
A Self-adaptive Iterated Local Search Algorithm on
the Permutation Flow Shop Scheduling Problem

Xingye Dong1, Maciek Nowak2, Ping Chen3 and Youfang Lin1
1Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and IT,

Beijing Jiaotong University, Beijing 100044, China
2Quinlan School of Business, Loyola University, Chicago, IL 60611, U.S.A.

3TEDA College, NanKai University, Tianjin 300457, China

Keywords: Scheduling, Permutation Flow Shop, Total Flow Time, Iterated Local Search, Self-adaptive Perturbation.

Abstract: Iterated local search (ILS) is a simple, effective and efficient metaheuristic, displaying strong performance on
the permutation flow shop scheduling problem minimizing total flow time. Its perturbation method plays an
important role in practice. However, in ILS, current methodology does not use an evaluation of the search
status to adjust the perturbation strength. In this work, a method is proposed that evaluates the neighborhoods
around the local optimum and adjusts the perturbation strength according to this evaluation using a technique
derived from simulated-annealing. Basically, if the neighboring solutions are considerably worse than the
best solution found so far, indicating that it is hard to escape from the local optimum, then the perturbation
strength is likely to increase. A self-adaptive ILS named SAILS is proposed by incorporating this perturbation
strategy. Experimental results on benchmark instances show that the proposed perturbation strategy is effective
and SAILS performs better than three state of the art algorithms.

1 INTRODUCTION

Since the pioneering work of Johnson (Johnson,
1954), the permutation flow shop problem (PFSP)
has attracted considerable attention. In this problem,
there aren jobs andm machines, and each job hasm
operations. The jobs need to be processed onm ma-
chines in the same sequence, that is to say no pre-
emption is allowed. Theith operation of each job
needs to be processed on theith machine. All the
jobs are available at time zero and each machine can
serve at most one job at any time. Any operation
can be processed only if its previous operation has
been processed and the requested machine is avail-
able. The PFSP is NP-complete when minimizing
total flow time with more than one machine (Garey
et al., 1976).

For the purpose of finding high-quality solutions
within a reasonable computation time, many methods,
including simple heuristics and more complex meta-
heuristics (Dong et al., 2013), have been proposed.
Among the existing metaheuristics, local search pro-
cedure plays an important role. Several ant colony
algorithms are proposed by Rajendran et al. (Rajen-
dran and Ziegler, 2004; Rajendran and Ziegler, 2005),

working with well designed local search procedures
and performing better than some constructive heuris-
tics by Liu and Reeves (Liu and Reeves, 2001). Tas-
getiren et al. (Tasgetiren et al., 2007) apply a par-
ticle swarm optimization (PSO) algorithm by using
the smallest position value rule. They also propose a
hybrid algorithm with variable neighborhood search
(VNS), called PSOVNS, and it performs quite well on
Taillard’s benchmark instances (Taillard, 1993). Pan
et al. (Pan et al., 2008) develop two metaheuristics, a
differential evolution algorithm and an iterated greedy
algorithm hybridized with a referenced local search
procedure. Local search procedures are also used
in several genetic algorithms (Tseng and Lin, 2009;
Zhang et al., 2009; Tseng and Lin, 2010). Recently,
Tasgetiren et al. (Tasgetiren et al., 2011) designed an
artificial bee colony algorithm and a discrete differen-
tial evolution algorithm. Both algorithms use a local
search procedure taking advantage of the iterated lo-
cal search (ILS) by Dong et al. (Dong et al., 2009) and
the iterated greedy (IG) algorithm by Ruiz and Stützle
(Ruiz and Stützle, 2007). An asynchronous genetic
local search algorithm, embedding an enhanced vari-
able neighborhood search, is also addressed by Xu et
al. (Xu et al., 2011) for the PFSP minimizing total

378 Dong X., Nowak M., Chen P. and Lin Y..
A Self-adaptive Iterated Local Search Algorithm on the Permutation Flow Shop Scheduling Problem.
DOI: 10.5220/0005092003780384
In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2014), pages 378-384
ISBN: 978-989-758-039-0
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

flow time.

