
Programming Support for the Flexible Coupling of Distributed Software
Components for Scientific Simulations

Michael Hofmann1, Felix Ospald2, Hansjörg Schmidt2 and Rolf Springer2

1Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
2Department of Mathematics, Chemnitz University of Technology, Chemnitz, Germany

Keywords: Distributed Simulations, Data Coupling, Parallel Computing.

Abstract: In this article, we investigate the flexible coupling of distributed software components that are required for
an optimization process of lightweight structures built from hybrid materials. The software components in-
clude computationally intensive applications for the simulation of hybrid structures, control applications for
implementing the optimization process as well as data-oriented applications for the generation, management,
and visualization of simulation data. The participating software components and application programs are de-
scribed to demonstrate their strongly varying functionalities as well as the diversity of data exchange methods
that need to be considered for the data coupling. Furthermore, we present the design and usage of a soft-
ware library with transparent data coupling mechanisms for software components that are flexibly distributed
among different computing resources.

1 INTRODUCTION

The coupling of scientific simulations is an increas-
ingly popular method for the simulation of com-
plex dynamic physical problems. Especially, strongly
inter-disciplinary areas, such as climate research or
mechanical engineering, often lead to simulation
models that are independently developed, but need to
be integrated in larger simulation environments later.
Technical approaches for the required model cou-
pling include dedicated toolkits (Larson et al., 2005),
domain-specific languages (Bulatewicz, 2006; Kohn
et al., 2000), and generalized interfaces (Gregersen
et al., 2007). By focusing on the data exchange,
model-independent software components, such as for
the generation, management, or visualization of data
can also be integrated. However, the variety of ap-
plications and their flexible execution in a distributed
environment pose a challenge to the data coupling.

In this article, we investigate the requirements to-
wards an efficient programming support for the data
coupling of scientific simulations that are executed in
a distributed computing environment. As an appli-
cation example, the optimized design of lightweight
structures within the research project MERGE1 is
considered. The optimization process developed in-
cludes both the simulation of the manufacturing of

1MERGE Technologies for Multifunctional Lightweight
Structures, http://www.tu-chemnitz.de/merge

hybrid structures and the calculation of their operat-
ing load cases. These computationally intensive ap-
plications are executed several times during the op-
timization process, thus requiring the usage of high-
performance computing platforms. Data coupling is
required between the simulation applications as well
as with additional applications that implement, for ex-
ample, the optimization method, an interactive user
control and a central data repository. Depending on
the optimization problem as well as on the required
computing resources, a flexible execution and distri-
bution of the applications is required, thus leading to
different programming efforts for their data coupling.
For example, the applications have to be loosely cou-
pled (e. g., through network communications) when
executed in a distributed computing environment or
tightly coupled (e. g., through direct function calls)
when executed on a single compute node. We present
the design of a software library that supports a trans-
parent data coupling of such flexible distributed ap-
plications and show a usage example to demonstrate
our approach.

The rest of this article is organized as follows.
Section 2 describes the distributed software compo-
nents for the optimization of hybrid structures. Sec-
tion 3 presents the design and usage of the software
library. Section 4 discusses related work and Sect. 5
concludes the article.

506 Hofmann M., Ospald F., Schmidt H. and Springer R..
Programming Support for the Flexible Coupling of Distributed Software Components for Scientific Simulations.
DOI: 10.5220/0005105405060511
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 506-511
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



2 DISTRIBUTED SOFTWARE
COMPONENTS FOR
OPTIMIZING HYBRID
STRUCTURES

The distributed simulation and optimization of hy-
brid structures is used as an application example that
requires a flexible coupling of a variety of software
components. In the following, the optimization pro-
cess and its software components are described.

