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Recently, there has been an increase of reported security incidents hitting large software systems. Such inci-

dents can originate from different attackers exploiting vulnerabilities of different parts of a system. Hence,
there is a need for enhancing security considerations in software development. It is crucial for requirements
engineers to identify security threats early on, and to refine the threats into security requirements. In this paper,
we introduce a methodology for Problem-based Security Requirements Elicitation (PresSURE). PresSuRE is
a method for identifying security needs during the requirements analysis of software systems using a problem
frame model. Our method does not rely entirely on the requirements engineer to detect security needs, but
provides a computer-aided security threat identification, and subsequently the elicitation of security require-
ments. The identification is based on the functional requirements for a system-to-be. We illustrate and validate
our approach using a smart grid scenario provided by the industrial partners of the EU project NESSoS.

1 INTRODUCTION

Recently, there has been an increase of reported secu-
rity incidents hitting large software systems. Beside,
for example, reputation damage, loss on market value
and share, and costs for legal infringement (Cavu-
soglu et al., 2004; Khansa et al., 2012), fixing the
security defect causing the incident is costly. Fix-
ing a defect when it is already fielded is reported to
be up to eighty times more expensive than fixing the
corresponding requirements defects early on (Willis,
1998; Boehm and Papaccio, 1988). Thus, security
issues should be detected as early as possible for a
system-to-be. Therefore, it is crucial for requirements
engineers to identify security threats, and to refine the
threats into security requirements. But eliciting good
requirements is not an easy task (Firesmith, 2003),
even more with regard to security, as most require-
ments engineers are not security experts in the first
place.

In this work, we propose a method called
problem-based security requirements elicitation
(PresSuRE), which guides a requirements engineer
through the process of eliciting a set of security re-
quirements in collaboration with the stakeholders of
the system-to-be and security experts. PresSURE has
several benefits. It does not require the requirements
engineer to have a security background. It does not
require any preliminary security requirements and
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security relevant information. It lowers the effort by
providing tool support for semi-automated modeling
and an automated security analysis. And PresSURE
is completely guided by a detailed process.

PresSURE is based on the same idea of deriving
information flows from functional requirements like
the problem-based privacy analysis (ProPAn) (Beck-
ers et al.,, 2013a), but changes the analysis to be
suitable for security. The analysis and elicitation
is based on a complete set of functional require-
ments for a system-to-be. The method is accompa-
nied with tool-support!. PresSURE is based on the
problem frame notation introduced by Jackson (Jack-
son, 2001). We decided to use problem frames be-
cause they have a semi-formal structure, which allows
a automated analysis. Furthermore, they are system-
centric and embody a description of the environment
of the system-to-be, which is important for a secu-
rity analysis. And the overall system-to-be is decom-
posed using the requirements, which makes the us-
age of problem diagrams scalable even for large sys-
tems, because the complexity of single problem dia-
grams is independent of the system size and the num-
ber of problem diagrams scales linearly. Thus, they
are suitable as input for a semi-automated analysis, as
they have a predictable structure, underlying seman-
tics, and support focusing on parts of the system-to-
be.
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We briefly describe the case study (Section 2) we
use for the running example and the validation. The
problem frame notation is explained in Section 3.
Section 4 introduces the running example, which is
used for the rest of the paper. The PresSURE method
is then explained in Section 5, and in Section 6 the
method is validated. In Section 7 related work is dis-
cussed, and the final conclusion is drawn in Section 8.

2 CASE STUDY

To illustrate the application of the PresSURE method,
we use the real-life case study of smart grids. As
sources for real functional and quality requirements,
we consider diverse documents such as “Application
Case Study: Smart Grid” provided by the industrial
partners of the EU project NESS0S?, the “Protection
Profile for the Gateway of a Smart Metering System”
(Kreutzmann et al., 2011) provided by the German
Federal Office for Information Security®, and “Re-
quirements of AMI (Advanced Multi-metering Infras-
tructure™) (ope, 2009) provided by the EU project
OPEN meter®.

To use energy in an optimal way, smart grids make
it possible to couple the generation, distribution, stor-
age, and consumption of energy. Smart grids use
information and communication technology (ICT),
which allows for financial, informational, and elec-
trical transactions.

We define the terms specific to the smart grid do-
main and our use case in the following. The smart
meter gateway represents the central communication
unit in a smart metering system. It is responsible for
collecting, processing, storing, and communicating
meter data. The meter data refers to readings mea-
sured by smart meters regarding consumption or pro-
duction of a certain commaodity. A smart meter rep-
resents the device that measures the consumption or
production of a certain commodity and sends it to the
gateway. An authorized external entity can be a hu-
man or an IT unit that communicates with the gateway
from outside the gateway boundaries through a wide
area network (WAN). The WAN provides the commu-
nication network that interconnects the gateway with
the outside world. The LMN (local metrological net-
work) provides the communication network between
the meter and the gateway. The HAN (home area net-
work) provides the communication network between
the consumer and the gateway. The term consumer
refers to end users of commodities (e.g., electricity).

Zhttp://www.nessos-project.eu/
Swww.bsi.bund.de
4http://www.openmeter.com/

3 PROBLEM-ORIENTED
REQUIREMENTS
ENGINEERING

Jackson (Jackson, 2001) introduced the concept of
problem frames, which is concerned with describ-
ing, analyzing, and structuring software development
problems. A problem frame represents a class of
software development problems. It is described by a
frame diagram, which consists of domains, interfaces
between them, and a requirement. Domains describe
entities in the environment. Jackson distinguishes the
domain types biddable domains that are usually peo-
ple, causal domains that comply with some physi-
cal laws, and lexical domains that are data represen-
tations. Whenever we have influence on the design
of a domain it is a designed domains. To describe
the problem context, a connection domain between
two other domains may be necessary. Connection do-
mains establish a connection between other domains
by means of technical devices. Examples are video
cameras, sensors, or networks. Note, that one domain
can have more than one type, for example a domain
can be a connection and causal domain at the same
time.