Local search procedure is used as an embed-
ded procedure in the aforementioned metaheuristics.
However, it is also used in an iterative way to form a
metaheuristic called iterated local search (ILS). Dong
et al. (Dong et al., 2009) develop an ILS to solve the
PFSP minimizing total flow time, in which the per-
turbation method swaps several pairs of adjacent jobs
and the perturbation strength, denoted by the number
of swapping pairs, is evaluated. A multi-restart iter-
ated local search (MRSILS) algorithm is proposed by
Dong et al. (Dong et al., 2013), improving the per-
turbation method mainly by generating restart solu-
tions from a set of elite solutions. Their experiments
show that the MRSILS increases the performance of
the methodology used in Dong et al. (Dong et al.,
2009) significantly, while performing comparably to
or better than five other state of the art metaheuristics
(Pan et al., 2008; Zhang et al., 2009; Tasgetiren et al.,
2011). Costa et al. (Costa et al., 2012b) study the
combination of the most commonly used local search
neighborhoods, the swap neighborhood and the in-
sertion neighborhood. Six different combinations in
total are calibrated. Later, they extend this work
by developing an algorithm hybridizing VNS and
path-relinking on a particle swarm framework, with
promising experimental results on Taillard’s bench-
mark instances (Costa et al., 2012a). Pan and Ruiz
(Pan and Ruiz, 2012) propose two local search meth-
ods based on the well known ILS and IG frameworks.
They also extend them to population-based versions;
however, their experiments show that the two local
search methods perform better than the population-
based versions.

Though ILS has performed well on the PFSP min-
imizing total flow time, one limitation is that the
search process often cannot improve the best solution,
even with dozens of iterations. For example, this oc-
curs with the MRSILS by Dong et al. (Dong et al.,
2013), although the pooling strategy in this algorithm
augments the ability to find better solutions. A reason
for the search process to be limited is that the pertur-
bation method moves randomly selected jobs to other
randomly selected positions without considering the
search status. In order to improve perturbation qual-
ity, this work proposes a method to evaluate the con-
vergence status of the search. With a greater focus
on convergence, the probability increases that a job is
moved to a position where a solution with larger ob-
jective can be generated. Based on this observation,
a self-adaptive ILS (SAILS) is proposed and evalu-
ated. Comparison results with the MRSILS by Dong
et al. (Dong et al., 2013) and two local search based
algorithms by Pan and Ruiz (Pan and Ruiz, 2012) on

Taillard’s benchmark instances (Taillard, 1993) show
that the new perturbation method leads to improved
performance.

The remainder of this paper is organized as fol-
lows. In Section 2, the formulation of the PFSP with
total flow time criterion is presented. Section 3 de-
scribes the evaluation method and illustrates the pro-
posed algorithm. The evaluation method is analyzed
and SAILS is compared with several state of the art
algorithms in Section 4, then the paper is concluded
in Section 5.

2 PROBLEM FORMULATION

In this paper, the PFSP is discussed with the objective
of minimizing total flow time. This problem is an im-
portant and well-known combinatorial optimization
problem. In the PFSP, a set of jobsJ = {1,2, . . . ,n}
available at time zero must be processed onm ma-
chines, wheren≥ 1 andm≥ 1. Each job hasmoper-
ations, each of which has an uninterrupted processing
time. The processing time of theith operation of jobj
is denoted bypi j , wherepi j ≥ 0. Theith operation of
a job is processed on theith machine. An operation
of a job is processed only if the previous operation
of the job is completed and the requested machine
is available. Each machine processes these jobs in
the same order and at most one operation of each job
can be processed at a time. The PFSP to minimize
total flow time is usually denoted byFm|prmu|∑Cj
(Pinedo, 2001), whereFm describes the environment,
prmuis the set of constraints andCj denotes the com-
pletion time of job j. Let π denote a permutation on
the setJ, representing a job processing order. Let
π(k), k = 1, . . . ,n, denote thekth job in π, then the
completion time of jobπ(k) on each machinei can be
computed through a set of recursive equations:

Ci,π(1) = ∑i
r=1 pr,π(1) i = 1, . . . ,m (1)

C1,π(k) = ∑k
r=1 p1,π(r) k= 1, . . . ,n (2)

Ci,π(k) = max{Ci−1,π(k),Ci,π(k−1)}+ pi,π(k)
i = 2, . . . ,m;k= 2, . . . ,n

(3)

ThenCπ(k) = Cm,π(k), k = 1, . . . ,n. The total flow
time is∑Cπ(k), or the sum of completion times on ma-
chinem for all jobs. The objective of the PFSP when
minimizing total flow time is to minimize∑Cπ(k), or
Cπ for short.

