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Abstract: One of the most important purposes of information systems is to allow human users to retrieve their data
or information or knowledge derived from their data. These data may be subject to imperfections and often
represent time indications, as time is an important part of reality. Representations of time indications rely
on the information system’s time domain. Obviously, the effectiveness of an information system in retrieval
context depends greatly on the interpretability of the presentation of its data, information or knowledge. For
that reason, such data, information or knowledge is usually visualized. The work presented in this paper pro-
poses a novel approach to visualize time domain intervals subject to uncertainty and also shows how temporal
reasoning with these visualizations can be done. The presented novel approach considers gradual confidence
in the context of uncertainty and is specifically designed for time domain intervals.

1 INTRODUCTION

Typically, Information Systems (IS) contain data rep-
resenting properties of real-life objects or concepts.
As such objects or concepts often have temporal
aspects, many data in IS are used to representtime
indications, which indicate parts of time (Billiet
et al., 2013b), (Billiet et al., 2013a). In existing
literature, several proposals have been concerned
with the modeling of such time indications (Bolour
et al., 1982). The corresponding models are called
time models. Many of these proposals accepttime in-
tervals(Dyreson and et al., 1994), (Jensen and et al.,
1998), which can intuitively be seen as uninterrupted,
bounded periods in time, as primitives (Allen, 1983),
(Dyreson and Snodgrass, 1998), (Garrido et al.,
2009), (Billiet et al., 2012), (Billiet et al., 2013b),
(Billiet et al., 2013a) and approachinstants(Dyreson
and et al., 1994), (Jensen and et al., 1998), which
can intuitively be seen as infinitesimally ‘short’
moments in time, as special cases of time intervals.
Usually, the representations of time intervals in time
models are calledtime domain intervals. Therefore,
in the presented work, the focus will be on time
domain intervals. Moreover, as IS usually have
finite precision, time models are very often discrete.
Therefore, in the presented work, a general discrete
time model will be used.

Usually, a lot of the data in IS are made by

humans. However, human-made data are prone to
imperfections, like uncertainties (Pons and et al.,
2012), (Billiet et al., 2013b), (Billiet et al., 2013a).
As a consequence, time indications represented in IS
may contain such imperfections too. As uncertainty
is the most studied imperfection in time indications
in current literature, the work presented in this
paper will consider time domain intervals subject to
uncertainty.

One of the most important purposes of IS is to al-
low human users to retrieve their data or information
or knowledge derived from their data. Obviously, the
effectiveness of an IS strongly increases if it presents
its data, information or knowledge in such a way that
allows easy interpretation or processing by humans.
Usually, such interpretability is greatly improved
by visualizing the presented data, information or
knowledge in a schematic form. This certainly holds
for data, information or knowledge related to time
intervals (Qiang and et al., 2010), (Qiang and et al.,
2012).

Traditional approaches to visualizing time
(domain) intervals visually represent time (do-
main) intervals as line segments (Matkovic and
et al., 2007),(Kincaid and Lam, 2006),(Saito et al.,
2005),(Aigner and et al., 2005). Such approaches
are generally calledlinear approaches. Linear
approaches might introduce issues concerning, a.o.,
visual ordering and scalability (Qiang and et al.,
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2010),(Qiang and et al., 2012), which have a di-
rect, negative impact on the interpretability of the
visualization.

In an attempt to deal with such issues, an ap-
proach has been introduced in which time intervals
are visualized as points in the image plane (Kulpa,
2006). Based on this, Van De Weghe et al. intro-
duced a similar approach called theTriangular Model
(TM) (Van De Weghe et al., 2007). However, these
approaches consider the visualization of time inter-
vals and not time domain intervals, causing them to
not be immediately usable in the context of IS. More-
over, these approaches do not account for imperfec-
tion. In (Qiang and et al., 2010), an approach is pro-
posed that does consider imperfection in time inter-
vals. However, this approach doesn’t consider gradual
confidence in the context of uncertainty and doesn’t
consider time domain intervals. In (De Tré and et al.,
2012), an approach is proposed that does consider
such gradual confidence, but still doesn’t consider
time domain intervals. Moreover, this approach has
shown to be slightly too modest.

