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Abstract: People detection is a task that has generated a great interest in the computer vision and specially in the surveil-
lance community. One of the main problems of this task in crowded scenarios is the high number of occlusions
deriving from persons appearing in groups. In this paper, we address this problem by combining individual
body part detectors in a statistical driven way in order to be able to detect persons even in case of failure of any
detection of the body parts, i.e., we propose a generic scheme to deal with partial occlusions. We demonstrate
the validity of our approach and compare it with other state of the art approaches on several public datasets.
In our experiments we consider sequences with different complexities in terms of occupation and therefore
with different number of people present in the scene, in order to highlight the benefits and difficulties of the
approaches considered for evaluation. The results show that our approach improves the results provided by
state of the art approaches specially in the case of crowded scenes.

1 INTRODUCTION

Within the computer vision field, particularly in the
research area of digital image and video processing,
there exists a rich variety of algorithms for segmen-
tation, object detection, event recognition, etc, which
are being used in security systems. The ability to de-
tect people in video and in particular detecting people
in crowded scenarios is the key to a number of multi-
ple applications including video surveillance, group
behavior modeling, crowd disaster prevention, etc.
Due to the rise in popularity of these applications over
the last years, people detection has gradually experi-
enced a great development. In parallel, interest on
reliable strategies to assess the quality of people de-
tection has also grown.

Currently, many different systems exist which try
to solve the problem posed by the task of detecting
people. The state of the art includes several success-
ful solutions working in specific and constrained sce-
narios. However, the detection of people in real world
scenarios such as airports, malls, etc, is still a highly
challenging task due to the multiple appearances that
different persons may have, heavy occlusions, spe-
cially in crowded scenarios, view variations and back-
ground variability.

The work presented in this paper has been focused
on the improvement of people detection in crowded

scenarios. To that aim, we use a part-based person
model and propose a statistical driven way of com-
bining the individual body part detectors in order to
detect persons even in case of failure on the detection
of any of the body parts. Thus, we are able to detect
people with nearly the same reliability whether they
are completely visible (people in front of the group)
or only partially visible (people behind). We validate
our approach and compare with the state of the art
on challenging crowded scenes from multiple public
video datasets.

The remainder of this paper is structured as fol-
lows: Section 2 describes the related state of the art;
Sections 3 describes the proposed approach; Section
4 discusses the experimental results. Finally, Section
5 summarizes the main conclusions and future work.

2 STATE OF THE ART

People detection methods from the state of the art
perform well in scenes with relatively small number
of pedestrians (Dollár et al., 2012b; Enzweiler and
Gavrila, 2009; Gerónimo et al., 2010), but these meth-
ods usually fail or significantly reduce their perfor-
mance in scenes with many subjects that partially oc-
clude each other. Various solutions or improvements
have been proposed in order to deal with the occlusion
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limitations, including directly intrinsic modifications
of the person model or using information from addi-
tional sources.

Most of the methods in the existing literature are
based on the appearance of the object of interest, i.e.,
a person. Appearance based approaches can be classi-
fied attending to the complexity of the model. Simple
person models define the person as a region or shape,
which can be described by means of a holistic model
(Dalal and Triggs, 2005; Dollár et al., 2012a). Com-
plex models define the person as collection of multi-
ple regions or shapes, i.e., part-based models, which
can be combined in order to be more flexible regard-
ing different poses and to support partial occlusions
(Felzenszwalb et al., 2010; Leibe et al., 2005). How-
ever, even such approaches have difficulties in dense
environments. The Implicit Shape Model (ISM) of
(Leibe et al., 2005) is improved in (Seemann et al.,
2007) by using a probabilistic formulation in order to
generate a model that is scalable from a general ob-
ject–class detector into a specific object–instance de-
tector, thus making the detection more reliable. The
detector in (Felzenszwalb et al., 2010) is improved
in (Girshick et al., 2011) by using a grammar model
which includes an additional “body part” simulating
possible occlusions. Also based on (Felzenszwalb
et al., 2010), in (Tang et al., 2014) a joint model is
proposed, which is trained to detect single people as
well as pairs of people under varying degrees of oc-
clusion.

Other approaches make use of additional exter-
nal information to the person model in order to in-
crease the detection performance in crowded scenar-
ios. The most typical ones include tracking (Garcia-
Martin and Martinez, 2012), motion (Patzold et al.,
2010), depth or 3D information, etc. The use of per-
son density estimation to improve person localization
and tracking performance in crowded scenes is pro-
posed in (Rodriguez et al., 2011). In (Milan et al.,
2014) a continuous energy minimization framework
for multi-target tracking, which includes explicit oc-
clusion reasoning and appearance modeling, is pre-
sented. Nevertheless, in the work presented in this
paper, we will disregard any possible additional im-
provement which could be achieved by using external
information to the person model. Instead of that, we
concentrate on the person model itself.

