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Abstract: This study aims at finding the relationship between EEG-based biosignals and human emotions. Event 
Related Potentials (ERPs) are registered from 21 channels of EEG, while subjects were viewing affective 
pictures. 12 temporal features (amplitudes and latencies) were offline computed and used as descriptors of 
positive and negative emotional states across multiple subjects (inter-subject setting). In this paper we 
compare two discriminative approaches : i) a classification model based on all features of one channel and 
ii) a classification model based on one features over all channels. The results show that the occipital 
channels (for the first classification model) and the latency features (for the second classification model) 
have better discriminative capacity achieving 80% and 75% classification accuracy, respectively, for test 
data. 

1 INTRODUCTION 

The quantification and automatic detection of human 
emotions is the focus of the interdisciplinary 
research field of Affective Computing (AC). In 
(Calvo, 2010) a broad overview of the current AC 
systems is provided. Major modalities for affect 
detection are facial expressions, voice, text, body 
language and posture. However, it is easier to fake 
facial expressions, posture or change tone of speech 
than trying to conceal physiological signals such as 
Galvanic Skin Response (GSR) Electrocardiogram 
(ECG) or Electroencephalogram (EEG). Since 
emotions are known to be related with neural 
activity in certain brain areas, affective neuroscience 
(AN) emerged as a new modality that attempt to find 
the neural correlates of emotional processes 
(Dalgleish et al., 2009). The major brain imaging 
techniques include EEG, magnetoencephalography 
(MEG), functional magnetic resonance imaging 
(fMRI) and positron emission tomography (PET). 
Among them the EEG modality (Olofsson et al, 
2008), (Alzoubi et al., 2009), (Petrantonakis et al., 
2010) has attracted more attention because it is a 
noninvasive, relatively cheap and easy to apply 
technology. A comprehensive list of EEG-based 
emotion recognition researches is recently provided 

in (Jatupaiboon , 2013). Despite the first promising 
results of the affective neuroscience to decode 
human emotional states, a confident neural model of 
emotions is still not defined.  In our previous works, 
we have proposed classification (Bozhkov, 2014) 
and clusterisation  (Georgieva, 2014) models of 
human affective states based on Event Related 
Potentials (ERPs) that outperformed other published  
outcomes (Jatupaiboon , 2013) . ERPs are transient 
components in the EEG generated in response to a 
stimulus (a visual or auditory stimulus, for example). 
In (Bozhkov, 2014) we studied six supervised 
machine learning (ML) algorithms, namely Artificial 
Neural Networks (ANN), Logistic Regression 
(LogReg), Linear Discriminant Analysis (LDA), k-
Nearest Neighbours (kNN), Naïve Bayes (NB), 
Support Vector Machines (SVM), Decision Trees 
(DT) and Decision Tree Bootstrap Aggregation 
(Tbagger) to distinguish affective valences encoded 
into the ERPs collected while subjects were viewing 
high arousal images with positive or negative 
emotional content. Our work is also inspired by 
advances in experimental psychology (Santos, 
2008), (Pourtois, 2004) that show a clear relation 
between ERPs and visual stimuli with underlined 
negative content (images with fearful and disgusted 
faces). A crucial step preceding the classification 
process was to discover which spatial-temporal 
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patterns (features) in the ERPs indicate that a subject 
is exposed to stimuli that induce emotions. We 
applied successfully the Sequential Feature Selection 
(SFS) technique to minimize significantly the 
number of the relevant spatial temporal patterns. 
Finally we constructed voting ensemble bucket of 
models to take the prediction among all the models 
which resulted in very promising final data 
discrimination (98%). 

In this paper we go further and study the 
discriminative priority of the spatial features (which 
channel has the highest classification rate) and the 
same for the temporal features (which amplitude or 
latency of the ERP has the highest classification 
rate). 

The paper is organized as follows. In section 2 
we briefly describe the data set. The ML feature 
selection and classification methods used in this 
study are summarized in section 3. The results of the 
classification model based on all features of one 
channel and the classification model based on one 
features over all channels are presented in section 4. 
Finally, in section 5 our conclusions are drawn. 