2.1 Optimization of Hybrid Structures

The goal of the optimization process is the optimiza-
tion of manufacturing parameters for hybrid struc-
tures. Figure 1 gives an overview of the optimiza-
tion process. Configuring and executing optimization
problems will be performing through a user interface,
which will also be used to manage the input and out-
put data of optimization runs. Each optimization run
starts with an optimization problem that specifies the
geometry of the structure, the objective function and
constraints for the optimization, and parameters, for
example, about the materials, the manufacturing pro-
cess, and the operating load cases. The optimiza-
tion method is implemented within a separate soft-
ware component that executes an optimization loop.
In each iteration, the optimization method selects spe-
cific values for the parameters to be optimized, starts
the simulations, and evaluates the objective function
to decide whether the optimization is finished or not.
The manufacturing by injection molding is simulated
with a computational fluid dynamics (CFD) applica-
tion (see Sect. 2.2). The cooling of the structure and
the operating load cases are simulated with a finite el-
ement method (FEM) application (see Sect. 2.3).

Figure 2 shows an injection molding simulation
where the material is injected into the lower left face
and the structure is about half filled. The test case rep-
resents an existing injection molding tool and will be
used to compare the simulation and optimization re-
sults with manufactured parts. Manufacturing param-
eters to be optimized include the position, diameter,
angle, and fill rate for injecting the material.

2.2 CFD Simulation of the
Manufacturing Process

The hybrid structures will be manufactured by in-
jection molding, which represents one of the most
economically important processes for the mass-
production of plastic products. The parts are pro-
duced by injecting molten plastic into a mold, fol-

Figure 1: Overview of the optimization process.

Figure 2: Illustration of the injection molding simulation
with resulting fiber orientation details.

lowed by a cooling process. Fillers, such as glass and
carbon fibers are mixed in to improve the mechanical
properties of the parts. The injection molding process
is simulated with a customized open-source CFD ap-
plication based on OpenFOAM, a C++ library imple-
menting the finite volume method (Jasak et al., 2007)
parallelized with MPI. However, our general opti-
mization process will also be capable of employing
alternative simulations, for example, with specialized
closed-source applications (Niedziela et al., 2013).

Our OpenFOAM solver features a compressible
two phase flow with heat transfer and fiber orienta-
tion calculation. The change of the fiber distribution
caused by the flow is modelled by the Folgar-Tucker
Equation (Tucker and Advani, 1994). Input data of
the simulation are the structure geometry, the mate-
rial properties, and the parameters of the injection
molding process. The simulation is complete when
the mold is filled. Simulation results are the fiber ori-

Programming�Support�for�the�Flexible�Coupling�of�Distributed�Software�Components�for�Scientific�Simulations

507



entation field and the temperature field, which are the
input data for the FEM simulation (see Sect. 2.3).

2.3 FEM Simulation of Cooling and
Load Cases

An FEM application simulates the cooling of the
structure and the operating load cases. The cooling
leads to residual stresses within the material and to a
shrinking of the structure. The load case simulation
results in displacements and stresses of the structure.
Both simulations are performed with an in-house
adaptive 3D FEM application (Beuchler et al., 2001)
parallelized with OpenMP. However, our general opti-
mization process will also be capable of employing al-
ternative simulations with commercial closed-source
FEM applications, such as ANSYS2 or Abaqus3.

The adaptive FEM starts with a coarse mesh,
which is adaptively refined based on residual type er-
ror indicators (Verfürth, 1999). This approach leads
to high precision results, but with reduced computa-
tional costs. Input data of the simulation are the struc-
ture geometry, the material properties, and the load
case to simulate. Additionally, the fiber orientation
and the temperature distribution within the structure
calculated by the CFD simulation are used. Simula-
tion results are the displacement field and the result-
ing stresses, which will be used for evaluating the ob-
jective function of the optimization process.

2.4 Optimization Objectives

An iteration of the optimization loop can be very time
consuming. Furthermore, the results of the numerical
simulations are often discontinuous and noisy with
respect to the optimization parameters and deriva-
tives are usually not available. The optimization may
have multiple objectives regarding the manufactur-
ing process (e. g., minimization of production costs)
and structure properties (e. g., maximization of the
strength, stiffness, or durability). Thus, in general,
we will have to employ high-dimensional, derivative-
free, multi-objective optimization algorithms to deter-
mine Pareto optimal solutions. These algorithms will
either be implemented separately in Python or em-
ployed through existing software frameworks, such as
OpenMDAO (Heath and Gray, 2012).

