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Abstract: Edited (or cut) dynamical images are created by changing perspectives in imaging devices, such as videos, or
graphical animations. They are abundant in everyday and working life. However little is known about how
attention is steered with regard to this material. Here we propose a simple two-step architecture of gaze control
for this situation. This model relies on (1) a down-weighting of repeated information contained in optic flow
within takes (between cuts), and (2) an up-weighting of repeated information between takes (across cuts). This
architecture is both parsimonious and realistic. We outline the evidence speaking for this architecture and also
identify the outstanding questions.

1 INTRODUCTION

Our visual world is complex and rich in detail but the
human mind has a finite cognitive capacity. This is
one of the reasons why humans pick up only a frac-
tion of the visual information from their environment.
At each instance in time, humans select only some vi-
sual information for purposes such as in-depth recog-
nition, action control, or later retrieval from memory,
whereas other visual information is ignored in varying
degrees. This fact is called selective visual attention.

One particularly widespread source of visual in-
formation is technical dynamic visual displays. These
displays depict images of visual motion and are used
in computers, mobile telephones, or diverse profes-
sional imaging devices (e.g., in devices for medical
diagnosis). Importantly, the widespread use of tech-
nical dynamic visual displays in human daily life dur-
ing entertainment (e.g. video), communication (e.g.
smart phones), and at work (e.g. computer screens)
significantly adds to the visual complexity of our
world. An accurate and ecologically valid model of
human visual attention is essential for the optimiza-
tion of technical visual displays, so that relevant infor-
mation can be displayed in the place and at the right
time in order to be effectively and reliably recognized
by the user.

One important characteristic of videos and other
technical motion images that contrasts with the dy-

namics of 3-D vision under more natural conditions
is the fact that this material is highly edited (or cut).
Videos consist of takes and cuts between takes. In this
context, takes denote the phases of spatio-temporally
continuous image sequences. By contrast, cuts are
the spatio-temporal discontinuities by which two dif-
ferent takes (e.g., taken on different days, at differ-
ent locations, or from different camera angles at the
same location) can be temporally juxtaposed at the
very same image location. Despite the fact that edited
material conveys a substantial part of the visual infor-
mation that competes for human selective attention,
little is known about the way that attention operates
in this situation. Specifically, attention research in this
domain has almost exclusively focused on the impact
of image motion per se (Böhme et al., 2006; Carmi
and Itti, 2006; Mital et al., 2013), without paying too
much attention to the very different cognitive require-
ments imposed by extracting information from takes
versus cuts. Here, we propose a two-step model in
response to this demand. In this model, within takes
(between cuts) viewers would attend to novel infor-
mation and would down-weigh repeated visual input.

In the following, we will develop our arguments
for this model. We start with the simplest conceivable
bottom-up model, and proceed by a brief discussion
of top-down factors as one additional important fac-
tor. We then introduce our two-step model as a more
realistic and yet parsimonious extension of existing
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bottom-up and top-down models. Next, we turn to
review the evidence that is in line with our model. Fi-
nally, we conclude with a discussion of the outstand-
ing questions.

2 RELATED WORK

To understand how selective visual attention works
in humans, one can investigate gaze direction, visual
search performance, and visual recognition. The re-
lationship between these three measures will be ex-
plained next. To start with, we know that gaze direc-
tion is tightly linked to interest, attention, and recog-
nition. Eye movements are an objective index of
the direction of visual attention. This assumption is
well supported by research on recognition during sac-
cade programming (Deubel and Schneider, 1996).It is
therefore not surprising that eye movements provide
important cues to the personal intentions and interests
of another person.When observing another individual,
we use direction of fixation (when the eyes are still),
of saccades (when the eyes move quickly from one
location to another), or of smooth pursuit eye move-
ments (when the eyes track a moving object in the
environment) as a window into the other individual’s
mind.

Of course, gaze direction is not perfectly aligned
with attention and does not always tell us what an-
other person sees (Posner, 1980). For this reason, in
attention research, one cannot rely on fixation direc-
tions alone. If one wants to understand, where atten-
tion is directed, one has to equally draw on conclu-
sions from visual search and visual recognition per-
formance (Treisman and Gelade, 1980).

