
An Improved Real-time Method for Counting People in Crowded 
Scenes Based on a Statistical Approach 

Shirine Riachi, Walid Karam and Hanna Greige 
University of Balamand, Deir Al Balamand, Al Kurah, Lebanon 

Keywords: Crowd Counting, Indirect Approach, Feature Regression, SURF Features, PETS Dataset. 

Abstract: In this paper, we present a real-time method for counting people in crowded conditions using an 
indirect/statistical approach. Our method is based on an algorithm by Albiol et al. that won the PETS 2009 
contest on people counting. We employ a scale-invariant interest point detector from the state of the art 
coined SURF (Speeded-Up Robust Features), and we exploit motion information to retain only interest 
points belonging to moving people. Direct proportionality is then assumed between the number of 
remaining SURF points and the number of people. Our technique was first tested on three video sequences 
from the PETS dataset. Results showed an improvement over Albiol’s in all the three cases. It was then 
tested on our set of video sequences taken under various conditions. Despite the complexity of the scenes, 
results were very reasonable with a mean relative error ranging from 9.36% to 17.06% and a mean absolute 
error ranging from 1.13 to 3.33. Testing this method on a new dataset proved its speed and accuracy under 
many shooting scenarios, especially in crowded conditions where the averaging process reduces the 
variations in the number of detected SURF points per person. 

1 INTRODUCTION 

Real-time estimation of the number of people in a 
given area could be crucial for crowd management 
and safety purposes, especially in places witnessing 
mass gatherings of people (stadiums, theatres, holy 
sites, subway stations, etc.). For instance, such infor-
mation might be very useful to prepare evacuation 
plans in cases of potential threats. Moreover, an 
accurate estimation could lead numerous economic 
advantages like managing human resources, 
improving service quality and analyzing customers’ 
behavior. 

Early methods for people counting involve the 
use of turnstiles, thermal sensors, tally counters and 
light beams which represent the disadvantage of 
being inaccurate when more than one person is 
passing through the monitored gate at the same time. 
Besides, their use is limited to entrance gates and 
doors and cannot be extended to wider regions. 
Hence, it was necessary to rely on image processing 
techniques to provide a real-time automatic count of 
passing people through a certain region by analyzing 
a series of images captured with a video camera. 

Common methods for crowd counting make use 
of detection algorithms to spot faces, heads, human 

silhouettes, or other parts of the human body in 
order to estimate the count. These methods proved to 
be accurate in low-density crowds, but their perfor-
mance was drastically reduced in more crowded 
scenes involving a high-degree of occlusions. Recent 
methods aim at extracting some easily detectable 
scene features such as foreground pixels, edges, 
interest points, etc. A certain relation is then 
established between these features and the number 
of people. Some of these techniques could perform 
in real-time and with good accuracy especially in 
crowded scenes. 

To maintain the real-time feature while achieving 
better accuracy, we base our work on (Albiol et al., 
2009) winner of the PETS contest on people 
counting. We first detect interest points using the 
SURF algorithm (Bay et al., 2008). SURF is used 
for its stability and scale- and rotation-invariance 
(Bauer et al., 2007). Subsequently, static interest 
points are eliminated using ARPS (Adaptive Rood 
Pattern Search) block-matching technique (Nie and 
Ma, 2002). Finally, a linear relation is assumed 
between the remaining SURF points and the number 
of people. 

There are mainly two contributions of this paper. 
First, we improve on a feature-based real-time 
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people counting method from the state of the art by 
using a more stable, repeatable and scale-invariant 
interest point detector (SURF). Second, we test this 
method on a new, more challenging dataset of 
videos taken under various conditions, and involving 
different crowd densities and perspective effects in 
order to point out its strengths and weaknesses. 