In each iteration of the optimization loop, manu-
facturing and load case simulations have to be per-
formed for several different settings of the parameters
to be optimized. The simulation runs for these param-
eter settings are independent from each other and can

2http://www.ansys.com/
3http://www.simulia.com/

therefore be distributed, for example, on various com-
puting resources. The number of independent simu-
lation runs depends strongly on the number of opti-
mization parameters and on the optimization method.

2.5 User Control and Data Management

In addition to the simulation applications, several
software components will be required to handle the
data involved in the optimization process. Mesh gen-
erators, such as Gmsh (Geuzaine and Remacle, 2009),
are required to model the structure geometries and to
generate the meshes for the simulations. Data reposi-
tories store the simulation data and provide a project-
oriented storage for simulation and optimization pa-
rameters. Applications, such as ParaView (Henderson
Squillacote, 2008) or VTK (Schroeder et al., 2006),
are used for the visualization of simulation results.
The usage of the optimization process will be sup-
ported by a web interface, that allows an user-friendly
configuration and execution of optimization runs.

3 SIMULATION COMPONENT
AND DATA COUPLING (SCDC)
LIBRARY

The implementation of the optimization process will
be support by a communication library that eases the
coupling of different software components. In the fol-
lowing, the communication library, its programming
interface and an usage example are presented.

3.1 Requirements and Solutions

The various applications involved in the optimization
process described in Sect. 2 lead to different require-
ments towards a suitable programming support:

Variety of Software Components: The considered
software components differ strongly with regard to
their functionalities as well as their specific imple-
mentations as application programs. To unify the gen-
eral coupling of the software components, the SCDC
library enforces the following usage model: Each
software component can act as an SCDC service that
provides access to datasets. Each software compo-
nent can act as an SCDC client to access the datasets
of other software components acting as services. An
URI-based addressing scheme is used to identify sin-
gle services and datasets. The datasets of a service
are made available by data providers, which define
the specific content and functionality of a dataset.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

508



This includes data providers with predefined pur-
poses (e. g., for accessing the local file system or a
MySQL database) as well as generic data providers
that are configured with hook functions. Each service
can contain several data providers, which are distin-
guished through individual base paths within the URI-
based addressing scheme.

Flexible execution on Distributed Resources: The
execution of the software components should be flex-
ibly distributed on various computing resources. This
means that the software components of the optimiza-
tion process should be executed, for example, either
entirely on a single compute node or separately on
dedicated computing resources that fit to the different
applications (e. g., storage server, HPC cluster, web
server). The SCDC library omits the need for ex-
pensive adaptations of each software component to
a specific execution scenarios. A service uses the
same library functions to provide access to its dataset
through different data coupling mechanisms (e. g., di-
rect memory buffer access, inter-process or network
communication). Similarly, the access from a client
to a service uses the same library functions, indepen-
dent from the data coupling mechanism. Accessing
different services requires only to change the URI ad-
dress that identifies the target service. All adaptations
necessary for exploiting different data coupling mech-
anisms are encapsulated in the library.

Diversity of Data Access Methods: The different
software components and their alternative realizations
(e. g., different data storage components or alternative
simulation applications) lead to a heterogeneous land-
scape of application programs with a large diversity
of supported data access methods. The SCDC library
provides a C and Python interface for the integration
into application programs which allow modifications
of their source code. With these interfaces, the data
access can be performed directly through memory
buffers provided to the library functions while at the
same time the underlying data exchange is mapped,
for example, to network communication. Addition-
ally, the Python interface is used for wrapping closed-
source (e. g., commercial) application programs that
employ usually a file-based data access. To provide
such an application as a service, a dedicated Python
program will be used for setting up the service with
the SCDC library, executing the specific application
program, and managing its input and output files.

