, to evaluate the 
quality of our proposed improvement is presented. 
The results are backed up by the statistical methods 
and are supplemented with the interpretation of the 
results and the discussion. In the conclusion we 
summarize the paper and present the final verdict. 
Possibilities for further research are also discussed. 

2 RELATED WORK 

Koza (Koza 1992) describes the random subtree 
exchange crossover as a blind operator, due to no 
context being included in the crossover location 
choosing. He also introduced constrained crossover 
that exchanges only two matching subtrees (Koza & 
Noyes 1994). The positive effect of this is the 
maintenance of the context, which allows the 
subtress to evolve faster to its optimal form. 
However, this has its own limitations. Namely, there 
is no new genetic material entering the subtrees 
which eventually leads to the local optimum. 
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D'haeseleer takes a different approach, where he 
assigns a location to each node. He tries to extend 
the initial context preserving crossover from Koza 
by limiting the crossover so that only subtrees on 
same location can be exchanged with its strong 
context preserving crossover. As he states himself, 
the greatest weakness of this crossover is the 
resulting limited diversity, so he expands it with the 
weak context preserving crossover where the nodes 
exchanged have to have the same parent 
(D’haeseleer 1994). The main disadvantage of this 
type of location based crossover is that most of the 
times the nodes on the same location are not in the 
same context. 

Iba and Garis (Iba & de Garis 1996) used a 
heuristic search for subtrees, where the evaluation of 
each node was calculated with the mean square error 
value. By this criterion, the worst subtrees are 
replaced with the best subtrees. This method is 
similar to the one proposed in the paper. However, 
the search for the worst subtrees can select nodes in 
high depth levels, thus constructing large trees 
which was never evaluated on classification 
problem. In addition to that, we believe that 
substitution for best subtrees eventually leads to less 
diversified population of solution meaning that this 
kind of method has a potential to get stuck in local 
optimum early on in the evolution process. 

One very similar method to ours was made by 
Hengpraprohm and Chongstitvatana where they 
exchanged the worst subtrees with the best ones. 
They evaluated the subtrees, followed by the 
pruning and comparison of the fitness pre and post  
(Hengpraprohm & Chongstitvatana 2001). Same 
problems may arise here, as stated previously, 
replacing the worst subtrees with the best ones can 

prematurely result in local optima. 
Another context aware crossover was done by 

Majeed and Ryan in (Majeed & Ryan 2006a) and 
(Majeed & Ryan 2006b), where they make multiple 
children from two parent trees and select only one of 
them as the real successor that advances to the next 
generation. The crossover point in the second parent 
is chosen at random, while in the first parent every 
legal point is used. Surveys of evolutionary 
algorithms for decision trees by Barros et. al. 
(Barros et al. 2012) and  Espejo at. al. (Espejo et al. 
2010) do not mention any other heuristic crossover 
operators. 

Expansion of good building block ideas came 
from Zhang (Zhang et al. 2007) with his looseness 
controlled operator, where he used local hill 
climbing search to construct and evaluate subtrees. 
He introduces the evaluation function called “sticky” 
that evaluates how good do particular nodes perform 
together in parent-child relationship and perform 
crossover based on the stickiness values. 

3 CROSSOVER IMPROVEMENT 

Genetic operator crossover is one of the most 
impacting operators on the final solution of the 
whole process. Process of mating begins with two 
parent individuals that are selected (with the 
selection operator) for the creation of the child 
individual. The standard procedure is to select a 
random subtree in the first parent tree and exchange 
it for a random subtree from the second parent tree; 
the resulting tree is considered as the child 
individual. Our goal was to improve this process 
with heuristics in hopes of improving the results. 

 

Figure 1: Evaluation of nodes in the whole tree. 
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The nature of the decision tree is such, that we can 
calculate the basic performance metrics of each 
individual subtree, which is based on the instances 
that were processed by that particular subtree. Our 
hypothesis was that we can select the worst 
performing subtree from the first parent and replace 
it, so that the worst part of the tree will always be 
selected for the crossover and eliminated. This will 
produce the solutions with at least an equal and 
hopefully even better quality based on the 
classification metrics. 

For the evaluation of subtrees we initially used 
the overall classification accuracy of the subtree on 
its instances. The results showed that this produced 
somewhat better results based on the mean accuracy 
of the 100 experiments, but the results were not 
statistically significant. This crossover chose the 
nodes with worst accuracy, which were terminal in 
most instances and thus failed to make an impact by 
ignoring the nodes that were used the most but were 
in the higher levels of the tree. Mistakes made by the 
nodes in the tree on the lower levels impact the 
results much more that the nodes on the higher 
levels, so a change which would force the algorithm 
to choose more nodes on lower levels of decision 
tree was necessary. 

e = usage + error rate (1)

Based on this experience we introduced another 
metric to the evaluation of the subtrees – the usage 
of the root nodes on the subtrees. We reasoned that 
this process should replace the subtrees with the 
worst accuracy while at the same time giving more 
emphasis on more used subtrees (near the root of the 
tree) and essentially ignoring the nodes near the end 
of the tree which are the unfortunate consequences 
of randomness and processes just a few 
classification instances. Combined evaluation of 
nodes is calculated as the sum of the error rate (1 - 
accuracy) and the usage of the node as is show in the 
equation 1. Usage of the nodes is a percentage of 
classification instances processed in the node during 
the training phase of the genetic algorithm. This 
process ignores the root node. The evaluation of the 
nodes in the tree is shown in the Figure 1, where 
node with the black background is the node with the 
highest crossover evaluation and is chosen for the 
exchange with the random subtree with the second 
parent. 