Interfaces connect domains, and they contain
shared phenomena. Shared phenomena may be
events, operation calls, messages, and the like. They
are observable by at least two domains, but controlled
by only one domain, as indicated by the abbreviation
of that domain and “!”. For example, the shared phe-
nomenon MeterData in Figure 1 is observable by the
domains SMGProvider and PersistentMeterData, but
controlled only by the domain PersistentMeterData
(abbreviation PMD).

The objective is to construct a machine (i.e., soft-
ware) that controls the behavior of the environment
(in which it is integrated) in accordance with the re-
quirements. Problem-oriented requirements analysis
relies on a decomposition of the overall problem into
sub-problems, which are represented by problem di-
agrams. Problem diagrams contain the requirements
belonging to the sub-problem. When we state a re-
quirement, we want to change something in the envi-
ronment. Therefore, each requirement constrains at
least one domain in the environment. A requirement
may also refer to several domains in the environment
of the machine.

The problem frames approach distinguishes there-
fore between the requirements (R), the domain knowl-
edge (D), and the specification (S). The requirements
describe the desired system after the machine is built.
The domain knowledge represents the relevant parts
of the problem world. The specifications describe the



«problemDiagram»
RQS5ProvideMeterData

«causalDomain, connectionDomain»

«biddableDomain»
«connection» ] Consumer
A

C!{requestConsumptionData} HAN!{forwardData}

«refersTo» |
N requestConsumptionData
«constrains»

i
i
i !
,,,,,,,,,, provideData __________________
«connection: ErRas

»
HAN! {forwardRequest} SMGPR!{provideData} «refersTo»,
MeterData\/

i «connection» lexicalDomain, designedDomain» ‘
I SMGProvider | smGpRi{readData} PMD!{MeterData) | = Data

Figure 1: Problem Diagram RQ 5 : Provide Meter Data.

behavior of the software in order to meet the require-
ments.

We describe problem frames using UML class
diagrams, extended by stereotypes, as proposed by
Hatebur and Heisel (Hatebur and Heisel, 2010).
Figure 1 shows a problem diagram in UML nota-
tion. The biddable domain (UML class with stereo-
type  biddableDomain ) Consumer controls the
request consumption data command (Name of the
UML association with the stereotype  connection
between the classes Consumer and HAN), which
is observed by ' the causal connection domain
HAN (UML class with stereotype  causalDomain,
connectionDomain ). The SMGProvider controls
the phenomenon readData, which is obtained from
the lexical domain PersistentMeterData (UML class
with stereotype  lexicalDomain ). Additionally,
the SMGProvider provides the data. The Persistent-
MeterData controls the meter data it contains. The
HAN forwards the data and commands it observes.
The requirement RQ 5 (for a textual description see
Section 4) constrains the HAN and refers to the Con-
sumer, and the PersistentMeterData.

4 RUNNING EXAMPLE: BILLING

We chose the use case Meter Reading for Billing
given in the documents of NESSoS and the open me-
ter project to exemplify our method. This use case
is concerned with gathering, processing, and storing
meter readings from smart meters for the billing pro-
cess. Beside the billing use case there are 13 use cases
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Figure 2: Problem Diagram RQ 1: Receive Meter Data.
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described for the minimal features of a smart meter
gateway in total, which we all considered for our val-
idation. The functional requirements for this use case
are defined as follows:

(RQ 1) Receive Meter Data: The smart meter gate-
way shall receive meter data from smart meters.

(RQ 2) Process Meter Data: The smart meter gate-
way shall process meter data from smart meters.

(RQ 3) Store Meter Data: The smart meter gateway
shall store meter data from smart meters.

(RQ 4) Submit Billing Data: The smart meter gate-
way shall submit processed meter data to authorized
external entities.

(RQ 5) Provide Consumption Data to Consumer:
The smart meter gateway shall provide meter data for
consumers for the purpose of checking the consis-
tency of bills.

The problem diagram for RQ 5 was already shown
in Figure 1 and explained in Section 3. Figure 2
shows the problem diagram for RQ 1. The causal
domain smart meter controls the send data com-
mand, which is forwarded by the LMN. and finally
observed by the machine domain SMGReceiver. The
SMGReceiver controls the phenomenon writeTempo-
raryData, which stores the received information in
the lexical domain temporary meter data. Addition-
ally, the SMGReceiver can request data which is for-
warded by the LMN to the smart meter. The causal
connection domain LMN forwards the data and com-
mands it observes. The requirement RQ 1 constrains
the temporary meter data and refers to the smart me-
ter. These two problem diagrams are sufficient to un-
derstand the rest of the paper, nevertheless we use all
five functional requirements for our method.

Note that we will even simplify this example in the
following. We will not elaborate on all security ele-
ments but restrict ourselves to one example for each
element, for example one asset, to improve the com-
prehensibility for the reader and for reasons of space.
Nevertheless, for the validation we elaborated the full
case study in means of 27 requirements and all possi-
ble assets and attackers.

5 THE PresSURE METHOD

The PresSURE method consists of four phases and
nine steps, which we will explain in the following
(Figure 3 gives an overview. Whenever we refer to
the figure we use a different font).
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Figure 3: PresSURE Method.

