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Abstract: Although the ideomotor principle (IMP), the notion positing that the nervous system initiates voluntary 
actions by anticipating their sensory effects, has long been around it still struggles to gain widespread 
acknowledgement. Supporting this theory, we present an artificial neural network model driving a simulated 
arm, designed as simply as possible to focus on the essential IMP features, that demonstrates by simulation 
how the IMP could work in biological intentional movement and motor learning. The simulation model 
shows that IMP motor learning is fast and effective and shares features with human motor learning. An IMP 
extension offers new insights into the so-called mirror neuron and canonical neuron systems. 

1 INTRODUCTION 

The ideomotor principle (IMP) claims that the 
nervous system initiates voluntary actions by 
anticipating their typical sensory consequences 
(Kiesel and Hoffmann 2004, Stock and Stock 2004). 
Over the past twenty years increasing evidence 
favoring this theory emerged from both behavioral 
studies (reviews in Wulf and Prinz, 2001; 
Wohlschläger et al., 2003; Shin et al., 2010; 
Hommel, 2013) and fMRI studies (Eran Dayan et 
al., 2007; Melcher et al., 2008, 2013; Pfister et al., 
2014). Unfortunately these findings centered on 
individual IMP features and they provided no overall 
view of a working IMP. Given this background, 
simulations with artificial neural networks (ANN) 
that demonstrate how the IMP works may lead to its 
wider acknowledgement. Although few reported 
simulations of this type explicitly mention IMP 
(Karniel and Inbar, 1997; Sauser and Billard, 2006; 
Butz et al., 2007; Galtier, 2014), many involve 
IMP’s underlying rationale, namely sensorimotor 
mapping. Existing simulations nevertheless provide 
scarce help in understanding the IMP because they 
use non-IMP procedures, such as supervised 
learning or complicated modularity and flowcharts, 
or they add complex details that make the essential 
IMP features even harder to understand. 
In this paper we take an opposite approach: to

highlight how the IMP works and make it easy to 
understand, we present an unsupervised ANN 
system that is as simple and basic as possible and 
learns to move a three-joint arm in a workspace 
using the IMP and sensorimotor mapping. We 
examine its main features and compare them with 
those of human motor learning. We then suggest 
how an IMP extension also offers new ways to look 
at the so-called mirror neuron system. 

2 METHODS 

2.1 Model Design 

Our simulation consisted of an ANN controlling a 
three-joint simulated limb moving on a two-
dimensional plane (Fig. 1). The network received on 
its input units sensory information on the limb 
position, and sent limb commands from its output 
units. Each limb movement was defined by three 
vectors: the initial sensory state (before the 
movement); the final sensory state (after the 
movement); and the neuromuscular activations 
needed to pass from the initial to the final state. The 
first two vectors were given to the ANN input units, 
and the ANN had to compute the third vector on its 
output units. Because IMP states that intentional 
limb movements depend on anticipation of their 
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sensory effects, the ANN input units receiving 
sensory information on the final limb state (S1 units) 
also received motor commands from a component 
outside the network that established where the 
moving hand should be positioned and therefore 
acted as Motor Will. Commands from it to the ANN 
consisted of sensory representations of the desired 
final hand position, coded as visuospatial 
coordinates in agreement with the observation that 
motion planning in human takes place in the visually 
perceived space (Flanagan and Rao 1995, Shadmehr 
2005). Unlike S1 units, the ANN input units 
receiving sensory information on the initial limb 
state (S2 units) did not receive motor commands, 
they only received “proprioceptive” sensory 
information from the limb joint angles. 

 
Figure 1: General architecture for the Ideomotor Principle 
(IMP) simulation model. The artificial neural network 
(ANN) controls a 3-joint limb moving in a two-
dimensional plane. The ANN receives sensory feedback 
information on the limb and motor commands from Motor 
Will. Δ, d: polar coordinates for the hand (Δ =  angle with 
respect to the posterior-anterior axis, d = distance from the 
shoulder point). α, β, γ: shoulder, elbow, wrist joint angle. 
Not all input-to-output connections depicted; actually each 
input unit sends connection to all output units. 

Given that velocity information was not 
indispensable to the key IMP mechanism as long as 
the limb was assumed to start from still and end still,

we decided to give the ANN only sensory 
information about limb position (joint angles and 
spatial hand position), not velocity. 