The first contribution of the work presented in
this paper is the proposal of a novel way to visualize
time domain intervals subject to uncertainty, where
the time model involved is a discrete one. This pro-
posal is presented in section 5. A second contribu-
tion is the proposal of a novel way of evaluating the
temporal relationships between a time domain inter-
val subject to uncertainty and a regular one. This is
presented in section 7. The final contribution of this
paper is the proposal of a novel way of evaluating the
temporal relationships between two time domain in-
tervals subject to uncertainty. This is presented in sec-
tion 8. Both approaches improve upon the approach
introduced in (De Tré and et al., 2012).

2 TIME MODELING IN
INFORMATION SYSTEMS

2.1 The Perception of Time by
Information Systems

IS usually see time as a totally ordered set of infinites-
imally short ‘moments’, which is the so-called time
axis. These ‘moments’ are calledinstants.

Definition 1. Instant (Dyreson and et al., 1994),
(Jensen and et al., 1998)
An instantis a time point on an underlying time axis.

Two instants define a subset of the time axis,
which is called atime interval.

Definition 2. Time Interval (Dyreson and et al.,
1994), (Jensen and et al., 1998)

A time intervalis the subset of the time axis con-
taining all instants between two given instants (and
no other).

Definition 3. Duration (Dyreson and et al., 1994),
(Jensen and et al., 1998)

A durationis an amount of time with known length,
but no specific starting or ending instants.

A time interval is bounded by two instants,
whereas a duration is not.

2.2 The Modeling of Time by
Information Systems

IS usually model time usingtime models.

Definition 4. Time Model
In a data model used by an IS, atime modelis the

collection of definitions, prescriptions and rules that
allow describing the structure and behavior of time.

A time model defines how time-related concepts
are represented in IS. To do this, a time model gen-
erally uses atime domain, which is the set of values
used to represent time indications, and a set of rules
and operations, which determine the behavior of the
elements of the time domain. Existing time models
can be categorized as to whether their time domain is
a continuous or discrete set. In the presented work, it
is assumed that the used time domain always is a dis-
crete set, which means the corresponding time model
is called adiscrete time model.

As the one used in the presented work, a discrete
time model usually models an underlying time axis
usingchronons.

Definition 5. Chronon (Dyreson and et al., 1994),
(Jensen and et al., 1998)

In a data model, achrononis a non-decomposable
time interval of some fixed, minimal duration.

To model a time axis, a time model usually uses
a sequence of consecutive chronons. Every such
chronon corresponds to exactly one element in the
model’s time domain, where the ordering of the con-
secutive time domain elements reflects the temporal
ordering of these chronons. These chronons have the
same duration and are the smallest time intervals an
IS using the time model can distinguish.
An instant is usually modeled as a single element of
the time domain, corresponding to the chronon con-
taining the instant, whereas a time interval can be mo-
deled as atime domain interval.
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Definition 6. Time Domain Interval
In a data model, atime domain intervalis a set

of (one or more) consecutive time domain elements,
used to represent a set of consecutive chronons which
are used to represent a time interval.

The time model used in the presented work is con-
structed as follows. Consider a time axisT, which
is a totally ordered set of instants. The time model
now contains a totally ordered setD of consecutive
chrononsci , i ∈ Z, in T, equipped with a surjective
mappingm fromT to D. Thus,D is defined by

D= {ci |(ci = [ti , ti+1[) ∧ (i ∈ Z)}

Here, everyti , i ∈ Z is an instant inT. The map-
pingm is now defined by

m : T → D

: t → ci = [ti , ti+1[ , for whichti ≤ t < ti+1

Now, the time model is considered to be used by
an IS and to contain a time domainE to that purpose,
whereE is defined asE= {ei |(i ∈ Z)}.

Every elementei , i ∈ Z of this domainE now
uniquely corresponds to a single chrononci ∈ D, i ∈
Z. Two consecutive elements ofE always correspond
to two consecutive elements ofD, maintaining the or-
dering. As such, time indications will be represented
using values ofE:

• an instantt ∈ T will be modeled as the element
e∈ E for which e corresponds to the chrononc∈
D to whicht is mapped bym.

• a time interval[ts, te] ⊆ T will be modeled as the
interval [es,ee] ⊆ E for which es, respectivelyee
corresponds to chrononcs ∈ D, respectivelyce ∈
D to whichts, respectivelyte is mapped bym.