Most closely related to our work is the approach in
(Girshick et al., 2011), which demonstrates the advan-
tages of taking into account in the person model the
possibility of failure or occlusion of some body parts.
In our case, we do not specifically train the model to
capture specific occlusion patterns. We define a more
generic scheme in which the absence of any partic-

ular body part can be modelled by defining multiple
configurations of the part-based models learned dur-
ing the training phase. Therefore, we are able to deal
with occlusions by automatically selecting which of
all the possible person model configurations adjust
better to any kind of occlusion. In particular, we solve
the problem posed to the approach in (Girshick et al.,
2011) by crowded scenarios, where the range of pos-
sible different occlusions is much bigger and, there-
fore, the complexity of the grammar model and its
training increases exponentially.

There are also other approaches that make use of
person models based only on some parts of the body
as the head (Ali and Dailey, 2012) or head and shoul-
ders (Zeng and Ma, 2010) since these are the most
visible parts in crowded scenarios. Our solution can
be considered as a generalization where any possible
body part configuration is evaluated in order to take
advantage not only on this specific simplified models
but also any possible useful configuration.

3 APPROACH

Our proposed approach is based on the detector pre-
sented in (Felzenszwalb et al., 2010) but, instead of
using the confidence provided by each of the individ-
ual body-part detectors for every person candidate, we
define several body-part detectors configurations in
order to robustly cope with partial occlusions, which
profusely appear in crowded scenarios.

3.1 Base Algorithm

The detector in (Felzenszwalb et al., 2010) is a part-
based person model. It consists of mixtures of multi-
scale deformable part models in a star-structure de-
fined by a root model, where the root and each of
the deformable body parts are modeled by a HOG as
firstly proposed in (Dalal and Triggs, 2005).

The detector proposed in (Felzenszwalb et al.,
2010) definesN body parts positioned around the root
filter (n = 0), which models the appearance of the
whole body. TheN body parts are computed at twice
the resolution in relation to the root filter in order
to refine the detection based only on the root infor-
mation. Each of then detectors, included the root
(n = 0, ...,N), is modeled by a 3-tuple (Fn, vn,0, dn),
whereFn is the HOG filter response (detection con-
fidence) for partn; vn,0 is a two-dimensional vector
defining the relative position of partn with respect
to the anchor position (x0,y0) of the root; anddn is
a four-dimensional vector specifying coefficients of a
quadratic function defining the cost for each possible
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placement of the part relative to the anchor position.
TheBPn (x,y,s) represents the confidence at pixel po-
sition (x,y) for body partn (n = 0, ...,N) associated
to scales (s = 1, ...,S). Thus, the confidence score for
partn at scales is given as

BPn (x,y,s) = Fn (x,y,s)−〈dn,φ(dxn,dyn)〉 (1)

with

(dxn,dyn) = (xn,yn)− (2(x0,y0)+ vn,0) (2)

giving the displacement of partn relative to the anchor
and

φ(dx,dy) =
(

dx,dy,dx2
,dy2) (3)

defining the potential spatial deformation distribu-
tions. Figure 1-(c) shows one example of a multi-part
person model withN = 9.

The final detection confidence or scoreC(x,y,s) is
computed as the sum of the root andN body parts at
each pixel position and scale.

C(x,y,s) =
N

∑
n=0

BPn (x,y,s) (4)

The final multi-scale detection hypotheses are
extracted after a thresholding followed by a non-
maximum suppression process, used to eliminate pos-
sible repeated detections. The chosen threshold or
minimum score required in order to consider the de-
tected object as a person depends directly on the total
number of body parts detections.

3.2 Multiple Person Model
Configurations

The previously described approach (Felzenszwalb
et al., 2010) is based on the detection of several parts
and the combination of all of them. Since the total
score depends tightly on the number of parts detected,
this approach is not able to reliably cope with occlu-
sions. Therefore, it fails to detect people in groups,
where most of the persons are only partially visible.

