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Abstract: A lidar-based approach of an emergency braking system for teleoperated vehicles is presented. Despite the
time delay for the communication link of a teleoperated system, the vehicle has to be able to react to emerging
objects in time. Starting with intelligent sensor data processing, reliable information is computed. An adapted
particle filter algorithm tracks moving points to calculate their mean velocity, used for the prediction of sur-
rounding moving objects. Further, in order to interpret this information, a situation assessment based on an
intervention concept derived from Kamm’s circle is implemented. A motion prediction of possible trajectories
of the ego-vehicle results in a clear decision-making process. All calculations are made at the raw data level
and can be done online. Through artificial objects being included in real sensor data, the methodology was
validated.

1 INTRODUCTION

In the case of teleoperated vehicles an operator re-
places the real driver. Teleoperated driving is consid-
ered to be an intermediate step towards permanently
increasing automation of vehicles. Due to the human
operator, more complex traffic situations than in fully
automated systems can be managed (Diermeyer et al.,
2011). One of the challenges is the time delay for the
communication link between the operator and the ve-
hicle, which impedes a fast reaction compared to a
normal attentive driver. To guarantee a safety level
comparable to normal driving, the vehicle must be
equipped with an automatic emergency braking sys-
tem to avoid collisions. Further information on tele-
operated road vehicles and the system design for such
a vehicle can be found in (Chen et al., 2007) (Ware
and Pan, 2011) (Tang et al., 2013) (Gnatzig et al.,
2013).

The test vehicle, an AUDI Q7, is equipped with a
lidar sensor in the front, as shown in Figure 1. The
following approach is characterized by the exclusive
usage of the data of this sensor. The reflection points
are the only input of the braking system. The output is
a decision whether emergency braking is required or
not. This approach could also be used in autonomous
driving vehicles and has low requirements on the sen-
sor configuration.

Figure 1: Operating mode of the lidar sensor.

2 STATE OF THE ART

2.1 Categorization on Basis of
Specifications

There are already existing automatic emergency brak-
ing systems on the market. A categorization into three
different types is made on the basis of specifications:
Forward collision warning, which detects a potential
collision and warns the driver, Collision Mitigation
Braking System (CMBS), which detects a potential
collision and applies an emergency brake automati-
cally when the collision has become inevitable, and
collision avoidance, which can take action to fully
avoid a potential collision (Grover et al., 2013, p. 1).
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2.2 Intervention Strategies

Based on specifications of an emergency braking sys-
tem the intervention strategy depends on the brak-
ing deceleration, instant of time for braking and
initial velocity. The strategy here was presented
first by KOPISCHKE and shown amongst others in
(Kämpchen, 2007, p. 189), (Jansson et al., 2002),
(Hong et al., 2008) and (Stämpfle and Branz, 2008,
p. 13). The basis of this strategy is a vehicle with the
velocity vego heading for a static obstacle, illustrated
in Figure 2.

A constant deceleration abrake results in a brak-
ing distance dbrake depending on the ego velocity vego
where a collision can be avoided successfully:

dbrake =
v2

ego

2 �abrake
: (1)

The minimum distance for an obstacle avoidance
maneuver with a constant lateral acceleration ay is:

davoid = vego �
s

wego +wob

ay
; (2)

where wego and wob are the widths of the ego-vehicle
and the obstacle.

Calculating the distances dbrake and davoid as a
function of the ego velocity vego leads to the diagram
in Figure 3. It is obvious that up to a velocity vcrit a
collision can be avoided by braking exclusively.

3 SENSOR DATA PROCESSING

The SICK LMS291-S05 lidar sensor of the test ve-
hicle samples the environment with 181 measurement
points at a frequency of f = 75Hz. To reduce the total
amount of points that need to be checked, filtering is
essential. Measurement points of static and dynamic
objects are filtered separately.

vego

braking distance

.
Figure 2: Test scenario with an ego-vehicle heading for a
static obstacle.

