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Abstract: An adaptive LQG control with no control cost is considered. In such case the loop transfer recovery (LTR)
effect can be obtained. The control problem is handled using discrete-time state-space model and the parameter
estimation is performed for corresponding ARMAX model which can be represented in innovation state-space
form. Thus the direct estimation of model parameters is possible by means of standard ERLS procedure and
the adaptive control is implemented throughcertainty equivalence principle. In such a situation the problem
of solution continuity of Riccati equation can arise for nonminimum-phase systems. Computer simulations of
third-order systems modeled by a second-order minimum-phase and nonminimum-phase models are given to
illustrate the robustness and performance properties of the adaptive controller, particularly with respect to the
modelling error parameterη.

1 INTRODUCTION

The problem of adaptive LQG/LTR control is not
much investigated in the literature. It is known that
even without LTR an adaptive LQG control itself is
difficult to solve in optimal manner. Adaptive LQG
control has been discussed e.g. in (Kumar, 1983;
Bitmead et al., 1990; Tay and Moore, 1991; Kro-
likowski, 1995; Mäkilä et al., 1984; Duncan and
B.Pasik-Duncan, 1999), where in (Tay and Moore,
1991) an adaptive LQG/LTR problem was solved aug-
menting the basic estimator-based controller with a
stable proper linear system feeding back the estima-
tion residuals. This idea was also used for non-
adaptive continuous-time systems in (Tay and Moore,
1989) using theH∞/H2 optimization technique. The
LQG/LTR problem for continuous-time systems was
considered in (A. Saberi and Sannuti, ) where the
analysis of loop transfer recovery is given for not nec-
essarily left invertible and not necessarily minimum-
phase (mph) systems.

The key issue in adaptive LQG control is the
closed-loop identifiability. For example in (Kumar,
1983) a discrete-time system and a cost-biased least-
squares parameter estimation was used in order to
achieve overall asymptotic system optimality. In
(Duncan and B.Pasik-Duncan, 1999) a continuous-
time system was considered and a modified weighted
least-squares parameter estimation algorithm was
used to obtain good properties of estimates. In both

papers only a fully state observation case was consid-
ered.

In this paper, LQG adaptive control with LTR ef-
fect is considered. The adaptive discrete-time LQG
control with no control cost (cheap control) is pro-
posed when the full LTR effect, at least for mph sys-
tems can be obtained. The controller/filter parameters
are tuned on-line based on parameter identification
of ARMAX model. This can sometimes lead to dis-
continuous behaviour of solution to Riccati equation
depending on system parameters (Saberi and Stoor-
vogel, 1996). Asymptotic performance and robust-
ness properties are analyzed and simulations for third-
order system considered as a second-order model are
given. The impact of modelling error parameterη on
performance, robustness and solution discontinuity of
corresponding Riccati equation is underlined.

2 LQG/LTR PROBLEM FOR
DISCRETE-TIME SYSTEMS

The state-space discrete-time system is given by

xt+1 = Fxt +Gut +wt (1)

y
t

= Hxt + vt (2)

wheren,m,r are dimensions of the state, control and
output vectors, respectively and where{wt} and{vt}
are sequences of independent random vector variables

802 Horla D. and Krolikowski A..
Adaptive LQG/LTR Control; Discontinuity Issue.
DOI: 10.5220/0005121408020807
In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2014), pages 802-807
ISBN: 978-989-758-039-0
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



with zero mean and covariancesEwtw
T
s = Σwδt,s,

vtv
T
s = Σvδt,s.

The Kalman predictor for (1), (2) in steady-state is
given by

x̂t+1/t = Fx̂t/t−1+Gut +Kpỹp
t

(3)

where ˜yp
t
= y

t
−Hx̂t/t−1 is an innovation of output at

time t. The predictor gain is given by

Kp = FPf HT [HPf H
T +Σv]

−1 (4)

wherePf is the solution of Riccati equation

Pf = FPf FT +Σw −FPf H
T [HPf H

T +Σv]
−1HPf FT (5)

The filtered estimate ˆxt/t in terms ofx̂t/t−1 is

x̂t/t = x̂t/t−1+K f ỹ
p
t

(6)

and its recursive version is

x̂t+1/t+1 = Fx̂t/t +(I−K f H)Gut +K f ỹ
f
t+1

(7)

where ˜y f
t+1 = y

t+1
−HFx̂t/t and the filter gain

K f = Pf HT [HPf H
T +Σv]

−1, (8)

soKp = FK f in view of (4). An alternative equation
for (7) is

x̂t+1/t+1 = Fx̂t/t +Gut +K f ỹ
p
t+1

(9)

The Kalman filter-based control law

ut = Kcx̂t/t (10)

aims to minimize the cost function

J = E
∞

∑
t=0

yT
t

Qy
t
. (11)

where the gainKc is given by

Kc =−[GT PcG]−1GT PcF (12)

andPc is the solution of Riccati equation

Pc = FT PcF −FT PcG[GT PcG]−1GT PcF +Q (13)

