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Abstract: The two-compartment Pinsky and Rinzel version of the Traub model offers a suitable solution for hardware-
based emulation, since it has a good trade-off between biophysical accuracy and computational resources. 
Many applications based on conductance-based models require a proper characterization of the neuron 
behaviour in terms of its parameters, such as tuning firing parameters, changing parameters during learning 
processes, replication and analysis of neuron recordings, etc. This work presents a study of the dynamics of 
such model especially suitable for hardware-based development. The morphology of the neuron is taken 
into account while the analysis focuses primarily on the relation between the firing/bursting properties and 
the relevant parameters of the model, such as current applied and morphology of the cell. Two different 
applied currents were considered: short duration and long steady. Seven different types of burst patterns 
were detected and analysed. The transformation process of the membrane voltage when a long steady 
current varies was classified into five stages. Finally, examples of neuron recording replication using the 
present methodology are developed. 

1 INTRODUCTION 

Learning and memory process in any neuron or 
neural network is based on activity-dependant 
neuron responses. Modification of the physiological 
parameters is the tool to understand the functional 
and behavioural significance of this process; such 
parameters can modify patterns of neuronal 
firing/bursting and  affect the behaviour in more 
high level functions (Dayan and Abbott 2001). For 
instance, several learning techniques and algorithms 
have been studied to achieve this goal and all of 
them are based on the modification of parameters in 
order to modify the neuron response  (Grzywacz and 
Burgi 1998; Dayan and Abbott 2001).  

Conductance-based modelling is not the 
exception, knowing the effects on the dynamics in 
the neuron is crucial to have control in the bursting 
and firing signals; which at the end, is the 
information that neurons will share through the 
system. Moreover, parameter’s control in 
conductance-based model plays an important role in 
exploring the biological properties and dynamics 
mechanisms in real neurons or in the development of  

control systems that lead to new feedback electrical 
stimulation for neural prostheses applications (Jiang 
et al. 2005; Fei et al. 2006). 

The conductance-based models incorporate   
cellular detail at ion-channel level dynamics; this 
allows model biologically realistic neurons. One of 
the most important features of these models is that 
they are biophysical compatible and hence 
neuroscientists, biologists, psychologists can, at 
certain level, study the properties and co-relate 
directly parameters with their biological 
counterparts. 

One of the most used conductance-based models, 
besides the well know Hodgkin-Huxley (H-H) 
(Hodgkin and Huxley 1952) is the Traub model 
(Traub et al. 1991) and its simplify two-
compartment version P-R  (Pinsky and Rinzel 1995), 
which take into account information about calcium 
ion channel Ca2+. Calcium dynamic is another 
important element in the chemical and electrical 
behaviour in the neuron. This model can reproduce 
some burst patterns that  H-H model cannot (Zhang 
et al. 2010). The two-compartment model includes 
two parts: a soma-like, which has the Na+ and K+ 
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activated currents; and a distal dendrite-like, where 
Ca2+ activated and potassium Ca2+-dependent 
currents are considered. 

This research focus on the study of dynamic 
behaviour for the two-compartment P-R model with 
morphology information included. Most works 
related with this topic use theoretical and continuous 
model; however a hardware-based discrete model is 
not considered. Since our primary investigation is to 
develop biophysically compatible neuro-simulators 
and their hardware realization, it is important to keep 
good performance in order to have biological 
compatibility and reproduce consistent results from 
real nervous systems. 

2 REVIEW OF PREVIOUS WORK 

In this section, we review previous work done 
related to dynamic analysis in conductance-based 
models, particularly those using the Traub model. 
Studies of firing and bursting mechanisms in 
biological neurons have been widely studied during 
many years. Nerve cells can generate a variety of 
firing patterns in vivo, where repetitive burst, fast 
spikes, low frequency spikes, large calcium spikes, 
d-spikes, etc. have been recorded (Schwartzkroin 
1975; Traub 1982). 

In the original work of the P-R model (Pinsky 
and Rinzel 1995), an intrinsic bursting analysis 
when current is applied and excitatory synaptic 
interactions effect was performed. Another similar 
work is a piece-wise analysis where P-R model is 
separated in different stages and a dynamics study 
including burst initiation and somatic-dendrite ping 
pong is done (Coombes and Bressloff 2005). This 
work performs several reductions to the original 
model in order to make a phase-plane examination. 