2 RELATED WORK 

Recent research took advantage of the progress 
made in computer vision and image processing to 
devise robust crowd counting methods. These 
methods could be divided into two main categories: 
direct approach methods and indirect approach 
methods. The first, also called detection-based, aim 
at detecting people individually and counting them. 
Huang et al. (2011) perform ellipse detection for the 
whole human silhouette after extracting foreground 
blobs. The best-fit ellipse parameters are then used 
to determine the number of people in each blob. 
Zhang and Chen (2007) use a single Gaussian model 
for moving objects detection before people are 
segmented. To deal with the occlusions problem, 
they perform group tracking in order to keep record 
of the number of people in each group. 

To overcome the complex task of people 
segmentation, some techniques suggest detecting 
only visible parts of the body such as faces (Zhao et 
al., 2009), heads (Merad et al., 2010; Subburaman et 
al., 2012), or Ω-shaped head-shoulders region (Li et 
al., 2008; Zeng and Ma, 2010). While these methods 
could be advantageous in some cases, their use is 
limited to specific camera viewpoints and sparse 
crowds. 

Indirect approach methods, also called feature-
based, started receiving more attention lately for 
their ability to deal with occlusions and perspective 
effects. These techniques exploit various image 
features such as foreground pixels and interest 
points, and they map them to the number of people 
in the image through a certain learning process. 

An early real-time method developed by Davies 
et al. (1995) employs background removal 
techniques to obtain foreground pixels and edge 
pixels. Then a relation is established between the 
number of these pixels and the total number of 
people by combining these two measurements 
through a linear Kalman filter. A method proposed 
by Ma et al. (2004) performs geometric correction 
(GC) to bring all the objects at different distances to 
the same scale before establishing a linear relation 
between the scaled number of foreground pixels and 

the number of people. Similarly, a method proposed 
by Li et al. (2011) consists of extracting the 
foreground using an adaptive model for background 
subtraction. Two steps are then performed to remove 
the shadow treated falsely as foreground, first by 
analyzing the texture, and then the HSV values. 
Perspective effects are also accounted for by 
computing a normalization map where pixels are 
weighed according to the depth of the objects. Some 
low-level features such as total area, perimeter, edge 
pixels, etc. are extracted from each crowd blob and 
fed into a trainable regressor to estimate the output. 

Marana et al. (1997) suggested that the texture of 
a crowd image is strongly affected by the crowd 
density. They assumed that a low-density crowd 
image presents coarse texture patterns while a high-
density one presents fine texture patterns. Hence, 
texture features were extracted using two different 
methods: statistical and spectral. The statistical 
approach relies on Grey Level Dependence Matrix 
(GLDM) which estimates the probability of a pair of 
grey levels occurring in the image. The spectral 
approach uses frequency information by analyzing 
the Fourier spectrum. Recent texture-based methods 
include the one proposed by Chan et al. (2008) 
where the number of features extracted was 
increased to 28, and the Gaussian Process regression 
was employed to estimate the count. Also, Wen et 
al. (2011) use a set of well-established 2-D Gabor 
filters to extract global texture features, and the 
Least Squares Support Vector Machine (LS-SVM) 
to regress the output. 

The winner of the PETS2009 contest on people 
counting was an algorithm presented by Albiol et al. 
(2009). The authors detect corner points using the 
Harris corner detector. Motion vectors computed 
with respect to the previous frame are subsequently 
associated to the detected corners through a multi-
resolution block-matching technique, and corners 
with null motion vectors are filtered out. A constant 
number of points per person is assumed, so a linear 
relation is established between the remaining corner 
points and the number of people. Finally, the output 
is smoothed out by averaging over time to reduce the 
oscillations.  