2 DATA SET 

A total of 26 female volunteers participated in the 
study, 21 channels of EEG, positioned according to 
the 10-20 system and 2 EOG channels (vertical and 
horizontal) were sampled at 1000Hz and stored. The 
signals were recorded while the volunteers were 
viewing pictures selected from the International 
Affective Picture System. A total of 24 of high 
arousal (> 6) images with positive valence (7.29 +/- 
0.65) and negative valence (1.47 +/- 0.24) were 
selected. Each image was presented 3 times in a 
pseudo-random order and each trial lasted 3500ms: 
during the first 750ms, a fixation cross was 
presented, then one of the images during 500ms and 
at last a black screen during the 2250ms. 

The signals were pre-processed (filtered, eye-
movement corrected, baseline compensation and 
epoched using NeuroScan. The single-trial signal 
length is 950ms with 150ms before the stimulus 
onset. The ensemble average for each condition was 
also computed and filtered using a zero-phase 
filtering scheme. The maximum and minimum 
values of the ensemble average signals were 
detected. Then starting by the localization of the first 
minimum the features are defined as the latency and 
amplitude of the consecutive minimums and the 
consecutive maximums (see Fig.1): minimums 
(Amin1, Amin2, Amin3), the first three maximums 

(Amax1, Amax2, Amax3), and their associated latencies 
(Lmin1, Lmin2, Lmin3, Lmax1, Lmax2, Lmax3). The ensemble 
average for each condition (positive/negative 
valence) was also computed and filtered using a 
Butterworth filter of 4th order with passband [0.5 - 
15]Hz. The number of features stored per channel is 
12 corresponding to the latency (time of occurrence) 
and amplitude of either n = 3 maximums and 
minimums, the features correspond to the time and 
amplitude characteristics of the first three minimums 
occurring after T = 0s and the corresponding 
maximums in between. The total number of features 
per trail is 252. 

 

Figure 1: Extracted features from averaged ERPs: positive 
(line) and negative (dot) valence conditions. 

3 METHODOLOGY 

The feature space consists of 252 features (21 
channels x12 features) and the trial examples are 52 
(2 classes – positive and negative - for 26 people). 
We want to estimate which spatial features (the 
channels) and which temporal features (amplitudes 
or latencies) have better discriminative capacity. 
Therefore, first we build individual classification 
models based on all features from each channel. 
Thus, 21 channel by channel classifiers are trained, 
each of them provided with 12 features (Table1). 
Next we build individual models based on each 
temporal feature over all channels (Table 1), that is 
12 single feature classifiers are trained.  

Prior to the classification, the temporal features 
(amplitudes and latencies) over the channels were 
normalized to improve the learning process. Due to 
the relatively small number of training examples, 
leave-one-out technique is used for cross validation. 
We applied a hierarchical classification approach. 
Namely, we first trained the following individual 
classifiers: Linear Discriminant Analysis (LDA), k-
Nearest Neighbours (kNN), Naïve Bayes (NB), 
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Support Vector Machines (SVM) and Decision 
Trees (DT). Then, the final classification is based on 
the majority of votes between the above classifiers.  

Table 1: Channels and Features. 

# EEG Channels Feature name 
1 Ch 1 (FP1) Amin1 
2 Ch 2 (FPz) Amax1 
3 Ch 3 (FP2) Amin2 
4 Ch 4 (F7) Amax2 
5 Ch 5 (F3) Amin3 
6 Ch 6 (Fz) Amax3 
7 Ch 7 (F4) Lmin1 
8 Ch 8 (F8) Lmax1 
9 Ch 9 (T7) Lmin2 

10 Ch 10 (C3) Lmax2 
11 Ch 11 (Cz) Lmin3 
12 Ch 12 (C4) Lmax3 
13 Ch 13 (T8)  
14 Ch 14 (P7)  
15 Ch 15 (P3)  
16 Ch 16 (Pz)  
17 Ch 17 (P4)  
18 Ch 18 (P8)  
19 Ch 19 (O1)  
20 Ch 20 (Oz)  
21 Ch 21 (O2)  

3.1 Features Normalization 

Feature normalization is a typical pre-processing 
step in data mining. It usually improves the 
classification, particularly when the range of the 
features is dispersed. The normalized data is 
obtained by subtracting the mean value of each 
feature from the original data set and divided by the 
standard deviation of the corresponding feature. 
Hence, the normalized data has zero mean and 
standard deviation equal to 1. 

3.2 Leave-One-out Cross-Validation 
(LOOCV) 

Leave-one-out is the degenerate case of K-Fold 
Cross Validation, where K is chosen as the total 
number of examples. For a dataset with N examples, 
perform N experiments. For each experiment use N-
1 examples for training and the remaining 1 example 
for testing [9]. In our case N = 26 (pairs of classes 
per person). We will train the models with 25 people 
x 2 classes (50 examples) and test on the left-out 2 
classes. We are more interested in the total 
prediction accuracy for each model, therefore the 
predictions are accumulated in confusion matrices 
for each model from each training experiment in the 

LOOCV. 