2.1 The Bottom-Up Model

What is true of attention in general is also true of the
so called bottom-up model of visual attention. The
bottom-up model is supported by both visual search
behavior (Theeuwes, 2010) and eye-tracking (Itti
et al., 1998), and its charms lie in its simplicity and
parsimony. Bottom-up models rely on one simple
principle: “the strength of the visual signal” to explain
where humans direct their visual attention. These
models disregard different human goals, interests, and
other top-down influences, such as prior experiences
of an individual, or also task- and situation-specific
factors. Instead, bottom-up models define the princi-
ples of visual attention in simple objective terms and
assume that the focus of attention is fully determined
by the characteristics of the momentary visual stim-
uli in the environment (Frintrop et al., 2010; Itti and

Koch, 2001).

2.2 Beyond Bottom-Up Influences

Despite the evidence supporting the bottom-up
model, this model is not satisfying because humans do
not all look in a task-unspecific way at the same loca-
tions (Torralba et al., 2006). But how could individual
goals influence visual attention? Top-down models
explain this. They emphasize past experiences, goals,
intentions, interpretations, and interests of the viewer
as predictors of visual attention (Torralba et al., 2006;
Wolfe, 1994). Top-down principles can influence see-
ing and looking in two ways: They either boost the
subjectively interesting image features or they deem-
phasize the subjectively uninteresting image features
for the summed salience. Top-down models assign
different weights to specific features (Wolfe, 1994)
or locations (Torralba et al., 2006). Thus, top-down
models are suited for accommodating the influence
of subjective interests and goals. They can bridge
the gap between model behavior and subjective influ-
ences for an improved prediction of eye movements
and visual recognition into more realistic predictions
of visual attention.

What is lacking so far is a convincing top-down
model of visual attention for edited dynamically
changing visual displays. Given the fact that humans
spend much of their time viewing edited videos (on
the Internet, television, or in the cinema), it is unfor-
tunate that even the approaches that tried to model
top-down influences mostly operated on static im-
ages without considering visual changes over time.
Progress in this direction has been made in the form of
a surprise-capture or novelty-preference model. Re-
searchers observed that during watching of movies,
human attention is captured by surprising or novel vi-
sual information (Itti and Baldi, 2009). In the surprise
model, stimulus information that repeats over time is
deemphasized as an attractor of attention. The sur-
prise model is also parsimonious because it requires
just one principle of visual memory of what has been
seen in the recent past for an explanation of the cre-
ation of goal templates.

However, the surprise model is too rigid. It is
incorrect to consider visual feature repetition as al-
ways being disadvantageous for the attraction of at-
tention. Many experiments have shown that repeated
features attract attention (Bar, 2007; Maljkovic and
Nakayama, 1994).
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3 TWO-STEP MODEL

We suggest that a two-step model of visual attention
offers a realistic description of how attention is allo-
cated in videos and other edited dynamic images (e.g.
animated computer graphics, or even medical imag-
ing devices). In the two-step model, surprise cap-
ture towards novel information and feature priming
towards repeated visual information as the two ma-
jor top-down principles driving visual attention will
take turns as a function of one shared steering vari-
able: the temporal coherence of the optic flow across
subsequent images (see Figure 1). With the two-step
model we thereby seek to overcome existing limita-
tions of (1) bottom-up models that fail to account for
inter-individual variability of visual attention, (2) too
rigid forms of top-down models of attention that in-
corporate only one of the two top-down principles,
and (3) models that fail to consider the specificities
of edited dynamically changing visual images at all.
This two-step model is based on empirical observa-
tions. It also allows deriving new testable hypotheses
that can be investigated with the help of psychological
experiments.