Bifurcation analysis is also a very useful 
approach to analyse dynamics in a neuron model as 
the parameters vary. Several works have studied this 
topic mainly for the well-known Hodgkin-Huxley 
model, in such works oscillations, stability in 
systems, bursting properties, spikes generation, 
temperature has been explored on this model (Rinzel 
and Miller 1980; Guckenheimer and Labouriau 
1993; Wang et al. 2005; Fei et al. 2006). The 
bifurcation analysis becomes more difficult when 
the nonlinear systems have more than two 
parameters and equations to be considered at the 
same time. 

The effect of the size in the soma in P-R model is 
studied and shows that the smaller the soma is, the 
faster and the more irregularly the neuron fires 

(Feng and Li 2001). A modified version of the P-R 
model in order to have just two parameters variables 
in each compartment’s equation is studied when 
capacitance changes and how complex bursting are 
generated (Kepecs and Wang 2000; Wang et al. 
2012). 

Several works using biological-compatible 
models have been developed in order to mimic real 
nervous systems behaviour; from study of single 
complex neurons to mimic complete biological 
systems (Khan and Miller 2010; Smaragdos et al. 
2014). These researches highlight the importance of 
using this kind of models. 

One important detail about previous work based 
on the P-R model is that the morphological 
properties are reduced to a simple parameter p, 
which indicates the proportion of the cell membrane 
area taken up by the soma. In the present work we 
extend this information by representing soma and 
dendrite as cylinder compartments where radius, 
length and axial resistivity are taken into account.  

Traub model has been widely used in a variety of 
contexts, but little analysis has been performed for 
models of hardware-based applications and using the 
conductance-based approach. 

3 THE P-R TRAUB MODEL FOR 
HARDWARE EMULATION 

The P-R model is used in this work. This model 
offers a suitable trade-off between biophysical 
accuracy and computational feasibility to be 
developed in hardware (Zhang et al. 2010).   

3.1 Specific Compartment Model 

The cable equation and the multi-compartment 
theory describe the voltage change with respect to 
both variables: time and space. In the cable equation 
a segment of cell membrane is represented as a 
cylinder (cable); taking into consideration six 
currents: the capacitive ݅஼; the total ionic-channels 
݅௠; the injected ݅௘; and two more currents coming 
from adjacent segments ݅௟௘௙௧ and ݅௥௜௚௛௧ (Bower and 
Beeman 1998; Dayan and Abbott 2001). In this way, 
the cell membrane equation can be defined in terms 
of temporal and spatial variables t and x: 

௠ܥ
߲ܸ
ݐ߲

ൌ ௘ܫ െ ௠ܫ ൅
1

2ܽ ∙ ௔ݎ
∙ ܽଶ

߲ଶܸ
ଶݔ߲

 (1) 

Where ݎ௔ and ܥ௠ are the specific axial resistivity 
in unit of KΩ-cm and the specific membrane 
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capacitance in unit of µF/cm2 respectively. ܫ௘ and 
 ௠are the applied and ionic channel currents per unitܫ
area expressed in µA/cm2. The cylindrical segment 
(compartment) having radius a and length dx=Δx (in 
units of cm) provides the morphological 
information. V is the membrane voltage in mV. 

Because we need to represent this in a digital and 
computational way, the membrane voltage must be 
integrated numerically; to address this issue multi-
compartment approach is used. Also, in order to 
reduce the PDE system to an ODE system, which is 
more suitable for numerical computation, the second 
order derivative in equation (1) is approximated by 
the discrete derivative version using the Taylor 
series expansion (Bower and Beeman 1998). 
Equation (2) shows a generic representation of the 
cell membrane for an arbitrary compartment j, where 
right compartment and left compartment are 
represented by j+1 and j-1 respectively. 

௠ܸ′௝ܥ ൌ ௘ܫ െ ௠ܫ ൅
ܽ

ሻଶݔ∆௔ሺݎ2
ሺ ௝ܸିଵ െ 2 ௝ܸ ൅ ௝ܸାଵሻ (2) 

Note that ௝ܸ can represent either soma or dendrite 
compartment. Each one has its own ionic-channel 
current ܫ௠, with Na+ and K+ ionic current 
components for soma  and Ca2+, K+_AHP, K+_C 
current components for dendrite. Remind, every 
compartment has its own morphological dimensions. 
A complete description and specific variable values 
of  the ionic-channel currents and the 
opening/closing rate functions  ߙ and ߚ can be found 
on (Pinsky and Rinzel 1995). 