3.1 Filtering of Static Objects

The filtering for static objects bases on the area that
can be reached with vehicle dynamics (Schmidt et al.,
2005). Assuming a constant velocity vego and a con-
stant lateral acceleration ay, a vehicle moves on a cir-
cular path with radius r:

r =
v2

ego

ay
: (3)

The distance of the segment of a circle dc that is
driven over in a period of time Dt is

dc = vego �Dt: (4)

For variable lateral accelerations the angle for
each segment of a circle calculates as follows:

g =
dc

r
=

ay

vego
�Dt: (5)

The endpoints of these trajectories result in an area
that can be reached with vehicle dynamics with con-
stant lateral acceleration. This area is shown exem-
plary for vego = 9 m=s and Dt = 5s in Figure 4. Every
(static) measurement point outside of this area is fil-
tered out to reduce computational effort.

3.2 Filtering of Dynamic Objects

3.2.1 Detection of Dynamic Points

The detection of dynamic points is achieved by a dy-
namic threshold operation. Assuming a minimum
speed for dynamic objects of vmin their measurement
points have to be moved during one time step dt for
at least

dmin = vmin �dt: (6)

Only points moving fast enough are passed on to the
next step.
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Figure 3: Braking distance and avoiding distance as a func-
tion of the initial ego velocity for ay = 8m=s2, abrake = 8 m=s2,
wego = 2m and wob = 2m, see (Stämpfle and Branz, 2008,
p. 13) (Jansson et al., 2002).
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3.2.2 Grouping and Selection

To reduce the number of moving points even more the
points are grouped. The longitudinal and the lateral
distance between two points is weighted differently,
the threshold depends on the distance like in (Thuy
and Puente Leon, 2009) and the maximum size of one
group of points is limited.

After the grouping step just two points of each
group are selected: therefore the two points of the lat-
eral edge of each group are moved to the minimum
longitudinal distance of this group. Thus the move-
ment of the underlying object is represented robustly.
The steps of grouping, translation and selection are
shown in Figure 5. It is obvious that if the point at
the top right is grouped with the right object in a later
time step, what is quite plausible, the selected points
of the right object won’t move that much. It is there-
fore easier to track them in the following step.

3.3 Particle Filter

To track the selected dynamic points from the last
subsection an adapted particle filter is used. For a the-
oretical background of particle filters for tracking ap-
plications, see e.g. (Almeida and Araujo, 2008) (Ris-
tic et al., 2004). The approach here is summarized in
Figure 6.

Each particle is modeled by an underlying con-
stant velocity movement model. With the steps pre-
diction, computing weights and a resampling step, re-
alized with an algorithm from (Thrun, 2013), it is pos-
sible to get reliable information about the amount and
direction of the velocity of objects.

After sorting all particles according to their
weights, an amount p of the best particles is chosen
and a mean velocity for each dynamic object is calcu-
lated. The result is a predicted direction of motion of
dynamic objects exemplary illustrated for tpredict = 2s
in Figure 7.
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Figure 4: Relevant area for sensor data filtering.

Unprocessed Measurement
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Figure 5: Grouping and selection of points.
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Figure 6: Overview of the particle filter algorithm.

4 SITUATION ASSESSMENT AND
BRAKING DECISION

4.1 Intervention Concept

The intervention concept is defined by a range of pos-
sible accelerations, which is provided to the operator.
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Figure 7: Prediction of a moving object.

Development�of�an�Emergency�Braking�System�for�Teleoperated�Vehicles�Based�on�Lidar�Sensor�Data

571



�6 �4 �2 0 2 4 6

�4

�2

0

2

4

6

8

Lateral Acceleration [m=s2]

L
on

gi
tu

di
na

lA
cc

el
er

at
io

n
[m
=s

2 ]

range of 95% of drivers
(Hackenberg and Heißing, 1982)
acceleration range (Biral et al., 2005)
acceleration range
(Wegscheider and Prokop, 2005)

Figure 8: Exemplary acceleration ranges for normal driving
situations .
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Figure 9: Lateral acceleration in speed range of city traffic
during test run.

Usually normal drives take place in specific accele-
ration ranges. Some exemplary acceleration ranges
for normal driving situations of different studies are
shown in Figure 8.

A test run with the experimental vehicle in speed
ranges of city traffic shows similar results. All accel-
erations remain within an interval of [�2;2] m=s2, as
can be seen in Figure 9. These plotted test runs were
carried out in normal drive mode, but teleoperated ve-
hicles are limited to a maximum lateral acceleration
of j2 m=s2j. Therefore, this approach is applicable.