In order to cope with any kind of body part occlu-
sion, we propose to use multiple person model config-
urationst (t = 1, ...,T ) with 1≤ T ≤ 2N , where each
person model configurationt consist of a subset ofM
body parts (m = 1, ...,M), with m ⊂ n of the original
detector (Felzenszwalb et al., 2010) and 1≤ M ≤ N.
Thus, the confidence for each configuration is defined
as

Ct (x,y,s) =
N

∑
n=0

αt
n ·BPn (x,y,s) (5)

whereαt is a binary selector vector for each con-
figurationt

αt
n =

{

1 , n ⊂ t

0 , otherwise
(6)

As in the base algorithm, the final multi-scale de-
tection hypotheses are extracted after a thresholding
followed by a non-maximum suppression process in
order to eliminate possible repeated detections. How-
ever, there are two main differences in our approach
with respect to the base algorithm. In first place, there
is not only one detection threshold, but there is one
for each configuration. Each minimum score required
is chosen to be coherent with the number and kind of
body parts taken into consideration (see Section 3.3).
In second place, we apply the non-maximum suppres-
sion process to the results provided by all the person
model configurations together.

3.3 Body Parts Contributions

Once defined the different person model configura-
tions, it is necessary to determine the decision thresh-
old or minimum score required for each configura-
tion in relation to the threshold used if considering
the whole set of body parts. To that aim, let con-
sider the confidence or score of each body partn as
a continuous random variableBPn and its associated
probability density functionfBPn(bpn), the final de-
tection confidence as a continuous random variableC
and its associated probability density functionfC(c).
The minimum confidencek required to consider a de-
tected object as a person corresponds to the probabil-
ity of FC(k) = P(C ≤ k).

Analogously, each configuration confidence can
be considered as a continuous random variable
Ct with an associated probability density function
fCt (ct). In order to estimate the minimum confidence
kt required for each configuration, it is necessary to
determine a correction factorRt that takes into ac-
count the number of body parts included in each con-
figuration and their respective contribution or infor-
mation relevance in relation to the original configu-
ration with N parts. For example, assuming that all
the body parts had the same contribution the correc-
tion factorRt =

1
N could be used for each configura-

tion t. Nevertheless, since the individual part detec-
tors are not equally discriminative, their contribution
to the overall model can not be considered the same.

Therefore, in order to estimate the contribution of
each body partn, we first estimate the similarity of
the distribution of the scores obtained by using the
configuration with the whole set of body parts (FC),
with the distribution of the scores obtained by using
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the configuration with all except the considered body
partn. To that aim, we use the Kullback-Leibler Di-
vergence (DKL) (Kullback and Leibler, 1951) and de-
fine the similarityKLn between each body partBPn to
the complete modelC as the Kullback-Leibler Diver-
gence between the distributionFC and the distribution
without that body partn, FC′ :

KLn = DKL(FC||FC′), beingC′ =
N

∑
i=0,i6=n

BPi (7)

This measure is normalized ¯KLn so that
∑

N

n=1
¯KLn = 1. Finally, the correction factorRt

is computed as the accumulative body parts contribu-
tions:

Rt =
N

∑
n=0

αt
n · ¯KLn (8)

A factor ofR= 1 means that there is not necessary
any correction on the decision threshold because the
considered configuration corresponds to the use of all
the body parts.

The minimum confidencekt required for each
configurationt with associated probabilityFCt (kt) =
P(Ct ≤ kt) is modified according to the original per-
son model confidencek and the corresponding correc-
tion factorRt :

FCt (kt) = 1−Rt(1−FC(k)) (9)

Therefore, the final probabilityFCt (kt) required
for each configuration is defined between the original
FC(k) and 1 (FC(k) ≤ FCt (kt) ≤ 1). The simpler the
person model (less body parts), the higher the prob-
ability (i.e., the confidence) required to detect a per-
son and vice versa. Figure 1 shows examples of per-
son model configurations, distributions, correspond-
ing correction factors and minimum confidence re-
quiredkt .

4 EXPERIMENTAL RESULTS

In order to evaluate our people detection approach,
we have tested it across several publicly available
datasets and compare its results with those pro-
vided by the base algorithm DTDP (Discrimina-
tively Trained Deformable Parts (Felzenszwalb et al.,
2010)), with those provided by the ISM (Implicit
Shape Model (Leibe et al., 2005)) and those provided
by one of the most recent and cited people detection
approaches from the state of the art ACF (Aggregate
Channel Features (Dollár et al., 2012a)). While the
DTDP and ISM are part-based detectors, the ACF is

a holistic approach.
As presented in this paper, our proposed approach

consists of multiple person model configurations. In
particular, according to the person model of nine body
parts (see Figure 1), we define twenty different con-
figurations (T = 20). Every configuration includes at
least the root and head body parts, from this basic
configuration (t = 1), we add progressively configu-
rations with consecutive body parts, i.e., root-head-
left shoulder, root-head-left and right shoulder, root-
head-left shoulder and left trunk, etc. The last config-
uration (t = 20) includes all the body parts and cor-
responds to the original configuration of the base al-
gorithm DTDP (Felzenszwalb et al., 2010). The body
part contributions (see section 3.3) have been trained
using the code provided in (Girshick et al., ) and the
INRIA dataset (Dalal and Triggs, 2005). The DTDP
results have been obtained using the available code
(Girshick et al., ) and the ACF results have been ob-
tained using the available code (Dollár et al., 2012a).