3.2 Numerical Method Solution 

Because the model used for this work is intended to 
work in digital programming devices a numerical 
solution is needed. In (Zhang et al. 2010) it is shown 
that the best solution is the backward-Euler method, 
since it can maintain system stability regardless of 
the system structure and parameter selection. 
However this method brings high computational 
cost. The exponential-Euler method becomes 
unstable when the number of compartments 
increases or when a special combination of 
parameters is used, but it is more feasible in terms of 
hardware development. Since the model proposed 
has only two compartments and because just specific 
unusual combination of parameters cases makes the 
system unstable, exponential Euler method is the 
best option to implement. 

Rewriting the cell equation (2) in a more 
convenient way: 

௠ܥ ∗ ௝ܸ
ᇱ ൌ ܣ െ ሺܤ ∗ ௝ܸሻ 

Where, 

ܣ ൌ 	߰ீா ൅ ܫ ൅
ܽ

ଶݔ∆௔ݎ2
∗ ሺ ௝ܸାଵ	൅	 ௝ܸିଵሻ 

B ൌ
ܽ

ଶݔ∆௔ݎ
൅ ߰ீ௧௢௧ 

(3) 
 

Where ߰ீா, ߰ீ௧௢௧ are the weighted averages of 
all ionic channels conductances. These two terms 
change according to the type of compartment (soma, 
dendrite or synapse); for instance, both terms for 
soma compartment are: 	߰ீ௧௢௧ ൌ തതതതതܽ݊ܩ	 ∙ ݉ஶ

ଶ ∙ ݄ ൅
௞_஽ோതതതതതതതܩ ∙ ݌ ൅ തതതതതതതത and ߰ீா݈݇ܽ݁ܩ ൌ തതതതതܽ݊ܩ ∙ ݉ஶ

ଶ ∙ ݄ ∙ ௡௔ܧ ൅
௞_஽ோതതതതതതതܩ ∙ ݌ ∙ ௞ܧ ൅ തതതതതതതത݈݇ܽ݁ܩ ∙   .௟௘௔௞ܧ

Applying exponential-Euler solution to equation 
(3), we can obtain the explicit solution for next time 
step given by equation (4): 

௡ܸାଵ ൌ
ܣ
ܤ
൅ ൬ ௡ܸ െ

ܣ
ܤ
൰ ∗ ݁ି஻∗ௗ௧/஼௠ 

(4) 

3.3 Hardware Platform 

A system on chip (SoC) platform has been been 
developed where neuroprocessors form single or 
two-compartment neurons and control the 
connection between them. Such neuro-modules 
follow a scheme of state machines controllers 
(FSMCs), floating-point arithmetic units (FPALUs) 
and BRAMs to store internal results. Also, each 
neuroprocessor has associated a dual-port RAM 
(DRAM) in order to configure and control relevant 
parameters such as maximum conductance, input 
current, ions equilibrium potentials, geometric 
parameters, time step, configuration of state 
variables, etc. A neuroprocessor can be configured 
as a soma, dendrite or synapse compartment. For the 
purpose of this study a soma and dendrite 
neuroprocessor are used. 
 

 

Figure 1: SoC system reconfigurable architecture. 
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The control and data paths are formed by a number 
of configurable FSMCs and FPALUs, respectively. 
The FSMCs are devised to fetch operands or 
forward computation results between the FPALUs 
and their associated RAMs. All temporary variables 
are saved in these internal memories that are located 
at the input ports of the FPALUs (Zhang et al. 2010; 
Moctezuma et al. 2013) 

This platform is FPGA-based using an embedded 
microprocessor which is in charge of the control and 
communication task. In addition, there is a software 
firmware running which is able to manage the 
configuration of the neuroprocessors and make 
interconnections among them. This firmware is 
continuously receiving instructions from a 
MATLAB script running on a PC. Then commands 
can be send to configure the neuroprocessors, start a 
simulation and request results. 