3.3 Linear Discriminant Analysis 
(LDA) 

Discriminant analysis is a classification method. It 
assumes that different classes generate data based on 
different Gaussian distributions. To train (create) a 
classifier, the fitting function estimates the 
parameters of a Gaussian distribution for each class. 
To predict the classes of new data, the trained 
classifier finds the class with the smallest 
misclassification cost. LDA is also known as the 
Fisher discriminant, named for its inventor, Sir R. A. 
Fisher [12]. 

3.4 K-Nearest Neighbour (kNN) 

Given a set X of n points and a distance function, 
kNN searches for the k closest points in X to a query 
point or set of points Y. The kNN search technique 
and kNN-based algorithms are widely used as 
benchmark learning rules. The relative simplicity of 
the kNN search technique makes it easy to compare 
the results from other classification techniques to 
kNN results. The distance measure is Euclidean. 

3.5 Naive Bayes (NB) 

The NB classifier is designed for use when features 
are independent of one another within each class, but 
it appears to work well in practice even when that 
independence assumption is not valid. It classifies 
data in two steps: 

Training step: Using the training samples, the 
method estimates the parameters of a probability 
distribution, assuming features are conditionally 
independent given the class. 

Prediction step: For any unseen test sample, the 
method computes the posterior probability of that 
sample belonging to each class. The method then 
classifies the test sample according the largest 
posterior probability. 

The class-conditional independence assumption 
greatly simplifies the training step since you can 
estimate the one-dimensional class-conditional 
density for each feature individually. While the 
class-conditional independence between features is 
not true in general, research shows that this 
optimistic assumption works well in practice. This 
assumption of class independence allows the NB 
classifier to better estimate the parameters required 
for accurate classification while using less training 
data than many other classifiers. This makes it 
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particularly effective for datasets containing many 
predictors or features. 

3.6 Support Vector Machine (SVM) 

An SVM classifies data by finding the best 
hyperplane that separates all data points of one class 
from those of the other class. The best hyperplane 
for an SVM means the one with the largest margin 
between the two classes. Margin means the maximal 
width of the slab parallel to the hyperplane that has 
no interior data points. We use radial basis function 
for kernel function. 

3.7 Decision Tree (DT) 

Classification trees and regression trees are the two 
main DT techniques to predict responses to data. To 
predict a response, follow the decisions in the tree 
from the root (beginning) node down to a leaf node. 
The leaf node contains the response. Classification 
trees give responses that are nominal, such as 'true' 
or 'false'. 

4 INTER-SUBJECT 
CLASSIFICATION MODELS 

In this section we summarise the outcomes of the 
two classification approaches. The results depicted 
in the figures and the tables come from the majority 
votes between the five classifiers (LDA, kNN, NB, 
SVM and DT). 

4.1 Classification Models based on All 
Features of a Single Channel 

In Figure 2 are given the prediction accuracy results 
from each separate channel. In Table 2 are presented 
the ordered results including true negative, true 
positive and total accuracy by channel. Note that the 
discrimination capacity of the occipital and parietal 
channels is higher. Hence, the twelve temporal 
features associated with these channels are better 
descriptors of the two emotional states across 26 
persons in our data base. Classification based on all 
temporal features in the brain zone around the 
occipital channel Oz or the parietal channel P7, 
achieve more than 80% accuracy on test data. 

 

Figure 2: Classification accuracy on test data (single 
channel- all features). 

Table 2: Classification accuracy on test data (single 
channel- all features, short list). 

Channel Name
True 

Negative 
True 

Positive 
Total 

Accuracy

14 P7 80,77 80,77 80,77 

20 Oz 85,71 74,19 78,85 

11 Cz 69,23 69,23 69,23 

16 Pz 69,23 69,23 69,23 

17 P4 67,86 70,83 69,23 

18 P8 66,67 72,73 69,23 

7 F4 65,52 69,57 67,31 

19 O1 65,52 69,57 67,31 

1 FP1 64,29 66,67 65,38 

13 T8 68,18 63,33 65,38 
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4.2 Classification Models Based on a 
Single Feature over All Channels 

In Figure 3 are given the prediction accuracy results 
from each separate temporal feature over all 
channels. In Table 3 are presented the ordered 
results including true negative, true positive and 
total accuracy by feature. Though the results now are 
less discriminative compared with the previous 
(channel by channel) approach, the last two temporal 
features (Lmin3, Lmax3) are significantly better 
descriptors (above 70%) of human emotional states 
across multiple subjects. 