2.1.1 Limb 

The limb was designed to represent a simplified 
model of the human right arm comprising three 
segments, “arm”, “forearm” and “hand” articulated 
with three joints “shoulder”, “elbow” and “wrist”, 
with the shoulder situated in a fixed point in space, 
and the hand able to move freely in the reachable 
space. The arm measured 70 pixels in length, the 
forearm 70 pixels and the hand 20 pixels (because 
the model involved a simulation displayed on a 
computer screen, for simplicity lengths are given in 
pixels). The three joints opened and closed within 
angular limits in a similar way to a human arm: the 
shoulder from 23 to 190 degrees, the elbow from 20 
to 180, the wrist from -90 to 72.  The overall area 
reachable with the hand (grey area in Fig. 1) 
therefore assumed a drop-like shape measuring 298 
x 200 pixels. 

The three joints were each controlled by an 
agonist-and-antagonist muscle couple. Each muscle 
was controlled by a neural network output unit. 
Muscle actions were simulated in a simplified 
manner, without recourse to spring models or 
tension-length diagrams. Analog outputs from 0 to 1 
from the two units acting on muscle flexion and 
extension for every joint were assumed to determine 
variations in joint opening or closing according to 
the following equations: 
 

aj,t+1 = aj,t +  (ej,t – fj,t + pj,t) / mj (1) 
 

pj,t = [ (amaxj + aminj) / 2 - aj,t ] · kj (2) 
 

where: 
aj,t = degree of joint j opening at time t, in radians; 
ej,t = output (0 to 1) from the unit controlling the 
extensor muscle for joint j at time t; 
fj,t = output (0 to 1) from the unit controlling the 
flexor muscle for joint j at time t; 
pj,t = passive elastic muscle and ligament force 
acting on the joint j, maximum when the joint is 
fully opened or closed; 
mj =  mass in the segment distal to the joint j, 
normalized for the upper arm (1 for the upper arm, 
0.6 for the forearm, 0.2 for the hand); 
amaxj = degree of maximum opening for joint j, in 
radians (1.05 for the shoulder, 1 for the elbow, 0.4 
for the wrist); 
aminj = degree of maximum closure for joint j, in 
radians (0.13 for the shoulder, 0.11 for the elbow, -
0.5 for the wrist); 
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kj = force intensity pj,t for the joint j, empirically 
chosen (0.5 for the elbow and shoulder, 0.14 for the 
wrist). 

2.1.2 Neural Network 

The ANN was a two-layer neural network 
comprising 5 input units and 6 output units, fully 
connected with anterograde connections from input 
to output. There were no hidden units. The input 
units were simple linear units. The output units were 
classic sigmoid units, having an analogic output 
ranging from 0 to 1 and equipped with modifiable 
learning bias. Their output values were copied into 
equation (1) (variables ej,t and fj,t for any joint j) to 
compute limb movements. The first two input units 
(S1 units) received “visuospatial” information on the 
hand position, encoded in polar coordinates (angle in 
radians with respect to the posterior-anterior axis 
and distance from the shoulder, normalized for the 
overall length of the fully extended limb). The last 
three input units (S2 units) received 
“proprioceptive” information on the opening angle 
for each of the three joints, normalized between -1 
and 1. Before each movement the two S1 units also 
received commands from Motor Will. 

2.2 Simulation Flow 

When the simulation began, the connection weights 
and the output unit biases were initialized with 
random values ranging from -0.25 to +0.25. The arm 
was positioned with all the joints partly opened. 
After the initialization stage, the simulation 
proceeded in turns, each turn comprising the two 
phases, movement and learning, each comprising 
three steps. 

2.2.1 Movement 

1. The input units received sensory information 
from the arm: S1 units received the spatial location 
of the hand, and S2 units the angles from the three 
joints. 
2. Motor Will overwrote S1 input unit activations 
with activations corresponding to a random desired 
hand position. 
3. The input units activated the output units, and the 
joint opening angles therefore changed according to  
equations (1) and (2). The actual output values were 
recorded for use in the ensuing learning phase, 
during which they yielded the desired output, target 
activations. The difference in pixels (spatial errors) 
between the desired hand position (target position) 
and the hand position actually reached, were 

measured and recorded. This spatial error 
measurement served only to evaluate network 
performance and not to assess motor learning. 

2.2.2 Learning 

1. The sensory pathways conveyed to the S1 units 
information on the new hand position. 
2. The input units activated the output units again, 
this time using the new activation values obtained 
from the S1 units corresponding to the hand position 
actually reached. These outputs left the joint angles 
unchanged, they served only for learning. These new 
outputs were the ones the network would produce if 
the desired movement were actually the movement 
achieved in movement phase 2.2.1, step 3. The 
difference between the current outputs and the 
outputs recorded in that phase was the error to 
minimize during learning. 
3. A standard delta rule (Rumelhart, Hinton & 
Williams 1986) was applied to minimize the error 
vector calculated in the former step. The results we 
describe were obtained with a learning rate = 0.1 and 
momentum = 0.25. 