3.2 Programming Interface and Usage

The programming interface of the SCDC library con-
sists of service and client functions:

Service Functions: A software component that
acts as a service has to specify the data coupling
mechanisms available for client accesses. Direct
coupling is enabled as default and connects all
commands executed by a client to direct function
calls within a service. Further connection-oriented
coupling (e. g., with communication based on Unix
Domain sockets or TCP sockets) can be enabled with
the scdc_nodeport_open/close/start/stop
functions. Each data coupling mechanism
has to be opened and closed separately and
can be started and stopped temporarily. The
scdc_dataprov_open/close functions are used to
add data providers to a service.

Client Functions: A software component that acts
as a client uses the scdc_dataset_open/close/cmd
functions to access the datasets provided by a ser-
vice. The following URI-based addressing schemes
are currently used to identify a dataset to be opened:

� scdc:///<path> to access datasets of the same
software component through direct coupling.

� scdc+uds://<socketname>/<path> to access
datasets of software components executed on the
same compute node through inter-process com-
munication with Unix Domain sockets. The
socket to be used is specified with <socketname>.

� scdc+tcp://<hostname>/<path> to access
datasets of software components executed on
different compute nodes through network com-
munication with TCP sockets. The compute node
of the service is specified with <hostname>.

The specification of <path> for identifying a spe-
cific dataset is the same for all three schemes. A first
part of <path> usually represents the base path that
selects a specific data provider of a service and the re-
maining seconds part of <path> identifies a specific
dataset of this data provider. However, the specific
kind of data represented by a dataset depends on the
data provider. For example, a dataset represents a file
system directory for the data provider accessing the
local file system while it represents a database table
for the data provider accessing a MySQL database.

Usage example: Figure 3 shows an usage example
for the SCDC library with two software components
acting as a storage service A (top) and as a client with
integrated storage service B (bottom). The storage
service A is executed on a compute node hostA and
stores the data in its local file system. In lines 3–4,
a data provider of type “fs” is created that can be
accessed with the base path “store” and uses the
specified storage directory. In line 6, access to the
storage service is opened through connection-oriented

Programming�Support�for�the�Flexible�Coupling�of�Distributed�Software�Components�for�Scientific�Simulations

509



1 \centering
2 /* storage service A on hostA */
3 dp = dataprov_open("store", "fs",
4 "path_to_storage_directory");
5

6 np = nodeport_open("tcp");
7 nodeport_start(np, 0);
8

9 /* keep the service running */
10 while (getchar() != ’q’);
11

12 nodeport_stop(np);
13 nodeport_close(np);
14

15 dataprov_close(dp);

14 /* client & db storage service B */
15 dp = dataprov_open("store", "mysql",
16 "dbserver:dbuser:dbpasswd:dbname");
17

18 dataset_input_create(&in, "buffer",
19 buf, buf_size);
20

21 if (dbstore) uri = "scdc:///store";
22 else uri = "scdc+tcp://hostA/store";
23

24 /* open dataset & store data ’XY’ */
25 ds = dataset_open(uri);
26 dataset_cmd(ds, "put XY", &in, NULL);
27 dataset_close(ds);
28

29 dataset_input_destroy(&in);
30

31 dataprov_close(dp);

Figure 3: Usage example for the SCDC library with two
software components, i. e. storage service A (top) and client
with integrated storage service B (bottom). The prefix
scdc_ of library functions is omitted due to space reasons.

coupling with TCP sockets. The corresponding TCP
server is started in a non-blocking way (line 7). Thus,
it is necessary to keep the main thread of the service
running and to provide an appropriate mechanism for
terminating the service (line 10). Finally, the TCP
server and the data provider are stopped (lines 12–15).