We evaluate all three methods on eleven challeng-
ing, publicly available video sequences with ground
truth (Milan et al., 2014) (TUD-Stadtmitte (Andriluka
et al., 2010), TUD-Campus and TUD-Crossing (An-
driluka et al., 2008), S1L1 (1 and 2), S1L2 (1 and
2), S2L1, S2L2, S2L3 and S3L1). The first three se-
quences are recorded in real-world busy streets, the
complexity in terms of crowd or occlusions is medium
or low (less than 10 pedestrians are present simul-
taneously). The last eight sequences are part of the
PETS 2009/2010 benchmark (PETS, ). We only use
the first view of each sequence in all our experiments.
They are recorded outdoors from an elevated view-
point, corresponding to a typical surveillance setup.
The sequences are classified originally according to
three scenarios (S1, S2 and S3) and three progressive
difficulty levels (L1, L2 and L3) for each scenario.
These scenarios include higher complexity in terms of
crowds and occlusions than the previous ones (gener-
ally more than 10 pedestrians are present simultane-
ously).

We classify the whole set of sequences indepen-
dently of the original scenario purpose (TUD se-
quences for people detection, S1 for person count
and density estimation, S2 for people tracking and
S3 for flow analysis and event recognition). In our
experiments, we classify the sequences according to
the number of people present simultaneously and,
therefore, the degree of occupation of the scene (low,
medium or high). Table 1 includes a description
of each sequence in terms of occupation (number
of pedestrian present simultaneously) and complex-
ity classification. Figure 2 shows sample images of
the used sequences.
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ExampleM1 = 2 ExampleM2 = 6 ExampleM3 = N = 9

0≤ R1 ≤ R2 R1 ≤ R2 ≤ R3 R3 = 1

FC2(k2)≤ FC1(k1)≤ 1 FC3(k3)≤ FC2(k2)≤ FC1(k1) FC3(k3) = FC(k)

(a) (b) (c)

Figure 1: Examples of person model configurations, distributions, corresponding correction factors and minimum confidence
required. (a) Example with root and head. (b) Example with root and 5 body parts. (c) Example with root and 8 body parts
(original model withN = 9 (Felzenszwalb et al., 2010)).

(a) (b)

(c) (d)

Figure 2: Experimental sequences examples: (a) TUD-Crossing, (b) PETS2009-S2-L1, (c) PETS2009-S1-L1-2 and (d)
PETS2009-S1-L2-1.
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(a) (b)

(c) (d)

Figure 3:Examples of people detection performance in terms of Precision-Recall curves.

Table 1: Experimental results. Occupation in terms of number of pedestrians present simultaneously. Complexity classifica-
tion. People detection performance in terms ofarea under the Precision-Recall curve (AUC-PR). Percentage increase (%∆1

and %∆2) calculated with respect to original performance DTDP and ACF respectively.

Occupation
Complexity

AUR-PR
Up to # DTDP ISM ACF Ours %∆1 %∆2

TUD-Campus 8 Low 0.76 0.76 0.80 0.80 +5.3 0.0
TUD-Stadmitte 6 Low 0.79 0.71 0.83 0.81 +2.5 -2.4
TUD-Crossing 8 Low 0.85 0.84 0.88 0.87 +2.4 -1.1
PETS2009-S1L1-1 34 Medium 0.63 0.45 0.630.67 +6.3 +6.3
PETS2009-S1L1-2 26 Medium 0.73 0.49 0.680.80 +9.6 +17.6
PETS2009-S1L2-1 42 High 0.48 0.30 0.440.56 +16.7 +27.3
PETS2009-S1L2-2 40 High 0.50 0.36 0.510.57 +14.0 +11.8
PETS2009-S2L1 8 Low 0.93 0.78 0.85 0.95 +2.2 +11.8
PETS2009-S2L2 35 Medium 0.66 0.55 0.580.75 +13.6 +29.3
PETS2009-S2L3 42 High 0.55 0.34 0.470.62 +12.7 +31.9
PETS2009-S3L1 7 Low 0.93 0.82 0.94 0.95 +2.2 +1.1

For evaluating people detection performance
based on ground-truth, we aim to compare the overall
performance of different detection systems, so we
have chosen the Precision-Recall (PR) evaluation

method. In order to evaluate not only the (binary)
yes/no detection but also the precise pedestrians
locations and extents, we use also the three criteria,
defined by (Leibe et al., 2005), that allow comparing
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hypotheses at different scales: the relative distance,
cover, and overlap. Only one hypothesis per object
is accepted as correct, so any additional hypothesis
on the same object is considered as a false positive.
In addition, we use the integrated Average Precision
(AP) to summarize the overall performance, repre-
sented geometrically as the area under the PR curve
(AUC-PR).