2.3 Tests 

Besides evaluating the “online” spatial error after 
every movement (section 2.2.1 step 3), after every 
5000 movements the program temporarily stopped 
the simulation, and submitted the network to an 
“offline” test entailing a predefined set of 588 
movements (Fig. 2A) commanded by the Motor Will 
transmitting to the S1 units the polar coordinates for 
the 588 successive turns. During testing, the learning 
phase (section 2.2.2) was skipped. For each of the 
588 test movements the position actually reached by 
the hand and the corresponding spatial error were 
recorded for later evaluation offline. 

We used these procedures to conduct several 
simulations. In some simulations we introduced a 
sort of “sensory blind spot”, a wide circular area, 
covering up to 50% of the workspace and 
differentially positioned in the various simulations 
(Fig. 3A), where we skipped the learning phase 
(2.2.2) when the hand ended up in this area.  

In other trials, to assess whether learning 
depended on precise physical values inherent to the 
system, and to verify whether the controller system 
adapted to changes in the controlled system, we 
varied the sensory code used for hand position or the 
limb segment mass (variable mj in equation 1), right 
from the beginning, or after advanced learning 
(30000 movements). 
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Figure 2: Progressive improvement in performance during 
the 588 test movements with motor experience. Small 
circle = hand starting point; black points = hand 
movement arrival point. A: target points; B: points 
effectively reached before learning; C: after 5000 random 
movements and D: after 30000 random movements. 

3 RESULTS 

In all the simulations the tested ANN system 
improved from a mean spatial error of more than 
150 pixels when simulation began to an error of less 
than 15 pixels after 10,000 movements (few tens of 
seconds on a modern pc) and fewer than 7 pixels 
after 30000 movements. These results underwent 
minimum variability owing to random elements used 
for initializing weights and movement choices 
decided by Motor Will. 

The network’s motor performance, as assessed 
with periodic testing using the 588 target points, 
progressively improved with experience, improving 
from a mean spatial error of about 95 pixels at turn 
zero (Fig. 2B) to 53 pixels at turn 5000 (Fig. 2C), 
and 13 pixels at turn 30000 (Fig. 2D) (these values 
differ from those for the mean spatial error 
mentioned above because they only refer to the 588 
test movements instead of all movements). Before 
motor learning started, the points effectively reached 
clustered in an area corresponding to the 
intermediate arm positions (Fig. 2B). As the network 
acquired experience, arm movements gradually 
expanded and after 30000 movements covered the 
workspace in a fairly uniform manner (Fig. 2D) 
acceptably matching the targets.  

After 30000 movements, spatial error 
distributions showed that the system performed well 
over the whole workspace, except in the extreme tail 
in the drop-shaped area corresponding to extreme 
extension (Fig. 3B). The sensory blind spot had 
scarce influence on learning improvements (Fig. 
3C,D). These results remained uninfluenced by the 

hand sensory code used, nor did they significantly 
suffer from mass changes in limb segments, before 
or after motor learning. 

 

 

Figure 3: Spatial error distribution for the 588 test 
movements after 30000 random movements with and 
without no-learning areas (“sensory blind spot”). A:  
workspace area (dark grey area) with a generic blind spot 
(white disk); B: errors (in grey color code) without the 
sensory blind spot; C, D: with the sensory blind spot 
(black outline circle) in two different sizes and positions. 
Values are for spatial error in pixels. 

4 DISCUSSION 

4.1 Comments on the Model 

The simplified ANN simulation, focusing on the 
basic IMP features insofar as motor commands and 
sensory feedback reach the same S1 input units, 
effectively learned to move the arm in the 
workspace. It learned acceptably well even when we 
varied influential experimental variables such as the 
sensory code used for hand position, the mass for the 
limb segments to move, and when the ANN was 
able or unable to receive sensory feedback about 
movements performed in the workspace (sensory 
blind spot). Our decision to disregard velocity 
sensory information or hidden neural network units 
had no apparent influence on our model’s functional 
ability thus confirming that these variables are 
unessential to model functioning.  

Our IMP model reproduces with acceptable 
approximation the various human motor learning 
properties, such as learning from experience, ability 
to work regardless of the specific body segment 
features, ability to adapt to changes in these features, 
and the fact that even randomly-generated 
movements contribute to learning (infantile motor 
babbling). Like the human motor learning system, 
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our ANN underwent completely unsupervised 
learning. We never used external sample sets. The 
ANN itself generated learning examples from its 
random movements and errors. For learning we 
never measured spatial errors between the desired 
movements and those actually made. Conversely, as 
the learning error we used the difference between 
output unit activations in two different functional 
phases (phase 2.2.1 step 3 and in phase 2.2.2 step 2), 
values completely and locally available to the net.  