The client with integrated storage service B shown
in Fig. 3 (bottom) stores the data within a MySQL
database. Thus, in lines 15–16, a data provider of
type “mysql” is created by specifying the required
database access credentials. The client stores data
from a memory buffer either with storage service A
or B. In lines 18–19, an input data object in is pre-
pared such that it reads from the memory buffer buf.

The selection between storage service A and B is
achieved by a differing URI address for the dataset of
the storage operation (lines 21–22). The storage op-
eration itself is performed by opening the correspond-

ing dataset (line 25) and performing a put command
to store the data from the input data object (line 26).
Since there is no output expected for the command,
the usage of an output data object is omitted. The
handle ds of the opened dataset might be used to per-
form several commands before it is closed (line 27).
Finally, the input data object is destroyed and the
data provider representing the MySQL database is
stopped. This usage example demonstrates how a
software component can access various alternative
software components without adaptations to its im-
plementation. Furthermore, the different data cou-
pling mechanisms (i. e., direct memory buffer access
or network communication with TCP sockets) are
transparently hidden within the SCDC library.

4 RELATED WORK

Environmental research is one of the most prominent
areas for the coupling of simulation models, as it in-
volves a variety of models from disciplines, such as
atmospheric sciences, hydrology, geology, chemistry,
and ecology. The resulting need for interoperable
software components has led to a large number of ar-
chitectures, frameworks, and toolkits specifically de-
signed to support the coupling of simulation models.
Established approaches for high performance com-
puting are, for example, the Earth System Modelling
Framework (Hill et al., 2004), the Common Compo-
nent Architecture (Bernholdt et al., 2006), and the
Model Coupling Toolkit (Larson et al., 2005). How-
ever, a proper characterization of the approaches and
their roles for model coupling is very hard due to their
broad functionalities, various implementations, and
supportive tools. A more detailed overview of the ap-
proaches and their features is given by Jagers (Jagers,
2010) and Dunlap et al. (Dunlap et al., 2013).

Coupling via an I/O infrastructure represents a
low-level alternative to model coupling. Specialized
communication libraries, such as PSMILe from the
OASIS framework (Redler et al., 2010) or the parallel
coupler PALM (Piacentini et al., 2011), provide func-
tions for the data exchange between parallel software
components. Since these functions are mapped to
MPI operations, the data exchange is restricted to MPI
programs in a uniform HPC software environment.
The Typed Data Transfer (TDT) library (Linstead,
2004) circumvents this limitation by using files and
sockets as alternative data exchange methods next to
MPI. The SCDC library provides a similar encapsu-
lation of different data exchange methods. However,
the focus on flexible distributed software components
requires to support intra-process, inter-process, and

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

510



network communication. Furthermore, the existing
approaches usually provide two-sided communica-
tion operations that need to be actively invoked by
each software component. Instead, the SCDC library
provides an infrastructure for implementing clients
and services where commands, such as put and get,
represent remote data accesses.

5 CONCLUSION

We have described the distributed software compo-
nents required for the simulation and optimization of
lightweight structures. Especially the data coupling
between HPC simulation codes and data management
applications has to be improved to achieve an au-
tomated optimization process. The software library
proposed will support the development by replacing
the common file-based data exchange of these ap-
plications. By encapsulating different data exchange
mechanisms into the library, a flexible distribution of
the software components among different computing
resources will be achieved without requiring expen-
sive adaptations to the application codes.

ACKNOWLEDGEMENT

This work was performed within the Federal Clus-
ter of Excellence EXC 1075 “MERGE Technologies
for Multifunctional Lightweight Structures” and sup-
ported by the German Research Foundation (DFG).
Financial support is gratefully acknowledged.

REFERENCES

Bernholdt, D., Allan, B., Armstrong, R., Bertrand, F., Chiu,
K., Dahlgren, T., Damevski, K., Elwasif, W., Ep-
perly, T., Govindaraju, M., Katz, D., Kohl, J., Krish-
nan, M., Kumfert, G., Larson, J., Lefantzi, S., Lewis,
M., Malony, A., Mclnnes, L., Nieplocha, J., Norris,
B., Parker, S., Ray, J., Shende, S., Windus, T., and
Zhou, S. (2006). A component architecture for high-
performance scientific computing. Int. J. High Perfor-
mance Computing Applications, 20(2):163–202.