To start with, attraction of attention by repeated
features (as in feature priming) conflicts with the find-
ing of Itti and Baldi (2009) that repeated features do
not attract attention. Attraction of attention by fea-
ture repetition can, however, be reconciled with the
findings of Itti and Baldi by the two-step model. Itti
and Baldi based their conclusions on gaze directions
recorded during the viewing of edited video clips and
video games. How this could have masked repeti-
tion priming across cuts can be understood if one
takes into account the specificities of the high tem-
poral resolution of the surprise model that was set to
the level of single frames. For each frame, a prior
and a new probability distribution were computed and
their difference was tested for its potential to attract
the eyes. This resulted in a higher number of model
tests between cuts (or within takes) of the videos than
model tests across cuts (or between takes), even in the
highly edited video clips with relatively many cuts.
Between-cuts events encompassed 30 frames/second
because monitor frequency was set to 60.27 Hz (and
assumed that videos were displayed in half frames).
However, by definition, each across-cut event con-
sisted of only two frames. Therefore, between-cuts
events by far outweighed across-cut events in the test
of the model of Itti and Baldi (2009).

Importantly, between cuts (or within takes), the
correlation between successive feature or stimulus po-
sitions is high, whereas across cuts (or between takes)
it is lower. To understand this, think firstly of an ex-

Figure 1: According to the model, within takes the human
gaze is steered toward novel information. This mode is sup-
ported by the presence of temporally coherent global op-
tic flow (see center of Figure) and an attraction to novelty
is achieved by down-weighting global optic flow and up-
weighting local incoherent flow for the selection of gaze
directions because per definition, the information contained
in the global flow field relates present to past information
whereas local incoherencies form new features themselves
and are diagnostic of the appearance of new objects in the
visual field. The situation changes if a cut is encountered.
Cuts are signaled by incoherencies of the global flow field.
In this situation, the human gaze is steered towards repeated
information. For further information, refer to the text.

ample of a take (i.e., a between-cuts event), such as
the filming of a moving object in front of a static
background. Here the background objects and loca-
tions are correlated for all frames of the take. In fact,
they would be the same (see Figure 2, for a related ex-
ample). Now secondly think of what happens across
a cut (or between takes). Here, the correlation be-
tween successive features or stimulus positions must
be lower, simply because of occasional cutting be-
tween takes of completely different scenes (or at least
different camera angles within the same scene). With
temporal juxtaposition of different scenes by a filmic
cut, no stimulus contained in the take preceding the
cut needs to be repeated after the cut. Basically, this
low take-by-take correlation across cuts in videos is
exactly what corresponds best to the conditions of
the experiments demonstrating feature priming: In
psychological experiments, a low correlation between
positions and even colors of relevant to-be searched-
for target stimuli between trials has been the way to
prevent anticipation of target positions and target fea-
tures (Maljkovic and Nakayama, 1994)). This low
correlation corresponds much better to effects across
cuts. Basically, in our two-step model we will there-
fore assume that across cuts, the surprise model of at-
tention would be falsified and a feature priming model
would be confirmed, whereas between cuts a prefer-
ence for novel information holds.
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Figure 2: An image from a sequence of a man shutting the back ofhis car on the left and a schematic representation of
the regions of the highest movement (in black) on the right. As compared to the coherent null vector of optic flow in the
background, the optic flow of the moving man would be less coherent and, within a take, should capture human attention.

The two-step model comprises three components:
one spatially organized representation of the visual
image as its input and two internal top-down repre-
sentations of visual features. The input representa-
tion is the same as in standard bottom-up models (Itti
and Koch, 2001). The two alternative internal top-
down representations of the two-step model are (1)
search templates of scene- or take-specific object-
feature matrices that a viewer can retrieve from visual
memory, and (2) a track record of the temporal coher-
ence of the optic flow within the image that the viewer
applies online while watching a video.