Any IS can now employ this time model by instan-
tiatingE, which is only assumed to be totally ordered.
The presented work will only consider closed time do-
main intervals. This does not limit the applicability of
the presented proposal, because of the discrete nature
of the time domain.

As mentioned before, the work presented in this
paper aims to reason with time domain intervals.
Usually, such reasoning requires the modeling of
temporal relationships. In current literature, sev-
eral proposals have been concerned with the mode-
ling and behavior of temporal relationships (Allen,
1983), (Allen, 1991), (Galton, 1990). As opposed to
standard mathematical interval relationships, tempo-
ral relationships describe relationships with specific
semantics because of the temporal nature of the inter-
vals and their connection to time. Allen (Allen, 1983),
(Allen, 1991), (Galton, 1990) most notably proposed

time

  equal J

Figure 1: A linear visualization of Allen’s relationships.
Time interval I is visualized here as a grey line segment,
time interval J as a black line segment.

a framework describing such temporal relationships
between time (domain) intervals. Figure 1 visualizes
the temporal relationships Allen discerned.

3 UNCERTAINTY IN TIME
DOMAIN INTERVALS

3.1 Uncertainty and Possibility Theory

Different causes for uncertainty exist. Among oth-
ers, uncertainty about the outcome of an experiment
can be caused by a (partial) lack of knowledge: it
could be known that only one outcome may occur,
but as the experiment is not perfectly and comprehen-
sively known or controlled, the outcome of the exper-
iment may be unknown and thus uncertain. Confi-
dence in the context of uncertainty caused by a (par-
tial) lack of knowledge is modeled using possibility
theory, where possibility is interpreted as plausibil-
ity, given all available knowledge (Bronselaer et al.,
2013).

Based on prior experiences, it is the belief of the
authors that uncertainty concerning time is usually
caused by a (partial) lack of knowledge. Therefore,
the work presented in this paper only considers un-
certainty caused by a (partial) lack of knowledge and
uses possibility theory to model confidence in this
context. In this paper, possibility is always interpreted
as plausibility, given all available knowledge.
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3.2 Ill-known (Time Domain) Intervals

The work presented in this paper will allow time do-
main intervals to be subject to uncertainty by allowing
them to beill-known time domain intervals. Before
this concept can be explained, the concept ofpossi-
bilistic variablesshould be introduced.

Definition 7. Possibilistic Variable (Bronselaer
et al., 2013)

A Possibilistic variableX on a universeΩ is a
variable taking exactly one value inΩ, but for which
this value is unknown. The possibility distributionπX
on Ω, associated with X, models the available know-
ledge about the value that X takes: for each u∈ Ω,
πX(u) represents the possibility that X takes the value
u.

When a possibilistic variable is defined on a uni-
verse containing intervals, it defines and describes an
ill-known interval(Billiet et al., 2012), (Billiet et al.,
2013b), (Billiet et al., 2013a):

Definition 8. Ill-known Interval (Billiet et al.,
2012), (Billiet et al., 2013b), (Billiet et al., 2013a)

Consider a totally ordered set S containing sin-
gle, atomic values and its powerset℘(S). Consider
the subset℘I(S) of℘(S) and let℘I(S) contain every
element of℘(S) that is an interval, but no other el-
ements. Now consider a possibilistic variable XĨ on
℘I (S). The unique, exact value XĨ takes, which is
unknown and which is an interval containing single
values of S, is called anill-known interval in the pre-
sented work. Seen as the ill-known interval defines
and describes an interval in S, it is also called anill-
known interval inS.

The interpretation is that an ill-known interval in a
setSrepresents a specific, precise interval inSwhich
is unknown. To clarify the difference, an interval not
subject to any imperfection (including uncertainty)
will be called aregular interval in this paper. In the
presented work, ill-known intervals will be denoted
using upper case letters, with a ‘tilde’-sign on top,
e.g.: Ĩ .

The presented proposal will considerill-known
time domain intervals.

Definition 9. Ill-known Time Domain Interval
An ill-known subset of a time domain of a time

model is called anill-known time domain interval.