When the weighting matrix isQ = HT H and assum-
ing that the system (1), (2) is stabilizable, detectable
and mph then it can be shown (Tadjine et al., 1994),
(Maciejowski, 1985) thatKc takes very simple form

Kc =−(HG)−1HF. (14)

and the optimal cost function is

Jopt = trHT H[Σw +FPf FT ]. (15)

If G(z) = H(zI −F)−1G is mph andKc takes a form
(14) then the perfect recovery takes place, that is

∆(z) = G(z)G f (z)−Φ(z) = 0, (16)

where the transfer functionG f (z) of compensator de-
fined by (7) and (10) can be manipulated into the form

G f (z) = −zKc[zI − (I−K f H)(F +GKc)]
−1K f =

= −zKc[zI −F −GKc]
−1K f , (17)

and the filter’s open-loop return ratio is

Φ(z) = H(zI−F)−1Kp. (18)

Putting (14) into (16) it can be seen that∆(z) = 0 so
the recovery takes place. WhenG(z) is nonminimum-
phase (nmph) then the perfect recovery is in general
not possible, however is recommended because the
partial recovery is frequently achieved in closed-loop
bandwidth.
The robustness in the presence of additive modeling
error i.e. G∗ = G+ηGp, can be measured by means
of the||H||∞ norm of sensitivity transfer function

S(z) = (I +G(z)G f (z))
−1, (19)

by checking up the inequality

η||Gp(z)||∞||G f (z)S(z)||∞ ≤ 1, (20)

whereη||Gp(z)||∞ is an upper bound of additive mod-
eling error.
It can be noted that for the Kalman predictor-based
feedback controlut = Kcx̂t/t−1 the perfect recovery
cannot in general be possible.

3 ADAPTIVE CONTROL

The SISO ARMAX model is given by

A(q−1)yt = B(q−1)ut +C(q−1)et (21)

where A(q−1),B(q−1) and C(q−1) are polynomials
in the backward shift operatorq−1, i.e. A(q−1) =
1 + a1q−1 + ... + anq−n,B(q−1) = b1q−1 + ... +
bnq−n,C(q−1) = 1+ c1q−1+ ...+ cnq−n andyt is the
output ,ut is the control input, and{et} is assumed
to be a sequence of independent variables with zero
mean and varianceσ2

e . Unknown system parameters
θ = (a1, ...,an,b1, ...,bn,c1, ...,cn)

T are estimated on-
line to obtain an updated model at timet, i.e. θ̂t .
ARMAX model (21) has an equivalent innovation
state-space representation

xt+1 = Fxt + gut + keet (22)

yt = hT xt + et (23)

where g = (b1, ...,bn)
T , ke = (c1 − a1, ...,cn −

an)
T , hT = (1,0, ...,0)

F =







−a1 1 ... 0
. . ... 0

−an−1 . ... 1
−an . ... 0






.
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For ARMAX system different forms of Kalman fil-
ter can be proposed. One of them takes the Kalman
predictor (3) associated with eq.(22) as

x̂t+1/t = Fx̂t/t−1+ gut + kpỹp
t (24)

where ˜yp
t = yt − hT x̂t/t−1 andσ2

ỹ,p is the variance of
ỹp

t for which it holdsσ2
ỹ,p = σ2

e . The predictor gain is
now given by

kp = (FPf h+σ2
eke)[h

T Pf h+σ2
e]
−1 (25)

wherePf is the solution of Riccati equation

Pf = FPf F
T + kekT

e σ2
e − (FPf h+ keσ2

e)×

×[hT Pf h+σ2
e]
−1(FPf h+ keσ2

e)
T (26)

The actual model used for control is obtained for cur-
rent parameter estimatesθ̂t . The LTR control law (14)
is especially useful for adaptive control because there
is no need solving the Riccati equation (13) for ev-
ery modelθ̂t , and the feedback gainKc can be tuned
directly, however this holds only for mph systems.
The investigated problem is to check up how the mod-
eling error influences the performance, robustness and
parameter estimation quality of adaptive control.

4 THE DISCONTINUITY ISSUE

The stability of the proposed adaptive control sys-
tem depends not only on the magnitude of modeling
error but also on the asymptotic convergence of pa-
rameter estimates. The parameter estimation in LQG
adaptive control does not in general assure the con-
vergence to the true parameters, even in the lack of
modelling error. Moreover, it is known that the so-
lutions of Riccati equation may have discontinuities
as a function of system parameters. This can oc-
cur for non left-invertible and nmph systems (Saberi
and Stoorvogel, 1996). Obviously, possible discon-
tinuities have impact oncertainty equivalence-based
control and the closed-loop global stability cannot be
guaranteed. The concept of left-invertibility plays
here a crucial role. System (1) withr ≥ m is said to
be left-invertible if it satisfies

max
z

rankPl(z) = n+m (27)

where

Pl(z) =

[

zI −F −G
H 0

]

.