The two-step model’s visual memory contains
representations of visual feature combinations (e.g.
edge representations) for objects and for scenes (or
takes). If such a representation is retrieved, this mem-
ory representation can be used as a template to up-
weigh repeated feature combinations as relevant dur-
ing visual search. This conception of a retrieved
search template is very similar to that of other top-
down models of attention (Wolfe, 1994; Zelinsky,
2008). In contrast to past feature-search template
models, however, as in the surprise model, in the two-
step model the content of the visual memory will be
empirically specified: What a particular person looks
at is stored in visual memory (Maxcey-Richard and
Hollingworth, 2013). The two-step model thus uses
gaze direction for segmentation and stores objects as
a vector of visual features at a fixated position, and
each scene or take within a video as a matrix of the
vectors of the looked-at objects within a take. Each
take-specific matrix will be concluded when a min-
imum of the temporal coherence of optic flow indi-
cates a change of the scene (see below), and matrices
will be successively stored in the order of their storage
until a capacity limit of visual working memory has
been reached (Luck and Vogel, 1997). In this manner,
the two-step model adapts to interindividual variation
of looking preferences and keeps track of them, with-
out having to make additional assumptions.

Related but operating on a different time scale,
for the two-step model optic flow will be continu-

ally calculated as a mathematical function that con-
nects one and the same individual features or objects
at subsequent locations in space and time by one joint
spatio-temporal transformation rule that is character-
istic of the change of the larger part of the image for
a minimal duration (Patrone, 2014). Moreover, the
temporal coherence of the optic flow will be contin-
uously tracked. We calculate the temporal coherence
of optic flow as the similarity of the optic flow across
time. In the two-step model, an increasing temporal
coherence of optic flow will thus be reflected in a de-
scending differential function. This coherence signal
can be topographically represented in image coordi-
nates and directly feeds into one visual filter down-
weighing those image areas characterized by the tem-
porally coherent optic flow. In this way, the two-step
model instantiates the surprise-capture principle and
filters out the repeated visual features proportional to
the duration and area of uniform optic-flow (see Fig-
ure 2).

By contrast to this, the local minima of the coher-
ence of optic flow (or the maxima of the differential
function) are used as signals indicating cuts that trig-
ger the retrieval of a search template, and the resultant
up-weighing of the repeated features of the image rep-
resentation resembling the search template.

The two-step model is more realistic than the sur-
prise model because it incorporates feature priming
of attention, too. Yet, the two-step model is parsimo-
nious because it couples the two top-down principles
of attention to the same shared steering value of optic
flow coherence, and, as in the surprise model, most of
two-step models free parameters (the content of the
visual memory) will not be arbitrarily chosen or have
to be specified by task instructions as in standard top-
down models (e.g., (Najemnik and Geisler, 2005)) but
will be specified on the basis of empirical observation
(i.e., will be measured as the feature values at fixated
positions).
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4 EVIDENCE

4.1 Weighting Coherent Optic Flow

The surprise-capture principle outperforms the
bottom-up model when predicting fixations within
animated video games and movies (Itti and Baldi,
2009). According to the two-step model, this
surprise-capture effect reflects the suppression of
coherent optic flow. Optic flow denotes the global
commonality or unifying mathematical rule of the
global visual motion signal across the image that
is frequently due to the cameras (or the observers)
self-motion. Optic flow is tied to visual feature
repetition because across time, like other types of
visual motion, too, optic flow reflects a track record
of repeated features and objects found at different
places.

In line with the assumed down-weighting of co-
herent optic flow, visual search for a stationary object
is facilitated if it is presented in an optic flow field as
compared to its presentation among randomly mov-
ing distractors (Royden et al., 2001). Likewise, ob-
jects moving relative to the flow field pop out from
the background (Rushton et al., 2007). A tendency
to discard optic flow as a function of its coherence
over time and space in dynamic visual scenes also
accounts for many instances of attention towards hu-
man action in general (Hasson et al., 2004) and hu-
man faces in particular (Foulsham et al., 2010). In
these situations, actions and facial movements are
defined by local motion patterns that have regular-
ities differing from the larger background’s coher-
ent flow field. Equally in line with and more in-
structive for the present hypothesis are the cases in
which one motion singleton among coherently mov-
ing distractors captures human attention (Abrams and
Christ, 2003; Becker and Horstmann, 2011). To
perform further analysis in this direction we are
developing a decomposition procedure of the mo-
tion in dynamic image sequences. For example,
on the web-pagehttp://www.csc.univie.ac.at/
index.php?page=visualattention a movie pre-
senting the projection of a cube moving over an os-
cillating background can be viewed. The optical flow
computed between the sixteenth and the seventeenth
frame of the sequence is visualized in Figure 3. The
motion can be decomposed in global movement of the
cube depicted inU1 and in the background movement
in U2.