4 DYNAMICS ANALYSIS AND 
RESULTS 

The dynamics analysis is divided into several stages, 
all of them related with the configuration of the 
neuron when current applied and geometric 
parameters change.  

Following this scheme; the analysis is separated 
in four scenarios: burst classification; tuning the 
bursting neuron at resting state; short and long 
steady current applied and the impact of geometric 
dimensions. For all experiments, unless otherwise 
stated, the axial resistivity is 100 KΩ-cm, the 
diameters for soma and dendrite are 86.6 µm and 5 
µm, respectively. The length of the cylindrical 
dendrite is set to 15 µm, these values are consistent 
with measured experiments on hippocampal 
pyramidal cells (Traub 1982; Traub et al. 1994; 
Zhang et al. 2010). 

4.1 Soma-Burst Classification 

In order to understand and discern the neuron 
outputs in soma compartment, we have proposed 
seven different types of bursts for classification. 
Some of these bursts can be found also in biological 
experiments from neuron recordings (Traub 1982; 
Traub et al. 1991; Traub et al. 1994; Booth and Bose 
2002). Figure 2 shows this classification. 

Next, we defined each type of burst and explain 
their properties. 
SP: Single Spike. SP2: Single main spike followed 
by other peaks. Normally they are sequences of two, 

three, or four spikes. Dendrite main wide-spike is 
not well defined. BA: Classic Traub-burst, with 
initial sodium spike, followed by set of smooth 
oscillations during main dendrite wide-spike and 
ending with a final spike during the AHP current 
phase. Normally it has from two to four peaks. BA2: 
A Traub-burst shape with several pikes before the 
maximum of dendrite spike. Normally it has more 
than two spikes. The wide dendrite main spike starts 
to define. BC: Similar to SP2 but with a dendrite 
wide-spike defined. Normally it has 3 spikes. BC2: 
Collection of sequenced spikes but a little bump on a 
spike or small wide-pike is present. The main 
dendrite wide-spike is defined. BD: Classic Traub-
burst shape, but with two principal set of spikes at 
the beginning and at the end enclosing the central 
part, which oscillates smoothly. 

 

SP      SP2        BC  
 

BA2      BA       BD  
 

BC2        

Figure 2: Burst classification with traces of soma (blue) 
and dendrite (red) compartments. Burst duration ≈ 20 
msec. 

4.2 Tuning Non-bursting at Resting 
State 

The Traub-based model has a particular property 
that when no stimulus is applied to the cell 
membrane the neuron undergoes periodic bursting, 
albeit with very low frequency (Pinsky and Rinzel 
1995) of around 0.6 Hz. However, this can be an 
undesirable behaviour when a learning process is 
involved; since normally, if a neuron is at its resting 
state, we do not expect the neuron to fire. To 
overcome this issue without affecting significantly 
the neuron dynamics, there are two options: to apply 
a large steady negative current or to slightly tune the 
leakage conductance. Table 1 shows the results 
obtained. 

We found that a current of ܫ௘= -0.85 µA/cm2 is 
enough to maintain the neuron at its resting state of -
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70mV without firing. When current is bigger (more 
negative) than -1.7 µA/cm2 then resting potential 
tends to move away to less than -75mV.  

The second option is reduce the leakage 
conductance. The original work of Pinsky-Rinsel 
and Traub, set a value of ௟݃=0.3; table 1 shows that a 
slightly reduction of ௟݃at a value of 0.285 mS/cm2 is 
enough to eliminate the bursting and keep the resting 
potential close to -70 mV. Moreover, if we decrease 
leakage conductance below 0.28 mS/cm2 the resting 
potential moves away to -75 mV. In conclusion 
leakage conductance is highly sensitive to changes, 
but a value of 0.285 can overcome the initial 
bursting issue at the resting state without 
compromising the dynamic of the neuron. 

Table 1: Current applied and leakage conductance tuning 
to eliminate initial bursting at resting stage. 