5.1 Model Functional Requirements

We assume that the functionality of the system-to-be
is described completely, coherently and unambigu-
ously. The functional requirements are a good start-
ing point for a security analysis as the requirements
engineer is used to deal with them, they are often al-
ready well defined, they already contain everything
which has to be protected, and they also contain the
entry points for possible attack vectors an adversary
can use. Note that the results PresSURE delivers are
correct and sufficient with respect to functional re-
quirements used. Hence, having incomplete or bad
requirements has an impact on the results. But how
to tackle this problem is out of scope of this problem.
The modeling of the requirements is achieved by per-
forming the following two steps.

Model Problem Diagrams. In the first step of the
PresSURE method, the functional requirements have
to be modeled using the problem frame notation. This
can be done by the requirements engineer alone,
based on a textual description of the functional require-
ments. The result is a set of problem diagrams as well
as an automatically generated connection domain dis-
covery table. The functional requirements and cor-
responding problem diagrams are presented in Sec-
tion 4.

Adjust Problem Diagrams. As setting up prob-
lem diagrams allows some degree of freedom, adjust-
ments might be needed to prepare the problem dia-
grams. For the PresSURE analysis, connection do-
mains are specifically important. Many attacks use
such connection domains as entry points, such as a
wireless LAN for sniffing important data, a display

Table 1: Connection Domain Discovery Table.

Domain
2

SMG-
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Domain
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Submit-
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*Q1: Information transmitting domain involved? Q2: Domain displaying
information involved? Q3: Domain storing information involved? PD:
Related problem diagrams

which is visible to an attacker, or even a postman,
who can be socially engineered. But as connection
domains are not of central relevance for fulfilling
the functional requirements, they are often left out.
Hence, one has to make sure that all connection do-
mains are explicitly modeled.

For each connection between domains, the re-
quirements engineer and the system stakeholders
have to check if there is a connection domain in be-
tween. Typical connection domains, which should be
modeled, are domains transporting information (such
as network domains or a postman), domains which
show information (such as (semi)- public displays),
or domains which store information for exchange be-
tween domains (such as a network-attached storage).

While requirements engineers are able to analyze,
understand, and explain the problem diagrams, and
know which new connection domains might be intro-
duced, they often lack the domain knowledge, which
reveals already established connection domains. This
knowledge is available through the stakeholders of
the system-to-be. Hence, the requirements engineer
guides through the discovery and models the results,
while the system stakeholders provide the needed in-
formation.



The requirements engineer and the system stake-
holders use a table containing the connected domains
pairwise, the phenomena in between and a standard
questionnaire, which helps to elicit the missing con-
nection domains. Table 1 shows such a table. The
result of this step are adjusted problem diagrams,
which are modeled by the requirements engineer us-
ing semi-automated wizards. For our example, using
the table and answering the questions, we see that our
problem diagrams have to contain WAN, HAN and
LMN as connection domains. This information is al-
ready reflected by the problem diagrams shown in this
paper.

5.2 Security Knowledge Elicitation

Before starting the security analysis, some security-
specific knowledge has to be elicited. This informa-
tion is crucial for the success of the analysis, as in
most cases the functional requirements do not con-
tain enough information for considering security thor-
oughly. The knowledge about assets in the system-
to-be and attackers which might tamper with the sys-
tem has to be made explicit. As this knowledge is not
or only partially available for requirements engineers,
they have to collaborate with the stakeholders of the
system and security experts.

Prepare Knowledge Elicitation. Even though, the
functional requirements do not contain the informa-
tion for security analysis, they do already contain
some information, which is the starting point for elic-
iting the additional domain knowledge. We use secu-
rity element elicitation tables, and attacker elicitation
tables to elicit this information. The tables are auto-
matically generated from the problem diagrams.

Identify Assets, Authorized Entities and Rights.
The baseline questions for this step are “What has
to be protected?” (asset), “Who is eligible to ac-
cess the asset?” (authorized entities), and “Which
actions are allowed for a stakeholder regarding an
asset?” (rights). This is in line with common se-
curity and threat analysis methods (ISO/IEC, 2009g;
Howard and Lipner, 2006; ISO/IEC, 2009b; Jiirjens,
2005). We use the previously generated security ele-
ment elicitation tables to elicit this information. The
instance for persistent meter data is shown in Table 2.
Such tables are completed by the stakeholders of the
system-to-be using the following description, while
the requirements engineer models the results.

Assets. Identify those domains, which have to be
protected. Every domain beside the machine is an
asset candidate. Most likely one wants to protect a
lexical domain representing information or a causal

Functional Requirements Under Security PresSuRE

Table 2: Security Element Elicitation Table for Persistent
Meter Data.

Asset- is as- Authorized Entity Candi- is  Autho- rights

Candidate set date rized Entity

Persistent- X WAN 2 2 read 2 write

Meter- Consumer X read 2 write

Data HAN 2 2 read 2 write
AuthorizedExternalEntity X read 2 write
SmartMeter X read  write
LMN 2 2 read 2 write

X :yes, :musthave, : mighthave

domain. For our example, we only select the per-
sistent meter data as an asset, which contains infor-
mation about the electricity consumption of the con-
sumer. This information has to be protected for pri-
vacy reasons, as it, for example, allows to monitor
the consumer. The full case study contains 13 further
assets (see Section 6).