4 TIME DOMAIN INTERVAL
VISUALIZATION

The Triangular Model (TM) comprises a set of rules
indicating how to visualize intervals as points in an

image plane (Kulpa, 2006), (Van De Weghe et al.,
2007). In this section, an adaptation of this technique,
which is used in the presented work, is presented.

Consider a time domainE. The determination of
the point visualizing a time domain intervalI ⊆ E us-
ing the TM is illustrated in figure 2. The lower half
of this figure contains a traditional linear visualiza-
tion of I = [ts, te] ⊆ E. The upper half of the figure
contains a visualization ofI ⊆ E using the TM. In or-
der to accomplish this visualization, first, an interval
in E should be chosen so that its starting element lies
before the starting element ofI and its ending ele-
ment lies after the ending element ofI . This chosen
interval is visualized as a horizontal straight line seg-
ment in the image plane (Qiang and et al., 2010), (Van
De Weghe et al., 2007), accommodated with vertical
ticks, which visualize the elements ofE. This interval
is called thereference interval. In figure 2, it is given
the denotation ‘E’. To visualizeI = [ts, te] ⊆ E in an
image plane equipped with a visualization of this ref-
erence interval, first the locations of bothts andte on
the line segment representing the reference interval
are determined. Next, a straight half-lineLs is drawn
on the image plane, its initial point being the afore-
mentioned location point ofts and another straight
half-line Le is drawn on the image plane, its initial
point being the aforementioned location point ofte.
These two half-lines are drawn in such a way that they
intersect in a pointp and that the sizeα of the angle
formed byLs and the line segment bounded by the lo-
cation points ofts andte on the line segment represent-
ing the reference interval is exactly the same as the
size of the angle formed byLe and the same line seg-
ment (Qiang and et al., 2010), (Van De Weghe et al.,
2007). This pointp is called theinterval point(Qiang
and et al., 2010), (Van De Weghe et al., 2007) and the
sizeα is traditionally chosen to be 45◦.

5 VISUALIZING ILL-KNOWN
TIME DOMAIN INTERVALS

In this section, a construction method is described,
which can be used to visualize ill-known time domain
intervals as collections of points in an image plane.
This method is illustrated in figure 3.

Consider a totally ordered time domainE, exactly
as constructed in section 2.2, and its powerset℘(E).
Consider the subset℘I (E) of℘(E) and let℘I (E) con-
tain every element of℘(E) that is an interval, but no
other elements. Now consider an arbitrary ill-known
interval Ĩ ⊆ E, defined by possibilistic variableXĨ on
℘I (E), which is defined by possibility distributionπXĨ
on℘I (E).
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Figure 2: The visualization of an interval in time domainE
using the TM and the construction leading to it.

In order to accomplish the visualization ofĨ , first,
a reference interval is chosen so that its starting ele-
ment lies before every element desired to be visual-
ized and its ending element lies after every element
desired to be visualized. Now, to visualizeĨ in an
image plane equipped with such a visualization of
this reference interval, the following steps need to be
taken:

1. Consider the subset℘I (E) of ℘(E).

2. A setI Ĩ should be constructed, whereI Ĩ contains
all regular intervalsK ⊆ E for which πXĨ

(K) > 0
and only these intervals.

3. For every intervalK in I Ĩ fully visualizable in the
figure, the interval point ofK is drawn in the im-
age plane following the TM visualization tech-
nique explained in section 4. However, the gray
scale color intensity of the interval point of an in-
tervalK in I Ĩ now visualizes the possibilityπXĨ

(K)

of K of being the interval intended bỹI .

The visualization of̃I is now the collection of the
visualizations of all the intervals inI Ĩ . Visualizations
of different intervals may use different colors.
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Figure 3: The visualization of an ill-known interval in time
domainE using the TM and the construction leading to it.

Table 1: Allen Relationships corresponding to a DURZ.