In this specific application of teleoperated vehi-
cles, an acceleration range up to jamaxj= 4 m=s2 is pro-
vided to the operator. This method is based on the
principle of Kamm’s circle, summarized in Figure 10.
If a potential collision cannot be avoided within the
green circle from the operator, the emergency braking
system intervenes and brakes automatically within the
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Lateral AcceleratiLateral Acceleration
[m/s2]

Maximum provided acceleration range
of the operator
Minimum estimated acceleration range
of the emergency braking system

aavoid

aEB

ϕ
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Figure 10: Principle of the intervention concept based on
Kamm’s circle.

0 20 40 60
0

10

20

30

vcrit ≈ 40.7 km/h

vcrit,tel ≈ 57.6 km/h

Velocity [km/h]

D
is

ta
nc

e
[m

]

braking distance
avoiding distance
avoiding distance (teleoperated)

Figure 11: Speed range of full collision avoidance of the
emergency braking system.

minimal estimated acceleration range in the red circle.
With a supposed emergency braking decelera-

tion aEB;min = 8 m=s2 and a lateral avoiding maneu-
ver acceleration ay = 4 m=s2, the intervention of the
presented emergency braking system occurs earlier.
Therefore the critical velocity of Figure 3 rises up to
vcrit;tel � 57:6 km=h where collisions can be avoided
successfully, illustrated in Figure 11. The value of
aEB;min = 8 m=s2 is chosen intentionally low in case of
varying friction coefficients.

4.2 Motion Prediction of the
Ego-Vehicle by Trajectories

Combining all possible lateral and longitudinal accel-
erations in Figure 10 by varying j yields to emer-
gency braking trajectories that offer the opportunity
to predict the motion of the ego-vehicle in case of
a braking maneuver. The length of these emergency
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Figure 12: Motion prediction by trajectories.

braking trajectories dEB, respectively the braking dis-
tance with constant lateral acceleration, is

dEB =
v2

ego

2 �aEB
: (7)

The trajectories for an emergency braking decel-
eration aEB;min = 8 m=s2 and a maximum lateral accel-
eration of ay;max = 4 m=s2 are shown exemplary for two
different velocities in Figure 12.

For teleoperated vehicles there is a possibility to
limit the number of trajectories to the one already cho-
sen by the operator. The big benefit of a motion pre-
diction of the ego-vehicle by trajectories is that the
whole decision making process as to whether emer-
gency braking is required is simplified and these tra-
jectories just have to be checked for trafficability.

4.3 Decision-Making Process.

The decision-making process distinguishes between
drivable and occupied trajectories. If all trajectories
are occupied over a certain time period, emergency
braking is triggered. In Figure 13(a) some trajecto-
ries are occupied, but because of the existing possi-
bility to avoid the obstacle, no emergency braking is
required. The situation in Figure 13(b) is different,
where no avoiding or braking maneuver in the accel-
eration range of the operator can avoid the collision.
Therefore in this case the emergency system would
trigger a braking action.

5 VALIDATION WITH REAL
SENSOR DATA

5.1 Generation of Artificial Objects in
Real Sensor Data

To validate the presented system, artificial objects
were generated and included in real sensor data. In
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(b) Completely occupied
Figure 13: Decision making process by trajectories.

this way it was possible to generate various different
situations without losing the challenge of real sensor
data. The two created test runs, one for a static and
one for a dynamic object, are shown in Figure 14.
Because of errors in the data of the lidar sensor (mea-
surement points appear randomly at wrong positions),
it is advantageous not to brake until n time steps with
all trajectories being occupied to reduce faulty activa-
tions. In this case a value of n= 5 for a time increment
of dt = 0:01s has proved to be useful.

5.2 Analysis of the Test Runs

The system triggers the emergency braking in all
test cases early enough and avoids collisions success-
fully. One exemplary setting with a dynamic object is
shown in Figure 15. In Figure 15(a) an approaching
and correctly predicted object is shown. At t = 14:07s
in Figure 15(b) some trajectories are occupied for the
first time. In Figure 15(c) all trajectories are occu-
pied, but because of new drivable trajectories in Fig-
ure 15(d) less than 0:05s after the non drivable event
emergency braking is not triggered until t = 14:29s

vego vego

vob =

[
vx,ob

vy,ob

]Collision at
t = 15.0 s

Test Run with
Static Object

Test Run with
Dynamic Object

Figure 14: Generation of artificial objects in real sensor
data.
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Table 1: Moments of triggering for a static object.