Authorized Entities. A authorized entity to an
asset is every domain, which has an eligible interest
in knowing the state / reading, or controlling / writ-
ing the asset. Eligible entities of the meter data are
the smart meters, which produce the meter data, the
external entities, who need the consumption informa-
tion for billing, and the consumer, who wants to check
his/her electricity consumption.

Rights. Authorized entities have different rights
to access the asset. In case of a lexical domain, the
rights are to read or write the information in the do-
main. In case of the causal domain, the rights are to
control or know the state of the causal domain. For
each right and authorized entity, one has to state if the
entity is allowed to have the right or if the entity must
have the right. The smart meters must have the right
to write the information, while the consumer and ex-
ternal entities must have the right to read the informa-
tion. The smart meters do not need to read the stored
consumption data, and the external entities and the
consumer are not allowed to modify the consumption
data.

The elicited information has to be added to the
model. For this purpose, we use domain knowl-
edge diagrams. In domain knowledge diagrams ad-
ditional knowledge about domains and relations be-
tween domains can be modeled. To support mod-
eling security-related domain knowledge we devel-
oped UML profiles. Figure 4 shows a domain
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Consumer «read»

Figure 4: Asset Knowledge for the Rights of the Consumer
regarding the PersistentMeterData.
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knowledge diagram modeled using the profiles. It
depicts that there is domain knowledge (stereotype
domainKnowledge at class ConsumerPersistent-
MeterDataAccess) about the persistent meter data and
the consumer. The persistent meter data is an as-
set (stereotype asset at class PersistentMeter-
Data), the consumer is a authorized entity of this asset
(stereotype authorizedEntity at class Consumer),
and the consumer is allowed to read ( read ) from
the persistent meter data ( refersTo ). The di-
agrams are generated in the background while the
requirements engineer completes a wizard which is
similar to the security element elicitation table. The
result of the step are asset knowledge diagrams.

Attacker(s) Elicitation. In this step, the require-
ments engineer and a security expert have to collab-
orate to define those attackers who might attack our
system-to-be. While the requirements engineer has a
deeper understanding of the system-to-be and its do-
main, the security expert adds his/her vital knowledge
about attackers, attacker abilities, possible attack vec-
tors, and so forth. Hence, it is not mandatory that the
requirements engineer has a security background.

Beckers et al. (Beckers et al., 2013c) enumerate
different types of attackers: physical attacker, soft-
ware attacker, network attacker, and social attacker.
Regarding their abilities, we have chosen the abili-
ties as described by Dolev and Yao (Dolev and Yao,
1983): read (read message / get state of domain),
write (write message / change state of domain), inter-
fere (intercept message / prevent the change of state).
Again, describing attackers with their basic abilities
is in line with the state of the art (ISO/IEC, 2009a;
Howard and Lipner, 2006; ISO/IEC, 2009b; Jiirjens,
2005). For the purpose of eliciting the information
about attackers, we use the generated attacker elicita-
tion tables (see Table 3).

Attacker. First, we have to reason for each do-
main and type of attacker about the question if this
type of attacker might exist for the domain at hand.
For simplicity’s sake, we assume for the running ex-
ample that we only have to defend against network at-

Table 3: Attacker Elicitation Table for HAN.

Attack- is Attacker Name Abilities
Candidate | attack-
able
HAN X X network attacker internal net. read write
attacker interfere
2 physical attacker 2read 2 write
2 interfere
2 social attacker 2read 2 write
2 interfere
2 software attacker 2read 2 write
2 interfere

X :yes, : hasthe ability

10
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Figure 5: Attacker Knowledge regarding the internal net-
work attacker’s abilities regarding the HAN.

tackers. We distinguish between two network attack-
ers: The internal network attacker, who has access
to the HAN and LMN, where the smart meters reside,
and the external network attacker, who can attack via
the WAN. Note that for the full case study we found
and modeled 7 attackers in total, including all kinds
of attackers.

Abilities. For each attacker and each domain the
attacker has access to, we have to state which abilities
the attacker has. Whenever there is no detailed infor-
mation about the attackers and their abilities regard-
ing a-domain they have access to, one should assume
the strongest attacker. This might lead to an overesti-
mation of the threats afterward. But adding a unnec-
essary security requirement is not so much of an issue,
while missing one is critical. After an assessment of
all attackers of our example and their abilities, we
could not exclude any of the basic abilities. Hence,
our attackers have all abilities regarding the domains
they have access to.

The elicited information has to be added to the
model to be available for our analysis, too. Again,
the modeling can be done semi-automatically us-
ing the wizards our tool provides. The result are
attacker knowledge diagrams. Figure 5 shows the
domain knowledge about the internal network at-
tacker and his/her abilities regarding the HAN. It
depicts that there is domain knowledge (stereotype

domainKnowledge at class InternalNetworkAt-
tackerExists) about the internal network attacker and
the HAN. The internal network attacker is a network
attacker (stereotype  networkAttacker at class In-
ternalNetworkAttacker). This attacker is able to read
( read )fromthe HAN ( refersTo ), and the at-
tacker ( refersTo ) is able to write to and interfere
with the HAN ( write, interfere ).

5.3 Graph Generation

The automated part of the security analysis relies on
graphs, which visualize information flows and access
flows. The attacker asset access graphs, which con-
tains the potential security threats towards the func-
tional requirements, are generated stepwise. The



steps and intermediate graphs are explained in the fol-
lowing.