Conceptually similar methods trying to account 
for perspective and density effects were lately 
introduced. Conte et al. (2010) use the SURF 
algorithm for interest point detection. Moving 
interest points are then divided into groups of people 
according to their distance from the camera. Also, 
the density of each group of points is computed. 
These measures with the number of points for each 
cluster are fed into a trainable regressor (ε-SVR) to 
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obtain the results. Fradi and Dugelay (2012) use the 
SIFT detector instead and perform perspective 
normalization at a pixel level. A density-based 
clustering algorithm is also employed to divide 
moving interest points into clusters according to 
their density, and Gaussian Process regression is 
trained to estimate the count. These methods 
achieved a high accuracy rate, but they represent the 
disadvantage of being computationally expensive, 
and they require a lot of training. 

3 PROPOSED METHOD 

To overcome the complexity of segmentation and 
detection algorithms, and to keep on the crucial real-
time characteristic of this system, we propose an 
indirect approach method that is strongly inspired by 
(Albiol et al., 2009). 

The flowchart of our system is represented in 
Figure 1, and its components are further explained 
throughout this section. 

 

 

 

 

 

 

 

Figure 1: Architecture of the proposed technique. 

3.1 SURF Points Detection 

In order to understand how interest points could 
relate to the number of people in an image, we start 
by defining them. An interest point is a point that 
has a well-defined position in the image space, a 
clear and well-founded mathematical definition and 
can be robustly detected. Examples of such points 
are corners (intersection of two edges), line endings, 
T-shapes, blobs, a point on a curve where the 
curvature is locally maximal, etc. The most widely 
used interest point detectors are: Harris corner 
detector, Scale Invariant Feature Transform (SIFT) 
and Speeded-Up Robust Features (SURF). 

As per (Conte et al., 2010), interest point detection is 
performed using the SURF algorithm (Bay et al., 
2008) instead of the Harris corner detector. The 
choice of the first is based on (Bauer et al., 2007) 
where various implementations of Harris, SIFT and 
SURF methods were tested and evaluated for 
invariance against rotation, scale change, image 
noise, change in illumination and change in view-
point. The authors concluded eventually that SURF 
is superior to the other two methods in terms of 
performance with respect to computational cost. 

The nature of the interest points detected is 
highly dependant on the algorithm employed. For 
instance, SURF is based on the Hessian matrix; 
therefore it detects blob-like features. Moreover, it 
uses a basic Hessian matrix approximation and relies 
on integral images. This approximation by box type 
convolution filters and the use of its determinant for 
interest point localization and scale selection renders 
SURF very fast and scale-invariant. The mathemati-
cal background of the SURF algorithm, described 
hereafter, highlights its efficiency when used in 
people counting systems. 

3.1.1 Integral Images 

The use of box type convolution filters becomes 
computationally expensive when the filters’ sizes 
increase. Therefore, integral images are associated to 
the original images in order to allow for fast compu-
tation of box type convolutions. 

The entry of an integral image IΣ(z) at a location 
z = (x,y) represents the sum of all pixels in the input 
image I within a rectangular region formed by the 
origin and z. 

0 0

(z) ( , )
j yi x

i j

I I i j




 

  
(1)

Using integral images, only three operations are 
needed to calculate the sum of intensities inside any 
rectangular area. This fact allows the use of big size 
filters without increasing the computational time. 

3.1.2 Hessian Matrix 

In their winning algorithm, Albiol et al. (2009) use 
the Harris corner detector. Assuming that corner 
points aren’t a main characteristic of the human 
shape, we suggest detecting blob-like features 
instead. This is ensured by the Hessian matrix-based 
SURF algorithm.  

The Hessian matrix H(z,σ) in a point z = (x,y)  
and at scale σ is given by: 

(z, ) (z, )
(z, )

(z, ) (z, )

xx xy

xy yy

L L

L L

 

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 (2)
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Where Lxx(z,σ) is the convolution of the Gaussian 

second order derivative 
2

2
( )g

x



with the image in 

point z, and similarly for Lxy(z,σ) and Lyy(z,σ). 
The discrete nature of the images requires the 

Gaussian derivatives to be discretized and cropped. 
Bay et al. (2008) took a step further by also approxi-
mating Gaussians with box type convolution filters 
(see Figure 2). 