Figure 3: Flow visualization of a dynamic image sequence
showing a projection of a cube moving over an oscil-
lating background. U1 and U2 depict the global and
the background movement respectively (http://www.csc.
univie.ac.at/index.php?page=visualattention).

4.2 Templates Combining Features

Selectively attending to the relevant visual features
for directing the eyes and for visual recognition is
one way by which humans select visual information
in a top-down fashion (Wolfe, 1994). For example,
informing the participants prior to a computer exper-
iment about the color of a relevant searched-for tar-
get helps the participants in setting up a goal template
representation to find the relevantly colored target ob-
ject and ignoring irrelevantly colored distractors (e.g.,
to find red berries in green foliage during foraging;
(Duncan and Humphreys, 1989). Equally important
and well established is the human ability to selectively
look-for particular visual shapes or for specific com-
binations of shapes and colors (Treisman and Gelade,
1980). In this way human viewers could also search
for landmarks that they have seen in the past to re-
orient after a cinematic cut, and to decide whether a
visual scene continues or has changed.

In line with this assumption, participants learn to
adjust the search templates to the visual search dis-
plays that they have seen in the past. During contex-
tual cueing, for example, participants benefit from the
repetition of specific search displays later in a visual
search experiment (Brooks et al., 2010). Similar ad-
vantages have been demonstrated in the context of vi-
sual recognition under more natural conditions, with
static photographs of natural scenes (Maxcey-Richard
and Hollingworth, 2013; Valuch et al., 2013).

In the study of (Valuch et al., 2013), for example,
participants first viewed a variety of photographs for
later recognition of the learned photographs among
novel pictures. Critically, during recognition partici-
pants only saw cutouts from scene images. Cutouts
from the learned scenes were either from a previously
fixated area(see Figure 4) or they were from an at
least equally salient non-fixated area of the learned
images(see Figure 5).
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Figure 4: Cutouts from old images were selected contin-
gent upon the participants gaze pattern. Old/fixated cutouts
showed the location of longest fixation. Old/control cutouts
showed a nonfixated but highly salient location. Copyright
by AVRO (Valuch et al., 2013).

Figure 5: Cutouts from new images showed highly salient
scene regions or were randomly chosen. Copyright by
AVRO (Valuch et al., 2013).

In line with an active role of fixations for encod-
ing and successful recognition, the participants only
recognized cutouts that they fixated during learning.
In contrast, the participants were unable to recognize
cutouts showing areas that were not fixated during
learning with better than chance accuracy (see Fig-
ure 6).

4.3 Reorienting After Cinematic Cuts

We consider re-orienting between subsequent visual
images as one of the most fundamental tasks for the

Figure 6: Rate of correct responses in percent as a func-
tion of cutout type in the transfer block. Copyright by
AVRO (Valuch et al., 2013).

human viewer. Under ecological conditions, orient-
ing is required in new environments, as well as when
time has passed between successive explorations of
known environments. During the viewing of edited
videos, orienting is required to make sense of tem-
porally juxtaposed images with a low correlation of
objects or their locations. The latter situation is typ-
ical of all technical imaging devices for dynamically
changing visual images. Think of video cuts in which
the image before the cut does not have to bear any
resemblance to the image after the cut.

In line with the assumed role of repetition prim-
ing on eye movements, Valuch et al. observed that
participants preferentially looked at videos baring a
high similarity of pre-cut and post-cut images (Valuch
et al., 2014). These authors used two videos presented
side by side and asked participants to keep their eyes
on only one of the videos. Critically, during two kinds
of cuts, the images could switch positions: cuts with a
high pre- and post-cut feature similarity and cuts with
a lower pre- and post-cut feature similarity. For ex-
ample, participants were asked to look at a ski video
and to quickly saccade to the ski video if the video
switched from the left to the right side. In this sit-
uation, the participants showed a clear preference to
look at the more similar images. Saccade latency was
much lower in the similar than in the dissimilar con-
dition (see Figure 7).