Global Access Graph. All graphs (V;E) that we
use for our security analysis in the PresSURE method
are labeled and directed. The set of vertices is a
subset of the domains occurring in the model, for-
mally V Domain. An edge is annotated with
a diagram and a type. The diagram can be a prob-
lem diagram or a domain knowledge diagram. The
type can be required (req), implicit (imp) or attack
(att) (Type ::= regjimpjatt). The type indicates if
the edge is required or implicitly given by the prob-
lem diagram or if it shows a possible attack relation-
ship defined in a domain knowledge diagram. The
edges point from one domain to another, formally
E Domain Diagram Type Domain. For
the rest of the paper we will regard such an edge as
an access flow. In the following, we describe a graph
(V;E) only by its edges E.

For the analysis of the threats towards an asset we
will use the global access graph.  This graph con-
tains the information about access flows between do-
mains, and which problem diagrams are the source of
these flows. For the flows, we distinguish between
required flows as stated by the requirement and im-
plicit ones which are modeled due to the given envi-
ronment. To set up the global access graph we use
the problem diagrams as an input. The predicates
constrains; refersTo : (Domain Diagram) and
controls : P(Domain Domain Diagram)
can be derived from the problem frame model and
are used to generate the global access graph. We
have (d;p) 2 constrains and (d;p) 2 refersTo
iff a requirement or domain knowledge in diagram p
constrains the domain d or refers to it, respectively.
(dq;d2; p) 2 controls is true iff the domain d; con-
trols an interface that d, observes in the diagram p.

Using these predicates, we create the global ac-
cess graph G, which is an overapproximation of the
access flows occurring in the system-to-be. An edge
(d1; p; reqg; dy) is in G iff the domains d; and d, are
not equal, and the domain d; is referred to and the
domain d is constrained in p. For example, the prob-

TemporaryMeterData }R—Qa—| PersistentMeterData
RQ3 |

A |
Consumer AuthorizedExternalEntity

Figure 6: Global Access Graph (also Asset Access Graph
for Persistent Meter Data).
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lem diagram for RQ 1 (see Figure 2) contains the
smart meter and the temporary storage. The smart
meter is referred by RQ 1 and the temporary storage
is constrained by RQ 1. Hence, we add a required
access flow edge (solid arrow) between smart meter
(node with name SmartMeter) and temporary meter
data (node with name TemporaryMeterData) anno-
tated with RQ 1 (see graph shown in Figure 6).

Additionally, an edge (dq; p;imp;dy) is in G iff
the (dy; p;req; dz) is not already in G, the domains
d; and d; are not equal, and d; observes an interface
controlled by d; in p. Note that machines are treated
as transitive forwarders in this case. This means that
whenever a machine m observes an interface con-
trolled by d; and d, observes an interface controlled
by m, we assume that d, observes an interface of
di.  For example, the domain LMN controls a phe-
nomenon forwardMeterData which is observed by the
machine (see Figure 2). The domain temporary me-
ter data observes a phenomenon writeTemporaryData
from the machine. Hence, an implicit access flow edge
(dotted edge) is added between the LMN and the tem-
poral meter data annotated with RQ 1 (see Figure 6).
We define the graphs as follows.

Greq =F(d1;p; t;d2) :

Domain ProblemDiagram freqg

Domain j di & d™

(dz2; p) 2 constrains ™ (di1; p) 2 refersTog
Gimp =TF(d1; p; t;d2) : Domain

ProblemDiagram fimpg Domain j

di 6 d> ™ (d1; p; req; d2) 2 Greq

" ((d1;dz2; p) 2 controls__9m : Machine

(d1; m; p) 2 controls ~ (m;dz; p) 2 controls)g

G =Greq [Gimp

Because of the annotation of the edges we keep the in-
formation which problem diagram causes the access
flow. Thus, our global access graph contains trace-
ability links that are used in our further analysis. The
semantics of an edge (dy; p; t;d2) 2 G is that in prob-
lem diagram p there is possibly a required or implicit
(depending on t) access flow from domain d; to do-
main ds.

Asset Access Graph. As the global access graph
can be huge for a complex system-to-be, we intro-
duce an asset access graph which focuses the view on
one asset only. It only contains access flows given
by the requirements directly or indirectly concern-
ing the asset. Thus, we get one asset access graph
per asset. The asset access graph makes the infor-
mation for the requirements engineer easier to com-
prehend. Hence, it improves the scalability of our
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WANAtacker (C,1,A) _ ‘__

" RQa(ClA)

PersistentMeterData _

g
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RQ5(C)

Consumer

"""""""" TemporaryMeterData

RQ3

Figure 7: Attacker Asset Access Graph for Persistent Meter Data.

method. An edge (di;p;t;dz) is in Gasset iff pis
iN Paccess- A problem diagram p is in Pacgess iff
there is an edge (d;p; t; d2) which is required and
d; and d, are both in Daccess. Daccess IS @ union
of Dactive and Dpassive. A domain dy is in Dactive
iff there is a required access flow which starts at d
and the target domain d is already in Dgctive. Ini-
tially, only the asset is in Dactive. Hence, Dactive
contains all domains which have a required direct or
indirect (via another domain) access flow towards the
asset. A domain d is in Dpassive iff there is a re-
quired access flow which ends at d, and the source
domain d; is already in Dpassive. Initially, only the
asset is in Dpassive. Hence, Dpassive contains all
domains which are the target of a required direct or
indirect (via another domain) access flow from the as-
set. Formally, we define Dactive, Dpassive, Daccess:
Paccess, and Gasset as follows.

required asset 2 Domain
asset 2 Dactive; asset 2 Dpassive;
(d1;p;req;d2) 2 G N d2 2 Dactive Y d1 2 Dactive
(d1; p;req;d2) 2 G N dy 2 Dpassive ) d2 2 Dpassive
Daccess =Dactive [ Dpassive
Paccess =fp : ProblemDiagram j
9(d1; p;req;d2) : G d1;d2 2 Daccessd
Gasset =F(d1;p;t;d2) : G j p 2 Paccessg
The resulting asset access graph for the persistent
meter data is shown in Figure 6, as for our small ex-
ample the global and the asset access graph do not
differ. For a complex scenario the asset access graph
is significantly smaller than the global access graph.
The asset access graph can be used to check if a stake-
holder can gain more rights than he/she should. For
reasons of space, we do not go into detail on this mat-
ter.