Figure 3 shows examples of results in terms
of PR curves over the sequences TUD-Crossing,
PETS2009-S2-L1, PETS2009-S1-L1-2 and
PETS2009-S1-L2-1. Table 1 shows results in
terms of AUC-PR. In both cases, the results show
clearly how the performance decreases for every
tested approach from the simplest sequences (TUD
sequences) to the medium and high complexity
sequences (PETS2009). The ACF detector provides
the best results over the simplest scenarios, where
there are few occlusions, but it provides worse
results than the DTDP over the scenarios with more
occlusions. The main reason for this behavior is that
the ACF detector is based on a holistic person model
and presents difficulties dealing with occlusions.
The DTDP detector provides good results over
the simplest sequences but worse than the ACF
detector; however, the DTDP detector is based on a
part-based person model and for this reason provides
better results over the complex sequences with more
occlusions. The ISM detector provides similar results
than the DTDP detector over the simplest sequences
but the worse results of all the three detectors over
the complex sequences. In this case, the feature-part-
based model is not robust enough to deal with partial
occlusions.

Our proposal, the “DTDP multi configurations”
provides better results than the DTDP detector in all
the cases. It is clear that the improvement is more
significant in those scenarios with higher complexity
or occupation (PETS2009 sequences with high
occupation, 12.7-16.7% improvement respect to the
original DTDP detector) than in those scenarios with
lower complexity (TUD and PETS sequences with
low occupation, 2.4-5.3% improvement). This was
expected, since the improvement possibilities on
those sequences with more occlusion difficulties is
higher.

Comparing our approach with the ACF detector,
our proposal provides similar or slightly worse
results on simple scenarios (TUD sequences with low
occupation: -2.4 to 0% improvement with respect
to the ACF detector), due to the lower performance
of the base detector DTDP. However, over those
scenarios with higher complexity or occupation,
our approach provides significant improvements

(PETS2009 sequences with high occupation, 11.8-
31.9% improvement respect to the original DTDP
detector).

The tests have been performed on aN AMD
Opteron(tm) Processor 4386 with a 4xCPU fre-
quency of 3 GHz and 4GB RAM. During our
experiments, the original DTDP computational
cost is around 3.6 seconds per frame with 640x480
images (TUD sequences) and around 4.9 seconds
per frame with 768x576 images (PETS sequences).
The proposedmulti-configurations approach includes
the same main core of the original approach and the
additional computational cost of computingT config-
uration confidences (see equation 5) instead of only
one (see equation 4). In the case of twenty different
configurations (T = 20), the computational costis
around 4.9 seconds per frame with 640x480 images
(TUD sequences) and around 6.2 seconds per frame
with 768x576 images (PETS sequences). Assuming
that we are able to run every configuration in parallel,
the final computational cost will be established by
the configuration with the maximum number of body
parts, i.e., the original DTDP computational cost.

To sum up, the results show how the proposed
combination of multiple configurations is more robust
to partial occlusions than the original DTDP detector.
In particular, our proposed detector provides better
results than all other reference detectors from the
state of the art (DTDP, ISM and ACF) over typical
sequences with a high degree of occupation (groups
of people together), where the presence of occlusions
is typical.

5 CONCLUSIONS

People detection methods from the state of the art per-
form well in scenes with relatively few people, but are
severely challenged by scenes with many subjects that
partially occlude each other. We observe that typical
occlusions are due to overlaps between people and
propose a people detector tailored to various occlu-
sion levels. We propose a generic multiple body parts
combination framework in order to deal with these
specific partial occlusions in crowded scenarios.

We have validated our approach and compared it
with other state of the art approaches on several pub-
lic datasets. The results, over sequences with differ-
ent number of people present in the scene simulta-
neously, demonstrate the achieved improvements in
typical crowded scenes where the number and range
of possible different occlusions are much higher than
in simpler scenarios.

As future work, we will try to extrapolate this
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scheme to other people detectors or even to any kind
of object part-based approach. In addition, we pro-
pose to explore other methods in order to estimate
both the probability density functions and the simi-
larity between them.
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