       

Figure 2: The approximated second order Gaussian deri-
vatives for scale σ=1.2 in y- (Dyy) and xy- direction 
(Dxy), respectively. 

With such filters used on integral images, it is 
enough to find the sum of the intensities in each 
rectangle/square (which requires only three integer 
operations), multiply by the corresponding weight, 
and add the results for the whole filter instead of 
convolving it with the original image 

The blob response at a location z = (x,y) and 
scale σ is then given by the determinant of the 
approxi-mated Hessian: 

det(Happrox) = DxxDyy − (0.9Dxy)2 (3)

Dxx, Dyy and Dxy are the approximated Gaussians. 
The value 0.9 is used to ensure energy is conserved 
between Gaussians and approximated Gaussians. 
Given that |x|F is the Frobenius norm, 0.9 is obtained 
as follows: 

| (1.2) | | (9) |
0.9

| (1.2) | | (9) |

xy F yy F

yy F xy F

L D

L D
  (4)

Further normalisation is performed by maintain-
ing a constant Frobenius norm for all filters, and 
response maps are stored over space and scale 
allowing the detection of local maxima. 

3.1.3 Scale Space 

Creating a scale-invariant detector requires the 
interest points being found at different scales. This is 
usually achieved by building a scale space pyramid, 
where the base represents the lowest scale. The scale 
is then increased as we reach towards the top of the 
pyramid. Normally, to fill the pyramid upwards, the 

image is repeatedly smoothed by a Gaussian and 
sub-sampled. This sub-sampling might cause 
aliasing problems. Therefore, Bay et al. offer an 
alternative for this method where no sub-sampling is 
needed. Instead, they suggest filtering the original 
image by increasingly larger filters until reaching the 
top of the pyramid (see Figure 3). This isn’t compu-
tationally expensive because, as mentioned prev-
iously, the use of box type filters on integral images 
is independent of the filter’s size. 

 

Figure 3: Bay scale pyramid formed by iteratively filtering 
with increasing size filters until the filter’s size becomes 
larger than the original image. 

The scale space is also divided into octaves; each 
octave covers a scale change of factor at least 2. 
Therefore, an octave includes a constant number of 
scale levels obtained by filtering the image 
repeatedly with bigger filters until the initial filter’s 
size is more than doubled. Generally, three to four 
octaves are enough to cover all scales needed, and 
the octaves overlap to ensure full coverage of each 
scale. 

The filters used for the first octave increase 
symmetrically by 6 pixels for each new scale level. 
They are of sizes 9, 15, 21 and 27. For each new 
octave, the increment in the size of the filter is 
doubled. Subsequently, the filter sizes used for the 
second octave are 15, 27, 39 and 51 with an increase 
of 12 pixels. The remaining octaves are obtained 
similarly.  

3.1.4 Localisation 

After filtering with the approximated Gaussian 
filters in the three directions (x-, y- and xy-) to 
construct the scale pyramid, the determinant of the 
approximated Hessian matrix is evaluated spatially 
and over scales. Subsequently, a fast non-maximum 
suppression method is employed to detect local 
maxima in each 3×3×3 neighbourhood. 
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The positions of these maxima are then interpo-lated 
in space and scale by fitting a 3D quadratic. For this 
purpose, the Taylor expansion of the Hessian 
determinant is computed: 

2
T

2

1
(x) ( ) x x x

x 2 x
TH H

H H
 

  
 

 (5)

Where x = (x,y,s)T is the coordinate in image space 
and scale, and H(x) is the Hessian determinant at 
location x. Derivatives are approximated using finite 
differences formulas, and the interest point location 
x̂ is the extremum of this 3D quadratic, given by: 

2
1

2
x̂ ( )

x x

H H 
 

 
 (6)

Interpolation in scale space is particularly 
important as the difference between the first layers 
of each octave is large. Finding a sub-scale location 
of interest points can partially solve this issue.  