Attacker Asset Access Graph. For each asset, we
generate the attacker asset access graph, which visu-
alizes the information and control flows from attack-
ers to the asset and from the asset to the attackers.
At this point, we focus on the basic information se-
curity goals confidentiality, integrity, and availabil-
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ity (short CIA), which are suggested by the Com-
mon Criteria (ISO/IEC, 2009a) and I1SO 27000 family
of standards (ISO/IEC, 2009b). The problematic ac-
cess flows are annotated with the information which
CIA property(ies) are threatened (CI1A ::= CjljAj"™).
First, the domains which are directly connected to at-
tackers are identified. Note that for this purpose we
use the information given in domain knowledge di-
agrams created during the step ldentify assets, au-
thorized entities and rights described in Section 5.2.
From these diagrams, we can derive the predicates
read; write; interfere : P(Domain Diagram).
We have (d;dk) 2 read, (d;dk) 2 write, and
(d;dk) 2 interfere iff domain knowledge in dia-
gram dk has a read, write, or interfere dependency,
respectively, to the domain d.

A domain can d be object to be attacked if it is in
Daccess for the asset at hand. That is, an attacker can
access or influence information on the asset through
the domain d. We define the sets Dy, Dj, and D, as
the sets of all domains for which an attacker has the
ability to write, interfere, or read it, respectively. A
domain d is in D,y iff there exists an attacker a and a
domain knowledge diagram dk, in which d is written
and a is referred to by the domain knowledge. The
domain d is in D; iff there exists an attacker a and
a domain knowledge diagram dk in which d is inter-
fered and a is referred as sources of the interference.
The domain d is in Dy iff there exists an attacker a
and a domain knowledge diagram dk in which the in-
formation in d is referred to and a reads this informa-
tion. Based on the three sets of domains which might
be attacked, the asset threat graph Genreat Can be set
up. Dy, Dj, and D, are formally defined as follows.

Dw =fd : Daccess j 9a : Attacker; dk : Diagram
(d; dk) 2 write ™ (a; dk) 2 refersTog
Dj =fd : Daccess j 9a : Attacker; dk : Diagram
(d; dk) 2 interfere /™ (a; dk) 2 refersTog
Dy =fd : Daccess j 9a : Attacker; dk : Diagram
(a;dk) 2 read ™ (d; dk) 2 refersTog
Gthreat CONtains all edges, and therefore problem
diagrams, of the corresponding asset access graph



which might allow an attacker to successfully attack
the asset at hand. An access flow (di;p;t;dx) 2
Gasset represents that information is transferred from
d; to d, that possibly comes from the asset or that
possibly will be stored in the asset. Hence, such an
access flow is a possible threat to the confidentiality
of an asset if an attacker has the ability to read one of
the domains dy or d, (d; 2 Dy __dy 2 Dy). In this
case, we add the edge (di; p;t; C; d2) t0 Gihreat- AN
access flow (dq; p; t; d2) 2 Gasset iS a possible threat
to the integrity of an asset if an attacker has the ability
to write the source d; of the access flow (d; 2 Dy),
because an attacker could change the information of
the asset or the information sent to the asset at do-
main dq, which forwards it to domain d,. In this case,
we add the edge (dq; p; t;I;d2) t0 Gihreat- We have
to consider an access flow (dy; p; t; d2) 2 Gasset @S @
possible threat to the availability of an asset if an at-
tacker has the ability to interfere one of the domains
di ord; (d; 2 Dj _dy 2 D;j), because an attacker
is then able to threaten the availability of information
flowing from or to the asset through the domains d,
and d. In this case, we add the edge (di; p; t; A; d2)
t0 Gthreat. Gthreat 1S defined as follows.
Gthreat = f(d1; p;t;cia;d2) : Domain Diagram

Type CIA Domainj (di;p;t;d2) 2 Gasset™

[(dL 2Dr_dp 2Dy)~cia=C

_dy 2Dy Ncia=1

_(d1 2Dj_dz 2Dj)Ncia=Alg

The full attacker asset access graph Gattack IS an
extension of Gihreat Gattack- We add an edge
(d1;p; t;"; d2) t0 Gattack Iff (d1; dk; t;d2) isin Gasset
but not in G¢hreat- These edges visualize how the at-
tacks on the access flows in Ginreat are may propa-
gated over the system due to the functional require-
ments. Additionally, the attackers are added to the at-
tacker asset access graph. Gattack CONtains an edge
(a; dk; att; cia;d) if a is an attacker and a domain
knowledge diagram dk exists, in which d is referred to
and d is written (cia = I) or interfered (cia = A). Ad-
ditionally, Gattack CONtains an edge (a; dk; att; C; d) if
a is an attacker and a domain knowledge diagram dk
exists in which d is referred to and a is read. Formally,
we define Gattack as follows.