Repetition priming would also explain why par-
ticipants fail to notice so-called matching cuts. Par-
ticipants fail to register matching cuts, such as cuts
within actions (with an action starting before the
cut and being continued after the cut), as compared
to non-matching cuts from one scene to a different
scene (Smith et al., 2012). This is because with
matching cuts, that is, cuts within the same scene, the
overall changes in visual image features between two
images are smaller than with cuts that connect two
different scenes (Cutting et al., 2012).

4.4 Repeated vs. Novel Features

When researchers rearranged an otherwise coherent
take by cutting it and rearranging the take into a new
and incoherent temporal sequence, the reliability of
the gaze pattern was drastically reduced (Wang et al.,
2012). These authors argued that their participants
kept track of objects within takes and reset this search
tendency after a cut. This interpretation is in line with
our view that participants apply different strategies
within than between takes.
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Figure 7: Two videos showing different content were presented side by side and participants were asked to follow only one
content with their eyes. Videos could switch position during two kinds of cuts: (1) high and (2) low pre- and post-cut feature
similarity cuts. The participants showed a clear preference to look at the more similar images.

5 OPEN QUESTIONS AND
POTENTIAL APPLICATIONS

Regarding our two-step architecture many open ques-
tions remain. Most critically, it is unclear whether the
coherence of optic flow is indeed down-weighted for
attention. To address this question, one would need
to correlate the decomposition of optical flow (Abhau
et al., 2009) into bounded variation and an oscillating
component with viewing behavior in natural images.
One would also have to test whether changes for novel
versus repeated features are characteristic of phases of
low global coherence of the flow pattern.

Another open question concerns the impact of top-
down search templates for features in natural scenes.
This influence is relatively uncertain. Most of the
evidence for the use of color during the top-down
search for targets stems from laboratory experiments
with monochromatic stimuli (Burnham, 2007). This
is very different from the situation with more natural
images, such as movies, where each color stimulus is
polychromatic and consists of a spectrum of colors.
In addition, a lot more questions than answers arise
with regard to the storage and usage of different take-
specific topdown templates.

Among the open questions, the potential appli-
cations of the model are maybe the most interesting
ones. The model should be useful for improving the
prediction of visual attention in more applied con-
texts, such as clinical diagnosis based on visual mo-
tion (e.g., in ultrasound imaging), QoE (quality of ex-
perience) assessment and videos coding in entertain-
ment videos.

In medical imaging, much as with cuts, the optical
flow of an image sequence can be interrupted by noise
or by changes of perspective. For example in case of
angiography, a new perspective of the vessels can be
suddenly shown.

Also, due to a lack of contact between imaging
devices and body (e.g., during ultrasound diagnosis),

noise or blank screens can interrupt medical image se-
quences. These examples illustrate that the two-step
model is applicable to medical imaging and that it
captures a new angle on these problems. During med-
ical imaging, pervasive eye-tracking could be used to
extract visual feature vectors at the looked-at image
positions. After an interruption of the imaging se-
quence, these vectors could then be convolved with
post-interruption images for a highlighting of those
regions baring the closest resemblance with the in-
put extracted before the interruption. Likewise, in the
area of video coding and compression, scene cuts rep-
resent an important challenge.

6 CONCLUSION AND
COMPARATIVE EVALUATION

With a simple two-step model of down-weighting re-
dundant information contained in optic flow versus
up-weighting repeated information contained in two
images divided by a cut, we proposed a framework
for studying attention in edited dynamic images. This
model is very parsimonious because it does not re-
quire many assumptions and it can be empirically fal-
sified. In comparison to a bottom-up model the two-
step model is able to accommodate inter-individual
viewing differences but has more free parameters and
is therefore less economical. In comparison to exist-
ing top-down models the two-step model takes the
particularities of visual dynamics into account and
used empirical observations to specify many of its
free parameters. Although this model nicely explains
a variety of different findings, future studies need to
address many outstanding questions concerning the
model.
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