Name Allen Relationships

B { before}
BM { before, meets}

BMS { before, meets, starts}
BMO { before, meets, overlaps}

BMOS { before, meets, overlaps, starts}
BMOSD { before, meets, overlaps, starts, during}
BMSD { before, meets, starts, during}

MO { meets, overlaps}
MOS { meets, overlaps, starts}

MOSD { meets, overlaps, starts, during}
MSD { meets, starts, during}

O { overlaps}
OS { overlaps, starts}

OSD { overlaps, starts, during}
SD { starts, during}
D { during}

OF-B { overlaps, finished-by}
DF { during, finishes}

DFM-B { during, finishes, met-by}
OF-BC { overlaps, finished-by, contains}

E { equals}
DFO-B { during, finishes, overlapped-by}

DFO-BM-B { during, finishes, overlapped-by, met-by}
DFO-BM-BA { during, finishes, overlapped-by, met-by, after}

DFM-BA { during, finishes, met-by, after}
F-BC { finished-by, contains}
FO-B { finishes, overlapped-by}

FO-BM-B { finishes, overlapped-by, met-by}
FO-BM-BA { finishes, overlapped-by, met-by, after}

FM-BA { finishes, met-by, after}
C { contains}

CS-B { contains, started-by}
CS-BO-B { contains, started-by}, overlapped-by}
S-BO-B { started-by}, overlapped-by}

O-B { overlapped-by}
O-BM-B { overlapped-by, met-by}

O-BM-BA { overlapped-by, met-by, after}
M-BA { met-by, after}

A { after}

6 DISCRETE UNCERTAIN
RELATIONAL ZONES

In this section, the concept ofDiscrete Uncertain Re-
lational Zones(DURZ) will be presented.

Consider a totally ordered time domainE, exactly
as constructed in section 2.2. Now consider an arbi-
trary ill-known intervalĨ ⊆ E and an image contain-
ing a visualization of̃I using the construction method
presented in section 5. It is now possible to discern 39
different collections of points in the image plane, de-
pendent on the visualization ofĨ . Each collection cor-
responds to a single set of Allen relationships. These
collections of points are called̃I ’s Discrete Uncer-
tain Relational Zones(DURZ). They are related to the
‘Uncertain Relational Zones’ introduced in (De Tré
and et al., 2012), but massively expand upon them.
Their visualizations are shown in figures??and?? in
the appendix. In these figures, each collection is given
a unique acronym name. DURZ will be referred to
in this paper using these acronyms. Table 1 shows,
for each DURZ, the unique set of Allen relationships
which corresponds to the DURZ.

Given a totally ordered time domainE, exactly as
constructed in section 2.2, an arbitrary ill-known in-
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terval Ĩ ⊆ E and a visualization of̃I using the con-
struction method presented in section 5,Ĩ ’s DURZ
in the image containing̃I ’s visualization can be con-
structed as follows.

Consider the visualizations of the earliest and lat-
est starting and ending points of regular intervals in
E with non-zero possibilities of being the interval in-
tended byĨ . For each of these visualizations, draw
two straight half-lines starting in the visualization
point and having angles with sizeα with the visualiza-
tion of the reference interval, but with different orien-
tations. Every collection of points now created by an
intersection of these lines, line segments between in-
tersections of these lines and area’s bounded by these
line segments and intersections is now a DURZ, in-
cluding the visualization of̃I itself.

The interpretation of such DURZ is the following.
Every interval point in a given DURZ visualizes a reg-
ular interval inE which has a non-zero possibility of
being in one of the Allen relationships corresponding
to the DURZ, with the interval intended bỹI .

7 TEMPORAL RELATIONSHIPS
BETWEEN AN ILL-KNOWN
AND A REGULAR TIME
DOMAIN INTERVAL

In this section, a technique is presented, which allows
to determine, for each existing Allen relationship, the
possibility with which an arbitrary regular time do-
main interval is in this Allen relationship with a given
ill-known interval in the same time domain.

Consider a totally ordered time domainE, exactly
as constructed in section 2.2. Now consider an arbi-
trary regular intervalJ = [ts, te] ⊆ E and a given ill-
known intervalĨ in E. Now consider the visualization
of Ĩ using the technique described in section 5, its
DURZ and the visualization ofJ using the TM mo-
del, all in the same image. Now, let the interval point
of J be part of DURZZ, which corresponds to the
set{Ri |(0≤ i ≤ n)∧ (i ∈ N)} of Allen relationships,
where everyRi ,0≤ i ≤ n∧ i ∈N is an Allen relation-
ship. For everyRi ,0 ≤ i ≤ n∧ i ∈ N, the possibility
π
(

JRi Ĩ
)

with whichJ is in Allen relationshipRi with
Ĩ is now found visually after the following construc-
tion.