Parameter Value Bursting Vrest (mV) 

 ௘ܫ
(µA/cm2) 

> -0.85  [-77 -70] 
-0.85 - -71 
-1.00 - -72 

< -1.70 - < -75 

݃௟ 
(mS/cm2) 

0.3  [-78 -70] 
> 0.3   

0.285 - -72 
0.28 - -74 

< 0.28 - < -75 

4.3 Short and Long Steady Current 
Applied 

In this section, we focus on finding the minimum 
stimulus needed to generate a single burst in the 
neuron, and how this short current modifies the 
quality of bursting in terms of outcome spikes. The 
second goal is to measure the outcomes from a long 
and steady current applied and determine the relation 
with the bursting behaviour of the neuron. 

4.3.1 Short Current Applied 

The minimum short applied current needed to 
generate a single spike is 8 nA (136 µA/cm2) with a 
duration of 0.5 msec, see figure 3. With this 
duration, a current in the order of mA/cm2 per unit 
area in order to have a proper Traub bursting patron, 
however the spike amplitude overtakes 150 mV, 
which is not common amplitude for spikes. So the 
duration of 0.5 msec for the applied current is 
enough just to generate single spike but not Traub 
bursts such BA or BD type. 

However if we increase the pulse duration, then 
the minimum applied current to generate a single 

spike is shorter; for instance, with a 20 msec current 
pulse, it is necessary a 0.6 nA current to generate a 
SP spike. Hence if want a neuron to fire only single 
spikes then a pulse duration between 0.5 and 3 msec 
is ideal, see figure 3.  

Following the same procedure, we run several 
experiments varying both current pulse duration and 
amplitude. Figure 3 shows the results obtained with 
the properties explained.  

Another important characteristic about this 
model is that in order to have Traub-burst shapes 
like BA, BA2 or BD type, the current applied should 
last more than 3 msec and a range of [2 15]nA 
should be used; and the larger the pulse is, the 
current applied becomes more “fine-grained” 
(narrow) as pulse duration increases, e.g. when pulse  

 

 

 

Figure 3: Soma membrane voltage response to different 
current pulse duration and amplitude. The colour in circles 
indicates the type of burst. The circle size indicates the 
number of spikes, where biggest blue circle is a single 
spike, followed by less big circles with 2 or 3 spikes; then 
medium size circles have a range of [4 6]; and smallest 
circles have between 7 and 10 spikes. 
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duration is 20 msec, in order to have complex traub 
burst, a current between 4.4 and 4.7 nA is needed. 

The duration of a Traub-burst when a current 
pulse is applied normally is about 20 msec. When a 
longer pulse is used then the burst duration takes the 
time that the pulse does. Also, we found that the 
current needs to be applied at least for 10 or 20 msec 
if we are interested in neuron fires between 5-10 
times in the 20 msec window that the burst lasts. 

Also we notice that there is an evolution pattern   
for this model. This evolution can be described by 
the following sequence: SPSP2BA2/BCBA/ 
BDBC2. It starts with a single spike, then as the 
current increases, it generates two or three more 
spikes and the dendrite acts as passive. After that the 
dendrite starts to produce a main wide-spike caused 
by the ping-pong effect between the two 
compartments and a series of spikes are generated in 
the rising edge of the dendrite wide-spike. If we 
continue to increment the current, then the classic 
Traub-burst appears; but there is a point where this 
burst loses it shape due to a big current applied to 
component ܫ௘ dominates the equation and the neuron 
dynamic results  in a first sodium spike followed by 
a smooth steady level of voltage. 

These results can be applied to generate 
replicated behaviour for biological neurons 
recordings or to explore the neuron dynamics in a 
well-controlled environment. As an example 
consider two neuron output recordings from (Traub 
et al. 1991; Traub et al. 1994) works compared with 
the output from our model (figure 4). Using results 
from figure 3, the neuron behaviour can be 
controlled and analyse in a practical way. 

 
 

 

Figure 4: Burst replication of biological neuron recordings 
(left) with the two-compartment model proposed (right). 

4.3.2 Long Steady Current Applied 

Now we consider a long steady current applied 
during the whole simulation. When a constant 
current drives the neuron, spikes frequency appears 
rather than single burst patterns. 

A set of experiments were developed varying 
current amplitude and principal stages of the process 

as shown in figure 5. Meanwhile table 2 shows the 
relation of current vs frequency and stage 
transitions. 

Table 2: Spike trains frequency and stages transition 
according to figure 4. 