Gattack = F(d1;p;t;";d2) : Domain Diagram
Type CIA Domainj (di;p;t;d2) 2 Gasset”™
8st: CIA (di;p;t;st;d2) 2 Genreatdl
f(a; dk; att; cia; d) : Attacker Diagram Type
CIA Domainj (d;dk) 2 refersTo™
[(a;dk) 2 read ™~ cia = C__(a;dk) 2 write ~cia = |
_ (a;dk) 2 interfere ~ cia = Alg [ Gthreat

Functional Requirements Under Security PresSuRE

The generated attacker asset access graph for the
persistent meter data is shown in Figure 7. Note
that for reasons of readability, the PresSURE tool
merges edges and their annotation if they have the
same source and target, and are of the same type.
The asset is now visualized as ellipse with bold bor-
der and the asset name (PersistentMeterData) is writ-
ten in bold. The attackers internal and external net-
work attacker are also added as ellipses with dashed
borders and in italic font. Their attack flow edges
are shown as dashed edges, which are annotated with
the domain knowledge diagram they are described in
and the security goals they may threaten. A bold
(both, edge and annotation) access flow indicates a
flow for which a security property might be threat-
ened by an attacker. The threatened security property
is annotated in brackets. For example, the implicit
access flow edge between the nodes LMN and Tempo-
raryMeterData is annotated with RQ1 (A,C,I). Hence,
it might be possible that for RQ1 the confidentiality,
integrity and availability of persistent meter data is
threatened.

5.4 Analyze Attacker Asset Access
Graph

Last, a requirements engineer and a security expert
have to analyze the problematic (potentially threat-
ened) access flows. The input to this step are the at-
tacker asset access graphs. The attacker asset ac-
cess graph contains all information regarding access
flows to and from the asset. And it contains the in-
formation where the asset might be threatened by an
attacker. For each previously identified asset, it has
to be checked if the original requirements related to
the asset have to be augmented with security require-
ments. At this point we skip the detailed discussion
how to do this analysis for reasons of space.

6 VALIDATION

We validated PresSURE using two real-life case stud-
ies, the already introduced smart meter and a voting
system. The voting system requirements were ob-
tained from a Common Criteria profile for voting sys-
tems (Volkamer and Vogt, 2008). For more details
on the voting system case study, see (Falbender and
Heisel, 2013). The results for applying PresSURE
are reported in the following in detail for the Smart
Grid. The original functional requirements were ob-
tained from (ope, 2009) and the NESSoS case stud-
ies provided by the industrial partners of the project.
For conducting our method, we selected 13 minimum
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Table 4: Effort spent for conducting the method.

Method Step
Model Functional Requirements Security Knowledge Elicitation Graph Generation Analyze
Prepare Securi Attacker
Model Problem Adjust Problem P v Attacker(s) Global Access Asset Access Attacker Asset
Diagrams Diagrams Knowledge Element Elicitation Graph Graphs Access Graphs Access
9 9 icitati Elicitati v P P Graphs
28 min. per Problem 5.5 min. per < 1sec. per 10 min. per 12 min. per 3 sec. per Problem 40 sec per Attacker 15 min. per Problem
Effort 2 Per Item ,p ‘p ‘p Ap ,p p 9 sec. per Asset P .p
Diagram Domain Domain Domain Domain Diagram and Asset Diagram
27 Problem 27 Problem 27 Problem
Number of Items " 17 Domains 20 Domains 20 Domains 20 Domains h 14 Assets 14 Assets 7 Attacker "
Diagrams Diagrams Diagrams
1.6 person 0 computer 3.3 person 0 computer
Total 12.5 person hours P P P 4 person hours 0 computer hour P 1 computer hour 6.75 person hours
hours hour hours hour
# Involved Persons 1 2 0 2 2 0 0 0 2
3.2 person 0 computer 6.6 person 0 computer
Accumulated Total 12.5 person hours P P P 8 person hours 0 computer hour P 1 computer hour 13.5 person hours
hours hour hours hour

uses cases, which embody 27 requirements in total.
For these requirements, 14 assets and 7 attackers of
all kinds, as described in Section 5.2, were identified.
Based on this information the graphs were generated,
and the initial security requirements elicited.

We analyzed each attacker asset access graph for
assessing the tool support, and we also analyzed the
initial security requirements found for assessing the
overall method. For the graph, we checked for each
edge in the attacker asset access graph at hand if the
annotated threats are existing according to the threats
and security requirements of the original documents
(e.g. (ope, 2009; Kreutzmann et al., 2011) for smart
meter). We also looked for threats and security re-
quirements which are defined in such documents, but
which were not identified using PresSURE. In this
way we were able to measure the precision and re-
call of our method. Unfortunately, we do not know
which security analysis was used for eliciting the
security requirements reported in those documents.
But we assume that security experts were involved in
writing the documents and the documents were re-
viewed thoroughly. Hence, these documents are a
good benchmark.

Next, we aggregated the results of the edges of
the attacker asset access graph for each requirement.
Thus, we derived for each requirement the informa-
tion if the requirement has to be complemented by
security requirements according to PresSURE. Again,
we also checked if the found security requirements
are compliant with the original documents. Last, we
measured the precision and recall of PresSURE on the
requirements level.

The results of this analysis for the smart meter is

Table 5: Results of the assessment for the smart meter case
study.