Time Before Collision Stopping
Potential Collision Velocity vc Distance

ay;max = j8 m=s2j 0:33s 6:90 m=s -
ay;max = j2 m=s2j 0:64s - 0:43m

Trajectory known 0:79s - 1:96m

in Figure 15(f). Here the system initiates emergency
braking due to completely occupied trajectories for 5
time steps since t = 14:25s in Figure 15(e).

It is important to mention that the limitation in
acceleration for the operator allows a faster reaction
than in conventional braking systems. Assuming a
static object in the left front of the ego-vehicle, the
triggering of a braking maneuver can happen earlier
because of more limited vehicle dynamics. Figure
16 illustrates the different trajectories 0:34s before
a potential collision between conventional systems,
teleoperation with limited acceleration range and tele-
operation with one known trajectory, as presented in
(Gnatzig et al., 2012).

The setting in Figure 16(a) shows still one driv-
able trajectory in conventional systems and therefore,
no triggering of a braking maneuver occurs. The
method presented with a range of accelerations for
the operator of up to j2 m=s2j can trigger already at
t = 14:35s, 0:65s before a potential collision. Apply-
ing a trajectory-based shared autonomy control of the
vehicle, the trajectory determined by the operator is
known. In this case the braking system has to check
only this trajectory and can trigger even earlier. All
results for the moments of triggering are summarized
in Table 1.

6 SYSTEM PERFORMANCE

The sensor data processing presented operates fast
and effectively exclusively with sensor raw data. The
main problem is caused by the measurement errors
of the lidar sensor used that are not detected reliably.
The particle filter is able to track and predict moving
measurement points briskly and robustly.

In the situation assessment there are still faulty ac-
tivations because of measurement faults as described
above. But for correct sensor data the intervention
concept based on provided accelerations for the oper-
ator is well suited for teleoperated driving.

The computations in MATLAB code for a time
increment in real time of dt = 0:01s actually needs
dtcalc = 0:022s on a consumer Intelr CoreTM i7-
2620M CPU @ 2.7 GHz PC running Windows 7 Pro-
fessional with 8 GB RAM. But with the possibility of

externalizing code in a C- or Fortran-compiler, pro-
grams can easily run 10 to 20 times faster, which
makes the system presented real-time capable (Ge-
treuer, 2009).

7 CONCLUSION

This paper has presented a method for an emergency
braking system based on a lidar sensor. With sensor
data processing taking place at raw data level, it has
been possible to reduce the number of measurement
points significantly. By grouping points and selecting
two of them from the lateral edge, the object velocity
has mapped very well and in this way moving objects
have been tracked and predicted robustly. The situa-
tion assessment has compared these predictions with
possible trajectories of the ego-vehicle and derived a
decision as to whether braking is required or not.

The analysis of test runs has demonstrated the
functional capability and the short response time of
the system. In speed ranges of city traffic, collisions
can be avoided successfully. The emergency braking
system with calculations at raw data level enables a
fast reaction time. Furthermore, the application of this
system in teleoperated vehicles possesses two main
advantages compared to conventional automatic brak-
ing systems: First, a lateral acceleration of 2 m=s2 will
not be exceeded, which offers the possibility to react
earlier. Second, the trajectory the vehicle follows can
be clearly specified, which makes the decision pro-
cess more precise. Simulation examples show the ad-
vantages of the teleoperated system compared to con-
ventional systems, where collisions can be avoided
successfully.

8 FURTHER RESEARCH

Since lidar sensors are influenced by environmental
conditions, the choice of alternatives or sensor fusion
could further improve its robustness. Combined ob-
ject detection could make possible reactions which
depend on more than measurement points. In this way
a more detailed and adapted motion model of detected
objects in the particle filter would be able to predict
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Figure 15: Triggering of an emergency braking maneuver.
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Figure 16: Trajectories 0:34s before a potential collision in conventional driving compared to teleoperated driving (vego =
9:5 m=s).

movements better. Thereby a specific braking reac-
tion can be attributed to an object. The already ex-
isting video cameras of a teleoperated vehicle can be
used for that sensor data fusion. But all refinements
of models and an increasing level of detail must be

weighed up against a slower reaction time of the sys-
tem. Even though this system has been evaluated in
simulation, it still needs to be analyzed during field
tests to corroborate its validity.
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