 Freq (Hz) Spikes in (nA) ܍۷
Burst 

Stage 

0.0156 0.21 3 
A 0.020 0.26 3 

0.035 0.34 3 
0.080 0.57 7 

B 
0.087 0.57 10 

0.087007 [50-41] 1 

C 
0.20 [33-58] 1 
0.60  [76-90] 1 
0.90 [100-111] 1 
1.20 [110-125] 1 
1.40 [112-130] 1 

D 
1.80  [112-140] 1 
2.50 [140-160] 1 
4.00 [200-250] 1 
4.50 80 1 

E 
5.00 0 0 

 

A    

B      

C    

D   

E   

Figure 5: Different stages for a neuron soma (blue) and 
dendrite (red) response when steady current increase. 
Small left box indicates type of burst. 

We distinguish five different stages according to 
the current increment. Stage A fires Traub-burst at 
very low frequency (VLF); in stage B the Traub-
burst are preceded by several single spikes at VLF as 
well. There is a point at Ie=0.087007 nA where this 
VLF burst disappears and a delayed spike train 
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appears (stage C), this spike train approaches the 
time of zero as current increases, at this stage we can 
have frequencies between 50 and 110 Hz (see table 
2). 

Then when the spike train reaches time zero, a 
low frequency envelope pattern is created, we can 
appreciate better this behaviour on dendrite output 
(red line) on figure 5-stage D; at this stage, 
frequencies of 250 Hz can be achieved. The 
amplitude of membrane voltage is reduced, 
decreasing the spikes frequency. In addition, the low 
frequency envelope pattern becomes more obvious 
(figure 5-stageE top). Finally the neuron output 
tends to become steady and the spike train 
disappears at Ie=5nA (figure 5-stageE bottom). 

The minimum and maximum frequencies 
achieved with this model are 0.21 and 250 Hz 
respectively. And there is a cut current of 0.087 nA 
where traub-burst disappears and single spikes 
emerge. 

4.4 Effects of Geometric Properties 

In this section we analyse the effects produced by 
changes in geometric properties of soma and 
dendrite. There are two main geometric parameters 
which affect the membrane voltage according to 
equation 3: the radius a and length ∆ݔ. Normally the 
soma has a sphere shape (ܽ ൌ  and dendrite has a (ݔ∆
cylinder form. 

We took a well-defined Traub-burst type BD and 
analyze the changes appreciated when soma radius a 
and dendrite length ∆ݔ vary. Figure 6 shows the 
results and specifications for every trace. 

There are four main effects when these two 
parameters vary:  
 Attenuation. There is a general tendency of 

attenuation in the soma output as radius 
decreases; however on a dendrite output this 
effect is not so obvious for some cases. A 
major attenuation in the last part of neuron 
response is presented as dendrite length 
increases 

 Delay. The bigger soma radius or dendrite 
length, the bigger delay for calcium 
concentration. In addition, we can observe how 
the number of pre-spikes or post-spikes are 
modified as this concentration moves during 
the 50 msec window. When both parameters 
are too big, there is a point when the dendrite 
output “disappears” (top-right figure 6), this 
effect is because the dendrite response is so 
delayed than the current pulse duration is not 
long enough to obtain such response. 

 

  

  

 

 
 
 

Figure 6: Different burst responses for a current pulse of 
1.7 nA and 50 msec duration. Parameter values increase 
from bottom to top and from left to right directions. Range 
for radius soma a and dendrite length ∆x are [15 60] and 
[5 50] µm respectively. Soma (blue) and dendrite (red) 
voltages in mV units. Calcium concentration (cyan), 
sodium current (green) and potassium-rectifier current 
(pink) in µA/cm2 are attenuated by factor of 10–1. The 
dendrite radius has a constant value of 3.6 µm, since it is 
the parameter that changes the less. Every dashed square 
represents 50 units x 50 msec. 

 Spiking. Normally the number of spikes 
increases more when the soma radius is bigger; 
also the dendrite wide-peak affects the number 
of pre-spikes and post-spikes change. This last 
consequence is related to the calcium 
concentration shifting. In addition, as the 
length of dendrite is smaller and the soma 
radius becomes bigger, then dendrite gets 
passive properties (top-left figure 6), active 
properties appear when the length increases. 