Beuchler, S., Meyer, A., and Pester, M. (2001). SPC-
PM3AdH v1.0 - Programmer’s manual. Preprint
SFB/393 01-08, TU-Chemnitz.

Bulatewicz, T. (2006). A domain-specific language for
model coupling. In Proc. of the Winter Simulation
Conf., pages 1091–1100. IEEE.

Dunlap, R., Rugaber, S., and Mark, L. (2013). A feature
model of coupling technologies for earth system mod-
els. Computers & Geosciences, 53:13–20.

Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D
finite element mesh generator with built-in pre- and

post-processing facilities. Int. J. Numerical Methods
in Engineering, 79(11):1309–1331.

Gregersen, J., Gijsbers, P., and Westen, S. (2007). OpenMI:
Open modelling interface. J. Hydroinformatics,
9(3):175–191.

Heath, C. and Gray, J. (2012). OpenMDAO: Framework
for flexible multidisciplinary design, analysis and op-
timization methods. In Proc. of the 8th AIAA Multi-
disciplinary Design Optimization Specialist Conf.

Henderson Squillacote, A. (2008). The ParaView guide: A
parallel visualization application. Kitware.

Hill, C., DeLuca, C., Balaji, V., Suarez, M., and da Silva,
A. (2004). The architecture of the earth system model-
ing framework. Computing in Science & Engineering,
6(1):18–28.

Jagers, H. (2010). Linking data, models and tools: An
overview. In Proc. of the Int. Congress on Environ-
mental Modelling and Software (iEMSs’10).

Jasak, H., Jemcov, A., and Tukovic, Z. (2007). Open-
FOAM: A C++ library for complex physics simula-
tions. In Proc. of the Int. Workshop on Coupled Meth-
ods in Numerical Dynamics (CMND’07).

Kohn, S., Kumfert, G., Painter, J., and Ribbens, C. (2000).
Divorcing language dependencies from a scientific
software library. In Proc. of the 10th SIAM Conf. on
Parallel Processing for Scientific Computing. SIAM.

Larson, J., Jacob, R., and Ong, E. (2005). The Model Cou-
pling Toolkit: A new Fortran90 toolkit for building
multiphysics parallel coupled models. Int. J. High Per-
formance Computing Applications, 19(3):277–292.

Linstead, C. (2004). Typed Data Transfer (TDT) user’s
guide.

Niedziela, D., Tröltzsch, J., Latz, A., and Kroll, L. (2013).
On the numerical simulation of injection molding pro-
cesses with integrated textile fiber reinforcements. J.
Thermoplastic Composite Materials, 26(1):74–90.

Piacentini, A., Morel, T., Thévenin, A., and Duchaine, F.
(2011). O-PALM: An open source dynamic parallel
coupler. In Proc. of the IV Int. Conf. on Computa-
tional Methods for Coupled Problems in Science and
Engineering.

Redler, R., Valcke, S., and Ritzdorf, H. (2010). OASIS4
– A coupling software for next generation earth sys-
tem modelling. Geoscientific Model Development,
3(1):87–104.

Schroeder, W., Martin, K., and Lorensen, B. (2006). The
Visualization Toolkit: An Object-oriented Approach
to 3D Graphics. Kitware.

Tucker, C. and Advani, S. (1994). Processing of short-fiber
systems. Flow and Rheology in Polymer Composites
Manufacturing, pages 147–147.

Verfürth, R. (1999). A review of a posteriori error es-
timation techniques for elasticity problems. Com-
puter Methods in Applied Mechanics and Engineer-
ing, 176(1–4):419–440.

Programming�Support�for�the�Flexible�Coupling�of�Distributed�Software�Components�for�Scientific�Simulations

511