1. The two straight half-linesLs andLe used to con-
struct J’s interval point are drawn.Ls’s initial
point ists andLe’s initial point is te.

2. Two more straight half-linesL′
s andL′

e are drawn.
L′

s has as initial pointts and is orthogonal toLs. L′
e

has as initial pointte and is orthogonal toLe.

E

Le

s

eZ

s

Figure 4: The evaluation of the temporal relationships be-
tween a regular time domain intervalJ and an ill-known
time domain interval̃I , whereJ is part of DURZ ‘O’.

3. If none of the half-linesLs, L′
s, Le or L′

e contain
any point in the visualization of̃I , thenZ corre-
sponds to a singleton of Allen Relationships{R0}.
In this case,π

(

JR0Ĩ
)

= 1, becauseJ is in Allen
relationshipR0 with Ĩ , regardless of which regular
intervalĨ is intended to be. An example of this sit-
uation is shown in figure 4. If one or more of the
half-linesLs, L′

s, Le or L′
e contain any point in the

visualization ofĨ , these will divide the collection
of points which is the visualization ofĨ in as many
sub-collectionsSCi ,(0≤ i ≤ n)∧ (i ∈ N) as there
are Allen relationships in the set corresponding to
Z. For this, any set of points of̃I ’s visualization
all contained by the same half-lineLs, L′

s, Le or
L′

e is also counted as a sub-collection. In fact,
every sub-collectionSCi ,0 ≤ i ≤ n∧ i ∈ N cor-
responds to a single Allen relationshipRi in this
set: the sub-collectionSCi contains every point
sci, j ,0≤ j ≤ mi ∧ j ∈ N, wheremi is the amount
of points inSCi , for which J is in this Allen rela-
tionshipRi with the regular interval havingsci, j as
interval point.

4. For everyRi ,0 ≤ i ≤ n∧ i ∈ N, it is now easy to
determineπ(JRi Ĩ):

π
(

JRi Ĩ
)

= supsci, j∈SCi
(πĨ (sci, j))

Here,πĨ (sci, j ) is the possibility thatsci, j is the inter-
val point of the regular interval intended bỹI . An
example of this situation is shown in figure 5.

8 TEMPORAL RELATIONSHIPS
BETWEEN TWO ILL-KNOWN
TIME DOMAIN INTERVALS

In this section, a technique is presented, which allows
to determine, for each existing Allen relationship, the
possibility with which an arbitrary ill-known time do-
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main interval is in this Allen relationship with a given
ill-known interval in the same time domain.

Consider a totally ordered time domainE, exactly
as constructed in section 2.2. Now consider an arbi-
trary ill-known intervalJ̃ in E and a given ill-known
interval Ĩ in E. Now consider an image containing
the visualizations of̃I andJ̃ and the DURZ of̃I . Two
possibilities may be discerned:

• The visualization ofJ̃ is completely contained in
a single DURZ corresponding to a singleton of
Allen relationships{R0}. In this case, indepen-
dent of which regular interval̃J is intended to be
and independent of which regular intervalĨ is in-
tended to be, the possibilityπ

(

J̃R0Ĩ
)

that J̃ is in
Allen relationshipR0 with Ĩ is 1. This is because
every regular interval with a non-zero possibility
of being the regular interval intended bỹJ is in
Allen relationshipR0 with every regular interval
with a non-zero possibility of being the regular in-
terval intended bỹI . An example of this situation
is shown in figure 6.

• The visualization ofJ̃ either is completely con-
tained in a single DURZ corresponding to a set
{Ri,0|(0≤ i ≤ n)∧(i ∈N)} of Allen relationships,
where everyRi,0,0≤ i ≤ n∧ i ∈N is an Allen rela-
tionship, or the visualization of̃J is partially con-
tained in different DURZZ j corresponding to sets
{Ri, j |(0 ≤ i ≤ n)∧ (0 ≤ j ≤ m)∧ (i ∈ N)∧ ( j ∈
N)} of Allen relationships, where everyRi, j ,0≤
i ≤ n∧0≤ j ≤ m∧0≤ j ≤ n∧ i ∈N∧ j ∈N is an
Allen relationship. In these cases, the possibility
π
(