Finally, it’s worth noting that SURF is not only a 
detector, but also a descriptor that enables matching 
interest points in different frames. It uses techniques 
such as Haar Wavelet responses and sign of the 
Laplacian (i.e. trace of the Hessian matrix) to build 
64×64 descriptors of interest points neighbourhoods, 
allowing them to be matched with corresponding 
points in other images. As this feature wasn’t used in 
our case, it won’t be explained in detail here. 

3.2 Motion Estimation 

Interest points are detected at blob-like locations all 
over the image. But since only those belonging to 
people are needed, a method should be employed to 
remove irrelevant ones. Based on the assumption 
that all pedestrians in the image are moving, motion 
information could be used efficiently to extract static 
interest points and eliminate them. This assumption 
is true in most cases because even if a person is 
standing, slight movements of his arms, legs and 
head happen all the time. 

To estimate motion vectors efficiently, a well-
known block-matching technique from the state of 
the art was employed.  Based on (Barjatya, 2004), 
the Adaptive Rood Pattern Search (ARPS) algorithm 
(Nie and Ma, 2002) outperformed all the others in 
terms of accuracy and speed, therefore we choose to 
use it in our system. 

Like all other block-matching techniques, ARPS 
divides the image into macro blocks of a specific 
size (usually 16×16 pixels). A cost function is then 
intelligently minimized to match each block with its 
corresponding one in a previous frame. This change 
in position of corresponding macro blocks enables 

the computation of their motion vectors. Interest 
points are then assigned the motion vector of the 
macro blocks they fall into. 

The most widely used cost functions include the 
Mean Absolute Difference (MAD), the Sum of 
Absolute Differences (SAD) and the Mean Squared 
Error (MSE). 

2
1 1

1
| ( , ) ( , ) |

N N

i j
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Where N is the side of the macro block, C(i,j) and 
R(i,j) are the pixels at location (i,j) that are being 
compared in the current and reference macro blocks, 
respectively. 

The neighbourhood of the macro block searched 
for the best match is specified by a search parameter 
p (p is usually equal to 7 pixels). While the basic 
Full Search (FS) algorithm checks all possible 
locations in the search area defined by p, ARPS 
moves directly to the most promising area where the 
probability of finding the matching block is the 
highest. This reduces drastically the computational 
time. 

Based on the assumption that motion in a frame 
is coherent, i.e. a macro block moves in the same 
direction with its neighbouring blocks, ARPS 
exploits spatial correlation for motion vector 
prediction. More precisely, the motion vector of the 
current block is predicted to be equal to that of its 
immediate left. 

Furthermore, camera movements occur mostly in 
the horizontal and vertical directions, therefore these 
directions need to be also checked for a possible 
match. Hereby, the search points for the first step 
include, in addition to the position pointed by the 
predicted vector, the adaptive rood pattern 
represented by circles in Figure 4. It consists of five 
points equally spaced at step size S = Max(|X|,|Y|), 
where X and Y are respectively the x- and y-
coordinates of the predicted motion vector (in this 
case S = Max(|2|,|-4|) = 4). We note here that an 
overlap could occur between the predicted motion 
vector and a vertex of the rood pattern. This reduces 
by one the number of search points. Also, the rood 
pattern is reduced to one point if the predicted 
motion vector is zero. Finally, a step size of 2 is used 
for the leftmost macro blocks. 

Moving to the second step, the point with the 
least weight becomes the center of the refined 
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search. The search pattern used here is the Unit-size 
Rood Pattern (URP) represented by triangles in 
Figure 4. This pattern is iteratively repeated after 
repositioning the minimum weighted point found at 
its center until the minimal matching error is found 
to be at the center of the URP. 

 

Figure 4: The points checked in the first step are represen-
ted by circles. The neighbourhood of the least weighted 
point is subsequently checked using the URP search 
pattern represented by triangles. This procedure is 
iteratively repeated until the minimum error is found at the 
center of the URP. 