Table 3: Classification accuracy on test data (single 
feature- all channels, short list). 

Feature Name 
True 

Negative 
True 

Positive 
Total 

Accuracy

12 Lmax3 72,41 78,26 75,00 
10 Lmax2 67,74 76,19 71,15 
6 Amax3 68,00 66,67 67,31 
1 Amin1 64,00 62,96 63,46 
11 Lmin3 62,07 65,22 63,46 

 

Figure 3: Classification accuracy on test data (single 
feature- all channels). 

4.3 Combining Selected Channels and 
Features 

Having these results we combined the best channels 
(Table 4), the best features (Table 5) and intersection 
between the best channels and features and achieved 
better accuracy result than using single channel or 
feature. 

Table 4: Combining best performing channels. 

Channels 14, 20 14, 20, 11 14,20,11,16

Accuracy 86,54 75 69,23 

Table 5: Combining best performing features. 

Features 12, 10 12, 10, 6 12,10,6,1 

Accuracy 76,92 80,77 76,92 

As seen in Table 4 when combining channels 14 
(P7) and 20 (Oz) we reach maximum accuracy of 
86.54%, then adding more channels slowly 
degenerate accuracy. Similar in feature combining 
we reached peak accuracy of 80.77% when 
combining the first 3 features (Lmax3, Lmax2 and 
Amax3).  

Using only these 3 features from channels 14 and 
20 we reached accuracy of 80.77%, which is the 
same accuracy as when used the 3 features from all 
21 channels.  

4.4 Discussion of the Results 

In this paper, we used supervised ML methods to 
predict two human emotions based on 252 features 
collected from 21 channels EEG. We wanted to 
observe which channels and features separately 
provide most of the information needed for 
classification. In a previous research (Bozhkov, 
2014) we achieved 98% accuracy using sequential 
selection among all features and channels and voting 
by a bucket of ML methods. In this study we 
couldn’t reach that high accuracy, however we 
reached 86.54% accuracy using only channels 14 
and 20 or 80,77% accuracy using features (Lmax3, 
Lmax2 and Amax3). This results are similar and better 
than similar studies (Jatupaiboon, 2013). Also our 
results are similar to a different study on same data 
and unsupervised ML methods (Georgieva, 2014). 
They obtained highest accuracy when using the 
same channels 20(Oz), 16(Pz), 11(Cz) and 14(P7) 
and similar features (biased on the late latency 
features). 
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5 CONCLUSIONS 

In this paper, we propose an alternative approach to 
the challenging problem of human emotion 
recognition based on brain data. In contrast to most 
of the recognition systems where the best spatial-
temporal features are searched, we consider 
separately the selection of spatial features (the 
channels) and the selection of temporal features 
(amplitudes/latencies) in order to distinguish the 
processing of stimuli with positive and negative 
emotion valence based on ERPs observations. The 
core of the present study is to explore the feasibility 
of training cross-subject classifiers to make 
predictions across multiple human subjects. The 
choice of the occipital/parietal channels (more 
particularly channel Oz and P7) or the choice of the 
temporal features related with the latencies of the 
amplitude peaks over all channel (Lmax2,Lmin3,Lmax3) 
has the potential to reduce the inter-subject 
variability and improve the learning of 
representative models valid across multiple subjects.  

However, before making stronger conclusions on 
the capacity of i) single channel or ii) single feature 
over all channels classification models to decode 
emotions, further research is required to answer 
more challenging questions such as discrimination 
of more than two emotions. In fact this is a valid 
question for all reported works on affective 
neuroscience (Calvo, 2010), (Hidalgo-Muñoz, 
2013), (Hidalgo-Muñoz, 2014). The discrimination 
is usually limited to two, three, and maximum four 
valence-arousal emotional classes. Interesting 
problem is also the human personality classification 
based on EEG, for example high versus low neurotic 
type of personality.  

Also, the number of the participants in the 
experiments is important for revealing stable cross 
subject features. In the reviewed references the 
average number of participants is about 10-15, the 
maximum is 32. We need publicly available datasets 
to compare different techniques and thus speed up 
the progress of affective computing. 
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