3 THE PROPOSED ALGORITHM

According to Lourenco et al. (Lourenço et al., 2010),
the general framework of ILS has four key compo-

A�Self-adaptive�Iterated�Local�Search�Algorithm�on�the�Permutation�Flow�Shop�Scheduling�Problem

379

nents: the method generating the initial solution, the
local search procedure, the acceptance criterion and
the method to perturb a solution. In this work, the
H(2) heuristic by Liu and Reeves (Liu and Reeves,
2001) is used to generate the initial solution, as it can
generate an initial solution in negligible time and has
been used by Dong et al. (Dong et al., 2013; Dong
et al., 2009) to form quite good ILS algorithms. As
for the other three key components, the local search
procedure and the evaluation method used to indicate
the convergence status are discussed in Section 3.1.
The acceptance criterion and the perturbation method
are addressed together in Section 3.2. Finally, the pro-
posed ILS algorithm is illustrated in Section 3.3.

3.1 Evaluation Method and Local
Search

In this work, a solution to the discussed problem is
presented as a permutation of the jobs and the com-
monly used insertion local search is chosen as the lo-
cal search procedure. During the local search, each
job is removed from its original position and inserted
into the othern− 1 positions to see whether the so-
lution can be improved. Suppose the current local
optimum solution isπ and fπ(i), j denotes the objec-
tive value of the solution generated by removing job
π(i) and inserting it into positionj. Among then−1
solutions, the best one is chosen and its objective is
denoted byf ∗π(i). The objective values form a matrix
F , called the objective matrix. For all of the jobs,
the average objective value off ∗π(i), i = 1, . . . ,n can be
computed as:

avgπ =
1
n

n

∑
i=1

f ∗π(i). (4)

This average objective value can be used as an in-
dicator of the convergence status. Suppose the current
best objective value in the search process isfb. The
larger the differenceavgπ− fb, the worse the solutions
in the neighborhood surroundingπ and the more dif-
ficult it is to escape from the local minimum in this
neighborhood. This is an indicator that the perturba-
tion strength should be increased. In order to tem-
per the influence of this indicator as the difference be-
tweenavgπ and fb becomes larger, this difference is
adjusted such that:

avg
′

π = (avgπ− fb)
1/k. (5)

wherek is an integer, and its value is tuned in Section
4.

The local search used in this work is shown in Fig-
ure 1, whereπ denotes the start solution,π∗ denotes

procedure InsertionLS(π)
1. cnt← 0, idx← 0, πseq← π∗;
2. while (cnt< n) do
3. Find j, whereπ(j) = πseq(idx+1);
4. Moveπ(j) to othern−1 positions in

π, respectively; denote the best solut-
ion asπ′ ; updateFπ concurrently;

5. if Cπ′ <Cπ then
6. π← π′ , cnt← 0;

else
7. cnt← cnt+1;

endif
8. if Cπ <Cπseq then
9. πseq← π;

endif
10. idx← (idx+1) modn;

endwhile
11. return π;

end

Figure 1: Pseudo code of the insertion local search.

the best solution found so far in the search process,
andFπ andFπ∗ denote the objective matrices corre-
sponding toπ andπ∗, respectively.

3.2 Acceptance and Perturbation
Method

In the general framework of the ILS (Lourenço et al.,
2010), a decision is made whether to accept a solution
as the local optimum when it is reached, and then the
solution may be perturbed to generate a restart solu-
tion that continues the local search procedure. Dong
et al. (Dong et al., 2013) propose a pooling strat-
egy that leads the search to a more promising solu-
tion space, generating highly competitive solutions.
In this work, the pooling strategy is also used, while
the perturbation method is adapted by using the indi-
catoravg

′

π and incorporating the concept of tempera-
ture control from simulated annealing (Nikolaev and
Jacobson, 2010).