After interest points are associated with motion 
vectors, those whose motion vector’s length is below 
a certain threshold are considered static and 
eliminated. The remaining points belonging to the 
foreground of moving people are retained to be used 
in the next step. 

3.3 Linear Regression 

Another assumption that each person contains an 
average number k of interest points is also made. 
Subsequently, the number of people in a frame could 
be obtained by dividing the total number of points N 
retained for that frame by k. To determine k, we 
have to train the system; that is, N is computed for a 
certain frame and the number of people P in that 
frame is annotated manually. k would then be equal 
to N/P. We note here that k is not constant for all 
shooting scenarios, it’s rather highly dependant on 
the camera viewpoint and the scale perceived. 
Therefore, training has to be done whenever the 
viewpoint is changed. 

3.4 Low-pass Filtering 

In order to reduce the oscillations due to image 
noise, the initial estimate is smoothed out using a 
low-pass filter. In this case, we choose to average 
the output over a certain number of consecutive 
frames. This number depends on the frame rate at 
which the video was taken. 

4 EXPERIMENTAL RESULTS 

At a first stage, the proposed method is assessed 
using a public dataset. This enables the comparison 
of the results with those achieved by other methods, 
in this case with (Albiol et al., 2009). Nevertheless, 
this might not be sufficient as no single dataset can 
cover all possible scenarios.  

At a second stage, four video sequences recorded 
indoor and outdoor under different viewing and 
weather conditions, also involving different crowd 
densities are tested. 

4.1 Experiments on the PETS Dataset 

PETS is a public dataset that has been widely used 
to assess crowd counting, density estimation and 
other algorithms. In our experimentations, three 
video sequences from the section S1 of the 
PETS2009 dataset are tested. The characteristics of 
these videos are shown in Table 1. 

The number of people was estimated for each 
frame using the method described in Section 3, and 
the ground truth number (i.e. actual number) was 
annotated manually. The frame used for training is 
the one with the highest number of people, and the 
low-pass filtering is performed by averaging the 
output over 7 frames.  

Table 1: Characteristics of the three PETS videos used. 

   
Number of 

people 

Video 
sequence 

Length 
(frames) 

Conditions Min Max 

S1.L1.13-57 
(View1) 

221 
Medium density 
crowd, overcast 

5 34 

S1.L1.13-57 
(View 2) 

221 
Medium density 
crowd, overcast 

8 46 

S1.L1.13-59 
(View 1) 

241 
Medium density 
crowd, overcast 

3 26 

Results are reported using the Mean Absolute 
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Error (MAE) and the Mean Relative Error (MRE) 
defined as follows: 

1

1
| ( ) ( ) |

N

i

MAE E i T i
N 

   
(10)
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1 | ( ) ( ) |
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E i T i
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N T i


   (11)

Where N is the number of frames in the video 
sequence, E(i) and T(i) are the estimated and the true 
number of persons in the i-th frame, respectively. 

The results obtained are shown in Table 2 along 
with those of Albiol et al. as provided in (Conte et 
al., 2010). Also, graphs of the estimated and the 
ground truth number of people with respect to time 
are represented in Figure 5. 

Table 2: Results on the PETS videos. 

Video 
sequence 

View 
Albiol et al. Our method 

MAE MRE MAE MRE 

S1.L1.13-57 1 2.80 12.6% 2.28 11.5%

S1.L1.13-57 2 29.45 106.0% 12.06 36.3%

S1.L1.13-59 1 3.86 24.9% 1.81 12.7%

An overall improvement over Albiol’s method is 
noticed for these three video sequences while 
simplicity and computational efficiency are 
maintained. Despite the improvement, results aren’t 
very impressive for the View 2 of the S1.L1.13-57 
sequence with an MAE of 12.06 and an MRE of 
36.3%. This is due mainly to the wide-depth range 
characteristic of this video as people’s trajectory is 
almost parallel to the optical axis of the camera. This 
fact increases significantly the perspective effects. 