4 EXPERIMENT 

Our  genetic algorithm  with proposed crossover was 

 
Table 1: Comparison of crossovers on several datasets by overall classification accuracy. 

Dataset Instances Avg standard 
cx 

Avg 
improved cx 

p Max 
standard 

Max 
improved 

autos 205 .4705 .5044 < .001 .62 .67 

glass 214 .5744 .5814 .136 .73 .77 

diabetes 768 .6382 .6444 .789 .70 .70 

iris 150 .9447 .9480 .629 1.00 1.00 

primary-tumor 339 .2601 .2741 .007 .38 .38 

sonar 208 .6067 .6740 < .001 .80 .80 

Table 2: Comparison of crossovers on several datasets by average Fscore. 

Dataset No. of 
classes 

Avg standard 
cx 

Avg improved 
cx 

p Max 
standard 

Max 
improved 

autos 7 .2069 .2460 < .001 .35 .41 

glass 7 .2623 .2913 < .001 .43 .50 

diabetes 2 .4899 .5121 .015 .62 .62 

iris 3 .9443 .9478 .597 1.00 1.00 

primary-tumor 22 .0321 .0419 < .001 .08 .09 

sonar 2 .5501 .6510 < .001 .79 .79 
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implemented and tested on six standard 
classification benchmark datasets. Characteristics of 
the used dataset and the results of the experiments 
are shown in the Table 1 and Table 2. Algorithm ran 
10 times on 10 folds on each dataset (100 times in 
total) in order to produce reliable results and 
minimize the chance of randomness. Accuracies in 
the Table 1 are means of accuracies on all 100 runs. 
In addition to mean of all accuracies, we calculated 
the average Fscore of all classes on the dataset for 
each run and included the mean of those in the Table 
2, for comparison. Independent samples Mann-
Whitney U test was conducted to ensure the validity 
of the results. We added the p-values for each test. 
Both, the results that are statically significant (p < 
0.05) and the instances where our improved 
algorithm achieved better best resulting 
classification model are bolded. Crossovers are 
labelled as CX. 

Basic genetic algorithm settings were the same 
for all of the datasets and were set as follows: 
evolution process ran for 2000 generations, with 
100% chance of crossover and 10% chance of basic 
random mutation. Each generation consisted of 150 
individual solution decision trees, where the best 
individual automatically advanced to next generation 
(one elite individual). Selection operator was chosen 
to be binary tournament, and the fitness evaluation 
method was based on the accuracy of the 
individuals. 

Table 1 and Table 2 show, that our proposed 
crossover operator not only matched, but improved 

the classification results on both metrics, the 
accuracy and the average Fscore, on used datasets. 
In datasets glass (p = 0.136), diabetes (p = 0.789) 
and iris (p = 0.597) the difference was not as 
dramatic as in other datasets, but average accuracy 
achieved is still better. Based on these results we can 
conclude that the proposed improvements to the 
crossover methods made significant improvements, 
which is unlikely due to chance, on chosen datasets. 
Out of six datasets, our algorithm matched 4 of them 
in the best resulting model and was better in other 2 
datasets in the overall accuracy. In the Table 2 and 
Figure 2, the same comparison is made but on the 
Fscore classification metric, where our algorithm 
found better average Fscore in all 6 datasets, where 
5 of them are statistically significant improvements. 
In 3 out of 6 dataset, our proposed algorithm 
achieved better maximal Fscore and matched the 
original crossover on the maximal score on 3 other 
datasets. The dataset iris was an outlier here, 
because both crossover methods achieved in perfect 
accuracy and Fscore. As can be seen from Figure 2 
no further improvement is possible on iris dataset. 
This also explains why no statistically significant 
improvement could be made with the iris dataset. 

Let us look in details why our improvement 
results in better solutions in accuracy and Fscore. 
Figure 3 compares two samples (from dataset sonar), 
one from each crossover, through evolution. Vertical 
axis shows accuracy of the best solution in the 
population.  From  results shown  in Figure 3 we can 

 

Figure 2: Fscore comparison between two crossovers. 
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Figure 3: Comparison in accuracy through evolution. 

see that algorithm with the standard crossover 
reaches its optimum much faster than the algorithm 
with our improved crossover. Figure 3 confirms that 
indeed, the algorithm with standard crossover 
reached its optimum already around 1400th 
generation, while algorithm with our improved 
crossover continues to run for another 600 
generations and reaching its optimum in generation 
1860. The difference between accuracy is ~0.5 in 
favour of our proposed crossover. 

5 CONCLUSIONS 

We proposed the innovative crossover operator that 
does not choose the place for the crossover process 
based at random but rather on the accuracy and 
usage of the subtree. As mentioned in the overview 
in the second chapter, no similar method was found 
in the tree classification models. This innovative 
method was tested on several datasets in our 
experiment, with the results showing significant 
increases in the metrics of overall classification 
accuracy and average Fscore of final tree models. 
Based on this we can assume that these result can be 
reproduced on other classification problem datasets. 
To corroborate this statement further studies are 
planned on more diverse, unbalanced, and otherwise 
unusual datasets. Additional research option would 
be to try and replace the overall accuracy in the 
evaluation of nodes with another metric such as 
Fscore or similar classification or decision tree 
evaluation metric. 
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