According to Dong et al. (Dong et al., 2013),
a set of elite solutions is pooled during the local
search. Suppose the set of elite solutions ispool
andπ is the solution chosen from it. It is perturbed
by randomly selecting a job,i, and moving it to
another randomly selected position with probability
exp(−avg

′

π/T), whereT denotes temperature. In this
work, T is a constant value. Alternatively, with prob-
ability 1−exp(−avg

′

π/T) the randomly selected job
is moved to a position that can generate a worse so-
lution. The probability of moving jobi to position j,
where j 6= i, is denoted byp j and can be determined

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

380

procedure Perturbation()
1. if |pool|< pool sizethen
2. π← π∗, Fπ← Fπ∗ ;

else
3. Choose a solution frompool asπ, get

the correspondingFπ from Fpool;
endif

4. Computeavg
′

π usingFπ;
5. Randomly select a jobπ(i) from π;
6. if rand()< exp(−avg

′

π/T) then
7. Moveπ(i) to another randomly selected

position inπ to form a newπ;
else

8. Moveπ(i) to another position inπ acc-
ording to Eq. (6) to form a newπ;

endif
9. return π;

end

Figure 2: Pseudo code of the perturbation method.

Table 1: Global variables used in the perturbation method.

variables Description
π∗ The best solution found so far
π A variable denotes a solution
pool The set of elite solutions
pool size The size limitation ofpool
Fπ Objective matrix corresponding toπ
Fπ∗ Objective matrix corresponding toπ∗
Fpool Pool of objective matrix correspond-

ing to pool

using a roulette methodology, such that the probabil-
ity increases with the cost of the solution generated
by the move. This probability is determined as:

p j =

√

fπ(i), j − fb+1

∑n
k=0;k6=i

√

fπ(i),k− fb+1
(6)

The perturbation method is illustrated in Figure 2.
In this figure, rand() is a function that generates a
random number uniformly distributed in the range [0,
1], and the global variables are listed in Table 1.

3.3 Self-adaptive ILS

The proposed ILS is named self-adaptive ILS
(SAILS), with the pseudo code presented in Figure
3.

In this work, thepool sizeis set to 5, as this value
is found to be effective in Dong et al. (Dong et al.,
2013), although the parameter is rather robust. The
parameterk (used in Eq. (5)) and temperatureT are
tuned in Section 4.1. There are usually two termi-
nation criteria in the literature: a maximum number
of iterations and limited computational time. In this

1. Definepool size, k andT;
2. π← Generate an initial solution;
3. InitializeFπ by setting every entry toCπ;
4. π∗← π; Fπ∗ ← Fπ; pool← /0; Fpool← /0;
5. while(termination criterion is not satisfied)do
6. π← InsertionLS(π);
7. if Cπ <Cπ∗ then
8. pool← /0, Fpool← /0, Fπ∗ ← Fπ;

endif
9. if π /∈ pool then
10. Addπ to pool, addFπ to Fpool;

endif
11. if |pool|> pool sizethen
12. Delete the worst solution inpool, and the

corresponding objective matrix inFpool;
endif

13. π← Perturbation();
end

14. Outputπ∗ and stop.

Figure 3: Pseudo code of the proposed SAILS.

work, the latter is applied on line 5 in order to more
easily compare the SAILS with other algorithms.

In considering insertion local search, the number
of solutions to be evaluated is at leastn× (n− 1)
and the time complexity for evaluating one solution
is O(nm), so the time complexity of the local search
is at leastO(n3m). In literature, the CPU time limi-
tation is often set toρnm milliseconds, whereρ is a
constant (Tasgetiren et al., 2007; Ruiz and Stützle,
2007; Xu et al., 2011; Costa et al., 2012b; Costa
et al., 2012a; Pan and Ruiz, 2012). This setting has
a shortcoming in that smaller instances can run with
more CPU time relative to larger instances. For ex-
ample, an instance with 20 jobs and 20 machines
may have 1000×20× (20−1) solutions evaluated in
ρ×20×20 milliseconds CPU time, i.e. checking all
the jobs 1000 passes; while an instance with 500 jobs
and 20 machines still has the same number solutions
evaluated inρ×500×20 milliseconds CPU time, i.e.
checking all the jobs only about 1.52 passes. In or-
der to avoid this unfair, the CPU time limitation is set
to ρn3m milliseconds. In this work,ρ is set to 0.004,
0.012 and 0.02, respectively.