4.2 Experiments on Our Dataset 

Assessing further the performance of the proposed 
method requires its testing on a set of more challen-
ging videos. For this purpose, four video sequences 
were taken in three different locations in Lebanon. 
Their characteristics are represented in Table 3. 

All of these sequences include pedestrians of 
different sizes (adults and kids). Some of them also 
include people that are standing or sitting 
(Za.B.0001), and occasionally some non human 
moving elements such as boats, water (Za.B.0001, 
U.O.B.0003 U.O.B.0004), or people with trolleys 
(B.C.C.0002). Serious occlusions and perspective 
effects are also observed in some cases (U.O.B.0003 
and U.O.B.0004). 

Frames are extracted from these videos and 
preprocessing  is  done  to  make  them similar to the 

PETS videos in terms of frame rate, size and bit-
depth. 

Training of the system and smoothing of the 
output are performed similarly to the PETS 
experiments. The results are also reported in terms 
of MAE and MRE as shown in Table 4, and as 
comparative graphs in Figure 6. It is worth noting 
that the use of the relative error (MRE) is necessary. 
The same absolute error could be considered trivial 
if the scene is crowded, while it becomes significant 
as the level of crowdedness decreases. 

Table 3: Characteristics of our set of videos. 

   
Number of 

people 
Video 

sequence 
Length 

(frames)
Conditions Min Max 

Za.B.0001 216 
Medium density crowd,  

bright sunshine, shadows 
21 32 

B.C.C.0002 251 
Low to medium density 

crowd, indoor 
2 21 

U.O.B.0003 251 
Medium density crowd, 

bright sunshine 
8 22 

U.O.B.0004 221 
Medium to high density 
crowd, bright sunshine 

14 34 

Table 4: Results on our dataset of videos. 

Video sequence MAE MRE 
Za.B.0001 2.53 9.36% 

B.C.C.0002 1.13 13.04% 
U.O.B.0003 2.81 17.06% 
U.O.B.0004 3.33 13.48% 

Despite the complexity of the scenes, the results 
achieved were very reasonable with an MAE 
ranging from 1.13 to 3.33 and an MRE ranging from 
9.36% to 17.06%. Surprisingly, the most complex 
scene (Za.B.0001) produced the best MRE (9.36%) 
and the second best MAE (2.53). The least crowded 
scene with remarkable perspective effects produced 
the worst results (U.O.B.0003). 

It was also noticed throughout this experiment 
that the performance of the proposed algorithm is 
best in crowded conditions. The use of a statistical 
approach and the large number of people allow these 
variations in the number of detected points per 
person to compensate each other. Moreover, they 
diminish remarkably the effect of the error occurred 
in motion estimation, causing some outliers in 
interest points filtering. 

It was shown as well that the presence of a few 
still people or non-human moving objects in the 
scene could be tolerated into a certain extent, 
especially when the scene is crowded. 
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Figure 5: Estimated and ground truth number of people versus time for the PETS videos. 
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Figure 6: Estimated and ground truth number of people versus time for our set of videos. 
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5 CONCLUSIONS 

In this paper, we have presented a real-time method 
for counting people in crowded scenes based on a 
statistical approach. We took advantage of the work 
achieved by Albiol et al. in this field, and we proved 
that with minor changes, significant improvement in 
accuracy could be accomplished. Furthermore, we 
maintained the robustness, simplicity, and 
computational efficiency of their algorithm. 

The experiments undertaken on a new and more 
challenging dataset of video sequences confirmed 
the accuracy of the proposed technique in indoor and 
outdoor scenarios, and under different viewing and 
weather conditions. It also revealed its ability to 
handle partial occlusions and perspective effects up 
to a certain extent especially in crowded conditions. 
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