 Change in currents. When soma radius is small 
then K+ rectifier current is bigger than Na+ 
one. However when the radius becomes bigger, 
then the current rules change. Because Na+ 
current is higher this causes the spiking effect 
to produces more spikes as well. 

a 
∆x        Parameter increment direction 
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In order to analyse the morphological variation when 
a long steady current is applied, we set up two 
constant currents and vary soma radius and dendrite 
length. Again the dendrite radius compartment 
remains constant with a value of 2.5 µm. The 
outcomes of the experiment are shown in figure 7. 

For membrane voltage firing at VLF range, e.g. 
stage A or stage B (figure 7-a), the morphological 
parameters a-soma and ∆x-dendrite have influence 
on the frequency and amplitude of the neuron 
output. Decrementing the dendrite length raises 
frequency; meanwhile decrementing the soma radius 
reduces the soma amplitude. 
 

 

 

  

 
 

a) 0.1 nA  

  

  

   

b) 0.5 nA 

 
 

Figure 7: Soma (blue) and dendrite (red) traces responses 
for a long steady current of a) 0.1nA and b) 0.5nA. 
Parameter values increase from bottom to top and from 
left to right directions. Ranges for radius soma a are: a)[5 
23] and b) [10 45] µm. Ranges for dendrite length ∆x are: 
a)[10 30] and b)[10 50] µm . Every dashed square 
represents 20 mV x 500 msec. 

When neuron fires in higher frequencies, e.g. 
stages C and D (figure 7-b), the effect is still the 
same, i.e. the bigger thee radius the less the 
amplitude and the bigger the length, the less the 
frequency. In addition we can control the generation 
of periodic bursts, changing the number of spikes 
per burst according to morphological parameters 
tuning. 

As an example consider the two recorded traces 
in figure 8 taken from a CA3 neuron (Traub et al. 
1991) for two different currents. The two-
compartment model was simulated with the same 
current values. The output of the proposed model is 
consistent with the recording value when the next 
morphological parameters are considered: a-soma= 
23.3 µm, a-dendrite=2.5 µm and ∆x-dendrite=20 µm. 

 

 

0.1 nA  

0.2 nA  

Figure 8: Burst replication of biological neuron recordings 
(top) with the two-compartment model proposed (bottom). 
Dashed square on simulation represents 50mVx 200 msec. 

5 CONCLUSIONS 

A detail dynamics analysis for the two-compartment 
Traub model was developed, taking into 
consideration that this model is used in hardware-
based applications. So the numerical method and 
data representation must be taken into account, in 
contrast with previous analysis which use software-
based PC simulators and where these 
implementations details are not considered. 

The presented hardware-based model is able to 
reproduce biological meaningful information, 
dynamic behaviour and it is suitable to reproduce 
neuron recording experiments.  

The leakage conductance and current applied can 
be used to tune neuron to a non-bursting resting 
state. Both options were selected because they do 
not compromise the dynamics of the original model. 

Through the analysis, two different applied 
currents were considered: short duration and long 
steady. For a short duration current, seven different 
types of burst patterns were detected and analysed. 
Also, it was detected that the transformation of such 
bursts follows a specific sequence of patterns.  

When a long steady current vary, the modification 
of the membrane voltage trace was classified in five 
different stages; where VLF burst, single periodic 
spikes, low frequency periodic burst and modulated 
single spikes can be generated with particular set of 
values. Also it was found that geometric parameters 

a 
∆x        Parameter increment direction 
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can influence in frequency and amplitude of neuron 
response.  

Specific parameters values of current applied and 
morphological dimensions can be used to generate 
different burst patterns or to move from one stage to 
another when a specific firing frequency is required.  

As future work, it is intended to use this 
information for parameter self-tuning genetic 
algorithm experiments and replicate living cells 
recordings and study the influence of biological-
compatible parameters. In addition, dynamics 
analysis will be extended to other parameters, 
mainly to ion-channel maximum conductances and 
inhibitory/excitatory synapses, in order to use this 
information in a conductance-based neural network 
learning algorithm. 

The final goal is to build biophysically compatible 
neurons that fit on single chips and have biological 
meaningful information that matches behaviour of 
real cells, in order to biologist have alternative ways 
to study physical nervous systems in a configurable, 
well-controlled and real-time environment. 
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