4 COMPUTATIONAL RESULTS

In this section, the proposed algorithms are evaluated.
Firstly, two parameters of the SAILS are tuned, then
the SAILS is compared with state of the art algorithms
and shown the effective of the newly proposed pertur-
bation method.

The benchmark instances used for analysis are

A�Self-adaptive�Iterated�Local�Search�Algorithm�on�the�Permutation�Flow�Shop�Scheduling�Problem

381

Table 2: Tuning the parameters of the SAILS.

value ofk
temperatureT 1 2 3 4
3 0.306 0.298 0.294 0.314
4 0.309 0.292 0.299 0.318
5 0.318 0.309 0.312 0.292

taken from Taillard (Taillard, 1993), with 120 in-
stances evenly distributed among 12 different sizes.
The scale of these problems varies from 20 jobs and 5
machines to 500 jobs and 20 machines. In the experi-
ment, five independent runs are performed for the in-
stances with less than 500 jobs. The ten instances with
500 jobs and 20 machines are run only once as they
are considerably more time consuming. For example,
for the terminal criterion 0.02n3m milliseconds CPU
time, about 13.9 hours are required for just one run.

The performance of the algorithms are tested us-
ing the relative percentage deviation (RPD), which is
calculated as:

RPD= (C−Cbest)/Cbest×100 (7)

whereC is the result found by the algorithm being
evaluated andCbest is the best result provided by Pan
and Ruiz (Pan and Ruiz, 2012), found as the best so-
lution among their four proposed algorithms and 11
other state of the art works.

Each algorithm is implemented in C++, run-
ning on three similar PCs, each with an Intel Core2
Duo processor (2.99 GHz) and 2GB main memory.
Though each computer has two processors, only one
is used in the experiments, as no parallel program-
ming technique has been applied.

4.1 Tuning of the SAILS

There are two parameters in the proposed SAILS, the
first one isk, used in Eq. (5); the other is the tem-
peratureT, used in the self-adaptive perturbation (see
Fig. 2). Thek is set to 1, 2, 3 and 4, respectively,
and theT is set to 3, 4 and 5, respectively. So there
are 12 combinations in total. The terminal criterion is
set to 0.02×mn3. As it is too time consuming for the
500 jobs instances, the SAILS is only run on the first
110 instances. The overall averaged RPDs (ARPD)
for these 12 combinations are listed in Table 2. From
this table, it can be seen that the results are quite sim-
ilar for each pair ofT andk. However, the results are
generally better withk = 2. As the performance is
one of the best cases withk= 2 andt = 4, we choose
them in the following experiments.

Table 3: Comparison in ARPD for MRSILS, PR-ILS, PR-
IGA and SAILS (0.004n3mms CPU time).

n|m MRSILS PR-ILS PR-IGA SAILS
20|5 0.007 0 0.016 0.007
20|10 0.002 0 0 0
20|20 0 0 0 0
50|5 0.476 0.558 0.485 0.501
50|10 0.575 0.677 0.630 0.584
50|20 0.534 0.610 0.589 0.393
100|5 0.824 0.888 0.819 0.834
100|10 1.032 0.941 1.127 1.022
100|20 1.076 1.043 1.171 0.991
200|10 0.740 0.754 0.667 0.750
200|20 0.393 0.283 0.296 0.293
500|20 0.121 0.020 0.063 0.149
Avg. 0.482 0.481 0.488 0.460

4.2 Evaluation of the SAILS

The values for the average RPD (ARPD) of all 120
instances are presented in Tables 3 - 5 for each com-
bination ofn andm. From these tables, it can be seen
that SAILS generally performs the best. And with the
prolonging of CPU time, the superiority of the SAILS
increases (See Fig. 4). The reason for this is that the
self-adaptive strategy will be applied more times in
the search with prolonged CPU time, and then result-
ing significantly better performance for the SAILS.
This also shows that the proposed strategy is effec-
tive, particularly with longer CPU time.