Confidentiality| Integrity] Availability
Precision per attack asset access edges 36.14% 66.35% 62.52%
Recall per attack asset access edges 100.00% 100.00%| 100.00%
Aggregated precision per attack asset access 55.00%
edges
Aggregated recall per attack asset access
edges

100.00%

Precision per requirement 92.59% ] 96.30% | 96.30%

Recall per requirement 100.00% | 100.00%] 100.00%
Aggregated precision per requirement 95.06%
Aggregated recall per requirement 100.00%
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shown in Table 5. Speaking of the precision on the
level of edges of the attacker asset access graph, we
have many false positives, especially for confidential-
ity. This is-because the original documents do not
demand a high level of confidentiality. Additionally,
PresSURE discovered potential indirect information
flows between assets which will not occur in the sys-
tem later on. Thus, PresSURE is very strict and defen-
sive, which is not appropriate in every case. Note that
even though the indirect flows often turned out to be
irrelevant, but they have to be checked anyway. Of-
ten-attacks use such indirect relations to tamper with
a system. Overall, the precision on the level of edges
of the attacker asset access graph is acceptable (55%),
but should be improved. The recall is perfect (100%)
as we did not find any false negatives. On the re-
quirements level, our results are satisfying. Whenever
PresSuRE suggested to add a complementing security
requirement for a functional requirement, this sugges-
tion was correct with a precision of 95%, and no se-
curity requirment was missed (recall 100%).

Similar results were obtained for the voting sys-
tem case study. The precision on the level of edges of
the attacker asset graph is slightly higher, as the vot-
ing system documents are very strict regarding confi-
dentiality. This fact also shows on the requirements
level, but the difference to the smart meter case study
is not significant. For the attacker asset access edge
and the requirements level the recall was 100% again.

Speaking of the effort (see Table 4), the 43 per-
son hours spent are a significant effort, but seem to
be reasonable. The main effort is spent on the do-
main knowledge elicitation and the security analysis.
Both are vital for security requirements elicitation and
have to be conducted even when not using PresSuRE.
But PresSURE speeds up these activities and lowers
the error rate, as it provides guidance and means for
a detailed analysis and discussion. Additionally, from
our experience, PresSURE scales well, as most steps
rely on the complexity of the environment. And the
environment does not grow significantly when adding
further requirements. When discussing the require-
ments itself, PresSURE enables to focus on local and
small problems, which also supports the scalability



in means of comprehensibility and an only linear in-
crease time for the security analysis.

7 RELATED WORK

Schmidt and Jurjens (Schmidt and Jirjens, 2011) pro-
pose to integrate the SEPP method, which is based on
problem frames, and UMLSec (Jurjens, 2005), which
is based on a UML profile and allows tool-based rea-
soning about security properties. In this way, they can
express and refine security requirements and transfer
the security requirements to subsequent design arti-
facts. A similar method is described by Haley et
al. (Haley et al., 2008), which also relies on prob-
lem frames for security requirements analysis. The
first method (Schmidt and Jurjens, 2011) starts after
the initial security requirements are already known,
while the latter one already embodies a step for secu-
rity requirements elicitation. But this particular step
is described very sparsely and informally. Hence, our
work can complement and improve these works.

There are many publications concerning goal-
oriented security requirements analysis (e.g. (Liu
et al., 2003; Mouratidis and Giorgini, 2007; Salehie
etal., 2012; Van Lamsweerde, 2004)). But goal mod-
els are of a higher level of abstraction than problem
frames. Goal models are stakeholder-centric, while
problem frames are system-centric. Therefore, refin-
ing functional requirements taking into account more
detail of the system-to-be and analyzing the system-
to-be described by the functional requirements is re-
ported to be difficult for goal-oriented methods (Al-
rajeh et al., 2009). Alrajeh et al. try to tackle this
problem by introducing refinement steps which rely
on heavy weight formalizations. We offer an al-
ternative way of bridging the this gap. Thus, even
though the goals of an attacker and their implica-
tion for the goals of stakeholders are already known,
one might benefit from using our method. Recently,
there were papers which reported a successful integra-
tion of goal-oriented and problem-oriented methods
(Beckers et al., 2013b; Mohammadi et al., 2013). Use
case-oriented security requirements methods such as
misuse cases (Sindre and Opdahl, 2005) or abuse
cases (McDermott and Fox, 1999) are one possible
step before executing our method.

8 CONCLUSION

In this paper, we introduced a methodology for
Problem-based Security Requirements Elicitation
(PresSURE). PresSuRE is a method for identifying

Functional Requirements Under Security PresSuRE

security needs during the requirements analysis of
software systems using a problem frame model. In
summary, the PresSURE method has following ad-
vantages: It introduces attacker asset access graphs
and the graphs they are based on, which 1) visualize
the access flows given by the functional requirements,
2) show entry points for attackers and subsequently
threatened assets, 3) directly relate functional require-
ments and threats they are exposed to, and 4) can be
generated fully automatically. And it is a re-usable
requirements security analysis method which 1) re-
lies on functional requirements only, as all security
aspects are added while conducting the method in a
structured way, 2) ensures that crucial domain knowl-
edge is elicited, 3) enforces and supports the collabo-
ration with system stakeholders and security experts,
4) is applicable to different domains, and 5) is tool
supported to ease the elicitation, modeling, and anal-
ysis necessary for the method.

We validated our method and tool with two real-
life case studies in the fields of smart grid and vot-
ing systems. The results show the suitability of our
method to detect initial security requirements. For
the future, we will investigate in which way the false
positive rate can be lowered in order to decrease the
effort spent on analyzing attack asset access graphs.
Moreover, we are working on making the graphs to
be analyzed even smaller by focusing a graph only on
one attacker, and one asset property at a time. Fur-
thermore, we plan to investigate how the basic CIA
properties can be refined further systematically into
more fine-grained security requirements such as au-
thentification and authorization.
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