If the system is not left-invertible then it is almost
always possible to find parameter perturbations that
cause discontinuity (Saberi and Stoorvogel, 1996).
Even if the system is left-invertible discontinuity
problems can occur when the system is nmph.

5 SIMULATIONS

Consider an example of a third-order actual system

G∗(s) =
s+2

(s+1)(s+3)
+η

1
s+2

whose nominal modelG(s) is mph, so the caseη = 0
corresponds to the lack of modeling error andη =
1 is the case of undermodeling. Discretizing the
continuous-time system with ZOH and sampling pe-
riod Ts = 0.5s yields the following transfer function
in q−1 operator

G∗(q−1) =
−0.3262q−1−0.1224q−2

1−0.8297q−1 +0.1535−2 +η
0.3101q−1

1−0.3679q−1 .(28)

As already mentioned, a second-order model was
taken for identification andcertainty equivalence
principle was used to implement the adaptive control
system to demonstrate the robustness of adaptive con-
troller with respect to undermodeling.

The corresponding RLS parameter estimates of
the nominal model are shown in Fig.1, forη = 0 and
in Fig.2 for η = 1 where the noise varianceσ2

e was
set at 0.1. From Fig.1 one can see that forη = 0
parameter estimates converge to the true parameters
of second-order nominal model. It is to observe that
whenη = 1 as in Fig.2 the parameter estimates con-
verge to some stationary points, however different
from the true ones.

As a second example consider a third-order actual
system

G∗(s) =
−s+1

(s+1)(s+2)
+η

1
s+3

whose nominal model is nmph. Discretizing the
continuous-time system with ZOH and sampling pe-
riod Ts = 0.5s yields the following transfer function
operator

G∗(q−1) =
−0.1612q−1+0.2856q−2

1−0.9744q−1 +0.223q−2 +η
0.259q−1

1−0.223q−1 . (29)

From Fig.3 one can see that forη = 0 parameter
estimates again converge to the true parameters of
second-order nominal model. The case withη = 0.5
is shown in Fig.4. Again the parameter estimates
converge to some stationary points, however different
from true values.

Fig.5 shows the gainkc versusη obtained in
adaptive control for mph and nmph nominal systems
where both the formula (12) based on the Riccati
equation (13) and the formula (14) are used for cal-
culation ofkc. This is illustrated by left and right col-
umn, respectively. In the mph case the result is the
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Figure 1: MPH: estimates forη = 0.
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Figure 2: MPH: estimates forη = 1.
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Figure 3: NMPH: estimates forη = 0.

same for both formulae while for nmph nominal sys-
tem the gainkc calculated according to (12) and (14)
gives instability. The discontinuous jumps in nmph

case can be caused by discontinuity in solutions of the
Riccati equation (13) that can follow from parameter
estimates convergence to wrong values whenη > 0.
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Figure 4: NMPH: estimates forη = 0.5.
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Figure 5: Plot ofkc versusη.
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Figure 6: Plot ofJ and norms versusη.

This happens only when the system is nmph, more-
over the results obtained on the base of (14) give un-
stable gainskc.

In the case ofη> 0 a deterioration of cost function
is to be expected. This is illustrated in Fig.6 where
the simulated cost function (11) is plotted versusη for
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adaptive control and for nonadaptive control with sys-
tem parameters taken as their final estimates. The cost
function values forη= 0 areJ0 = 0.1848,0.1828, and
J0 = 0.2998,0.2665 for mph and nmph nominal sys-
tems, respectively. Again, some jumps of cost func-
tion are observed in adaptive case forη > 0.

The norm condition of robust stability (20), for
both mph and nmph systems with known parameters
is also illustrated in Fig.6 forη = [0,2]. It can be ob-
served that robust stability margin for nmph system is
even larger than for mph system, i.e. the value ofη
at which the norm attains 1 is greater in the case of
nmph system.

The RLS algorithm was applied for parameter
identification of a considered ARX model and as al-
ready has been shown in Figures 1, 3 the estimates
converge to the true nominal values for both mph and
nmph systems.

For general ARMAX models, the recursive pseu-
dolinear regression (RPLR) or recursive prediction er-
ror (RPEM) algorithms should be applied. The results
shown in (Nilsson and Egardt, 2010), confirm that
RPEM is then more suitable in the considered under-
modelled situation taking into account the asymptotic
properties of the algorithms.

6 CONCLUSIONS

Simple adaptive discrete-time LQG control in the
context of LTR is presented. Parameter estimation of
ARMAX model is used for tuning the discrete-time
compensator. The interplay between robustness, per-
formance and estimation convergence with respect to
the modeling error is underlined. Examples of third-
order actual systems described by a second-order mph
and nmph nominal models are taken for simulation.
Simulation results show an effectivness of the adap-
tive LQG control with possible LTR effect as a way
for robustifying the adaptive control especially for
mph systems. On the other hand, problems with dis-
continuous solution of Riccati equation may occur for
nmph systems.
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