This phenomenon can also be observed on large
instances. With the 500 job instances, when the CPU
time limitation is set to 0.004×n3m, SAILS performs
the worst. When the CPU time limitation is set to
0.012×n3m, SAILS surpasses MRSILS and PR-IGA,
but is still worse than PR-ILS. With the CPU time lim-
itation set to 0.020×n3m, SAILS further outperforms
MRSILS and PR-IGA, and is quite similar to PR-ILS.

0.25

0.3

0.35

0.4

0.45

0.5

ρ=0.004 ρ=0.012 ρ=0.02

A
R

P
D

CPU time limitation (ρmn3 ms)

MRSILS

PR-ILS

PR-IGA

SAILS

Figure 4: Comparison results for the SAILS with the MR-
SILS, PR-ILS and PR-IGA with different CPU time set-
tings.

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

382

Table 4: Comparison in ARPD for MRSILS, PR-ILS, PR-
IGA, SAILS (0.012n3m ms CPU time).

n|m MRSILS PR-ILS PR-IGA SAILS
20|5 0.007 0 0.007 0.007
20|10 0 0 0 0
20|20 0 0 0 0
50|5 0.345 0.406 0.279 0.363
50|10 0.398 0.494 0.572 0.462
50|20 0.388 0.431 0.537 0.303
100|5 0.646 0.703 0.678 0.650
100|10 0.766 0.739 0.897 0.751
100|20 0.841 0.836 0.853 0.738
200|10 0.547 0.597 0.527 0.536
200|20 0.083 -0.016 0.097 0.007
500|20 -0.027 -0.110 -0.034 -0.057
Avg 0.333 0.340 0.368 0.313

Table 5: Comparison in ARPD for MRSILS, PR-ILS, PR-
IGA, SAILS (0.02n3mms CPU time).

n|m MRSILS PR-ILS PR-IGA SAILS
20|5 0.007 0 0.007 0.007
20|10 0 0 0 0
20|20 0 0 0 0
50|5 0.296 0.332 0.262 0.290
50|10 0.357 0.474 0.527 0.402
50|20 0.387 0.416 0.480 0.274
100|5 0.602 0.648 0.590 0.557
100|10 0.699 0.697 0.793 0.659
100|20 0.701 0.740 0.761 0.612
200|10 0.473 0.521 0.475 0.460
200|20 -0.002 -0.063 0.027 -0.046
500|20 -0.089 -0.165 -0.081 -0.144
Avg 0.286 0.300 0.320 0.256

5 CONCLUSIONS

Iterated local search algorithms are powerful for solv-
ing the PFSP minimizing total flow time, with the per-
turbation method playing an important role. The MR-
SILS algorithm by Dong et al. (Dong et al., 2013) is
a state of the art ILS algorithm. However, one short-
coming is that the best current solution cannot be im-
proved in many local search runs during the search
process. Further, the perturbation method only moves
a randomly selected job to another randomly selected
position, without any bias, such that it is difficult to
escape from a “deep” local optimum.

In order to overcome this shortcoming, a self-
adaptive perturbation method is proposed in this pa-
per. In this method, the search status is evaluated
by calculating the average objective value of a sam-
ple of the neighborhoods around the local optimum.

The greater the difference between the average ob-
jective value and the best current objective value, the
higher the probability that the perturbation strength
is increased and a randomly selected job is moved
to a position where worse solutions can be gener-
ated. The SAILS algorithm is proposed based on the
above analysis. Experimental results on benchmark
instances show that SAILS works quite well, espe-
cially for long CPU times. The proposed method-
ology developed here may potentially be applied to
other problems, as escaping local minimums with lo-
cal search is a difficulty for many combinatorial opti-
mization problems.

ACKNOWLEDGEMENTS

This work is supported by The Fundamental Research
Funds for the Central Universities of China (Project
Ref. 2014JBM034, Beijing Jiaotong University).

REFERENCES

Costa, W., Goldbarg, M., and Goldbard, E. (2012a). Hy-
bridizing VNS and path-relinking on a particle swarm
framework to minimize total flowtime.Expert Systems
with Applications, 39:13118–13126.

Costa, W., Goldbarg, M., and Goldbard, E. (2012b). New
VNS heuristic for total flowtime flowshop scheduling
problem.Expert Systems with Applications, 39:8149–
8161.