J̃Ri, j Ĩ
)

that J̃ is in Allen relationshipRi, j with
Ĩ is given by:

π
(

J̃Ri, j Ĩ
)

= sup∀J∈J̃ min
(

πJ̃ (J) ,π
(

JRi, j Ĩ
))

Here, allJ are arbitrary interval points iñJ and
πJ̃(J) is the possibility that the regular interval in-
tended byJ̃ is J. The formula above illustrates
that for every regular intervalJ considered, both

E

Ĩ

Le

s

�

Z

s

0

1
2

Figure 5: The evaluation of the temporal relationships be-
tween a regular time domain intervalJ and an ill-known
time domain interval̃I , whereJ is part of DURZ ‘BMO’.

E

ĨLe

s

�Z

s

Figure 6: The evaluation of the temporal relationships be-
tween ill-known time domain intervals̃J and Ĩ , whereJ̃ is
part of DURZ ‘O’.

E

ĨLe

s

�

s

Figure 7: The evaluation of the temporal relationships be-
tween ill-known time domain intervals̃J and Ĩ , whereJ̃ is
completely part of DURZ ‘BMO’.
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Figure 8: The evaluation of the temporal relationships be-
tween ill-known time domain intervals̃J and Ĩ , whereJ̃ is
partially part of DURZ ‘BMO’, ‘MO’ and ‘O’.

the possibility thatJ is intended byJ̃ and the pos-
sibility that J is in the Allen relationship with̃I
should be accounted for. This conjunction is mo-
deled by using the minimum-operator. Examples
of these situations are shown in figures 7 and 8.

9 CONCLUSIONS AND FUTURE
WORK

In this paper, a novel method is presented to visualize
and temporally reason with ill-known time domain in-
tervals. This method is specifically designed for time
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domain intervals and accounts for graded confidence
in the context of uncertainty. Based on the belief that
the source of uncertainty in time usually is a (partial)
lack of knowledge, possibility theory is used to model
confidence. Future work is expected to focus on ad-
vanced querying of such temporal data, using the in-
troduced novel methods for temporal reasoning, and
eventually on data mining in the context of such tem-
poral data.
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APPENDIX 

               
(a) DURZ ‘B’     (b) DURZ ‘BM’.     (c) DURZ ‘BMS’.    (d) DURZ ‘BMO’.   (e) DURZ ‘BMOS’. 

             

(f) DURZ ‘BMOSD’.   (g) DURZ ‘BMSD’.    (h) DURZ ‘MO’.       (i) DURZ ‘MOS’.      (j) DURZ ‘MOSD’. 

         
(k) DURZ ‘MSD’.     (l) DURZ ‘O’.    (m) DURZ ‘OS’.    (n) DURZ ‘OSD’.        (o) DURZ ‘SD’. 

       
   (p) DURZ ‘D’.           (q) DURZ ‘OF-B’.     (r) DURZ ‘DF’.            (s) DURZ ‘DFM-B’.  

Figure 9: The First 19 Collections of Points in the Image Plane Corresponding to the DURZ in a Visualization of the Ill-
Known Interval Ĩ. 

         
      (a) DURZ ‘OF-BC’.        (b) DURZ ‘E’.Ĩ        (c) DURZ ‘DFO-B’.   (d) DURZ ‘DFO-BMB’.    (e) DURZ ‘DFO-BM-BA’. 

         
        (f) DURZ ‘DFM-BA’.              (g) DURZ ‘F-BC’.               (h) DURZ ‘FO-B’.      (i) DURZ ‘FO-BM-B’.       (j) DURZ ‘FO-BM-BA’. 

         
       (k) DURZ ‘FM-BA’.          (l) DURZ ‘C’.     (m) DURZ ‘CS-B’.    (n) DURZ ‘CS-BO-B’.       (o) DURZ ‘S-BO-B’. 

         
           (p) DURZ ‘O-B’.          (q) DURZ ‘O-BM-B’.   (r) DURZ ‘O-BM-BA’.       (s) DURZ ‘M-BA’.             (t) DURZ ‘A’. 

Figure 10: The following 20 collections of points in the image plane corresponding to the DURZ in a visualization of the 
ill-known interval Ĩ. 
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