Dong, X., Chen, P., Huang, H., and Nowak, M. (2013).
A multi-restart iterated local search algorithm for the
permutation flow shop problem minimizing total flow
time. Computers & Operations Research, 40:627–
632.

Dong, X., Huang, H., and Chen, P. (2009). An iterated
local search algorithm for the permutation flowshop
problem with total flowtime criterion.Computers &
Operations Research, 36:1664–1669.

Garey, M., Johnson, D., and Sethi, R. (1976). The complex-
ity of flowshop and jobshop scheduling.Mathematics
of Operations Research, 1:117–129.

Johnson, S. (1954). Optimal two and three-stage production
schedule with setup times included.Naval Research
Logistics Quarterly, 1(1):61–68.

Liu, J. and Reeves, C. (2001). Constructive and composite
heuristic solutions to thep//∑ci scheduling problem.
European Journal of Operational Research, 132:439–
452.

Lourenço, H., Martin, O., and Stützle, T. (2010).Hand-
book of Metaheuristics, volume 146 ofInternational
Series in Operations Research & Management Sci-
ence, chapter Iterated Local Search: Framework and
Applications, pages 363–397. Springer US.

A�Self-adaptive�Iterated�Local�Search�Algorithm�on�the�Permutation�Flow�Shop�Scheduling�Problem

383

Nikolaev, A. G. and Jacobson, S. H. (2010).Handbook of
Metaheuristics, volume 146 ofInternational Series in
Operations Research & Management Science, chapter
Simulated Annealing, pages 1–39. Springer US.

Pan, Q.-K. and Ruiz, R. (2012). Local search methods for
the flowshop scheduling problem with flowtime mini-
mization.European Journal of Operational Research,
222:31–43.

Pan, Q.-K., Tasgetiren, M., and Liang, Y.-C. (2008). A dis-
crete differential evolution algorithm for the permu-
tation flowshop scheduling problem.Computers and
Industrial Engineering, 55:795–816.

Pinedo, M. (2001). Scheduling: theory, algorithms, and
systems. Prentice Hall, 2nd edition.

Rajendran, C. and Ziegler, H. (2004). Ant-colony algo-
rithms for permutation flowshop scheduling to mini-
mize makespan/total flowtime of jobs.European Jour-
nal of Operational Research, 155:426–438.

Rajendran, C. and Ziegler, H. (2005). Two ant-colony algo-
rithms for minimizing total flowtime in permutation
flowshops. Computers and Industrial Engineering,
48:789–797.

Ruiz, R. and Stützle, T. (2007). A simple and effective
iterated greedy algorithm for the permutation flow-
shop scheduling problem.European Journal of Op-
erational Research, 177:2033–2049.

Taillard, E. (1993). Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research,
64:278–285.

Tasgetiren, M., Liang, Y.-C., Sevkli, M., and Gencyilmaz,
G. (2007). A particle swarm optimization algorithm
for makespan and total flowtime minimization in the
permutation flowshop sequencing problem.European
Journal of Operational Research, 177:1930–1947.

Tasgetiren, M., Pan, Q.-K., Suganthan, P., and Chen, A.
H.-L. (2011). A discrete artificial bee colony algo-
rithm for the total flowtime minimization in permu-
tation flow shops. Information Sciences, 181:3459–
3475.

Tseng, L.-Y. and Lin, Y.-T. (2009). A hybrid genetic lo-
cal search algorithm for the permutation flowshop
scheduling problem. European Journal of Opera-
tional Research, 198:84–92.

Tseng, L.-Y. and Lin, Y.-T. (2010). A genetic local search
algorithm for minimizing total flowtime in the per-
mutation flowshop scheduling problem.International
Journal of Production Economics, 127:121–128.

Xu, X., Xu, Z., and Gu, X. (2011). An asynchronous genetic
local search algorithm for the permutation flowshop
scheduling problem with total flowtime minimization.
Expert Systems with Applications, 38:7970–7979.

Zhang, Y., Li, X., and Wang, Q. (2009). Hybrid genetic
algorithm for permutation flowshop scheduling prob-
lems with total flowtime minimization. European
Journal of Operational Research, 196(3):869–876.

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

384