In our proposed model the movement learned is 
not the desired movement but the movement 
effectively done (section 2.2.2). The system 
nevertheless succeeds in performing with reasonable 
precision even movements never previously done 
(the 30000 learned movements taken as a typical 
number of movements for simulation are less than a 
mere 0.0001% of the over 300 million movements 
possible in the workspace, and the test movements 
described in section 2.3 and those finishing in the 
sensory blind spot were even explicitly excluded 
from learning). This system ability evidently stems 
from an ANN’s well-known ability to generalize 
(Caudill & Butler 1992), a feature allowing our 
ANN to interpolate and extrapolate information 
from the movements done, thus filling in unexplored 
movements and forming the general sensorimotor 
map valid for all movements. 

Even though these model features are 
biologically plausible, other features are biologically 
less plausible, at least with the essential model 
architecture we used. For example, in particular, the 
proposed learning system requires special timing. 
After the movement, when sensory feedback from 
the hand position returns to the S1 units, the S2 units 
must still retain information on the limb state before 
the movement, and the output units must still retain 
information about the activation that caused the limb 
muscles to contract. Hence during learning, the 
network must have constantly available all three 
components mentioned in section 2.1: neuronal 
activations coding the initial limb state, the final 
state, and those causing the limb to pass from its 
initial to its final state, that we will henceforth call 
learning triplets, or simply triplets. In a computer 
software algorithm this requirement poses no 
problems whereas in biological nervous systems it 
raises several concerns. A more realistic model to 
simulate a biological motor system should therefore 
include accessories such as memory units and units 
that regulate activation flow to and from the 
network. These accessories become even more 
essential as the possible time shift between the three 

triplet components increases, as it does in the 
extended model we propose in the next section. 

4.2 Triplet Chaining 

The model we propose here extends IMP from 
elementary movements to more complex behaviors 
thus unifying the various intentional movement 
scales under a single principle. The ANN model we 
have examined so far applies to elementary 
movements. Conversely, the chained triplet model 
can also account for more complex actions, where it 
can also provide a new insight into neuronal 
populations such as canonical neurons (Shepherd 
1992) and mirror neurons (Di Pellegrino et al. 1992; 
Casile 2013) that have been found in biological 
nervous systems and whose real function remains 
debatable. 

The extended triplet model that we propose here 
involves several triplet-networks, linked so that the 
output units for each preceding triplet-net also act as 
the S1 input units for the ensuing triplet-net. The S1 
and S2 input units can receive sensory information 
not only from the osteo-muscular system, but from 
the whole body and external environment. In this 
chain, the S1 input units on the first net receive the 
actions desired by Will (actions that are more 
abstract than the simple and concrete desire to bring 
the hand to a desired position), and the ensuing nets 
progressively increase the level of detail and 
concreteness for the actions needed to satisfy the 
desire. Finally, the final net (the net described in the 
basic model) generates the neuromuscular 
activations required to perform the selected 
action(s). 

For example, if a person is hungry and sees an 
apple at hand, the S2 units for the triplet-nets in the 
chain receive this information as the actual/initial 
state. If Will generates and transmits to the first net’s 
S1 units the desired state “no longer hungry”, then 
the first net, which has learned from experience that 
when one is hungry the action for curbing hunger is 
to eat, generates the sensory-coded desired action 
“eat” as activations on its output units. These output 
units in the first net are also the S1 input units in the 
second net, so “eat” becomes the final desired state 
(in this case a desired action) for the second net.  

The second net has learned from experience 
which objects are edible, and when the desired 
action is to eat and the object is edible, it generates 
on its output units the sensory-coded action “eat the 
object”, which becomes the desired action for the 
third net S1 units.  
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Having learned from experience that when faced 
with an apple and a desire to eat it the action to eat it 
is to get it, the third net now generates on its output 
units the sensory-coded action “get the apple”, 
which becomes the desired action for the fourth net.  

“Get the apple” is still sensory encoded though,  
so it actually pictures “arm extended to the apple and 
fingers tightened on the apple”. This is the desired 
final state for the fifth net, the net described in the 
basic model, the one that also receives on its input 
units sensory information about the current arm state 
and activates the arm muscles.  

Essentially, we suggest that in the nervous 
system voluntary actions or behaviors are triggered 
by formulating their end-effects as high-level 
sensory representations of the desired results. These 
representations are generated in the prefrontal 
cortex, especially in the dorsal and lateral prefrontal 
areas (Haber 2003; Watanabe & Sakagami 2007; 
Tanji & Hoshi 2008). These areas act as a high-
level, ‘strategic’ Motor Will by generating sensory 
representation for the desired result (goal), without 
focusing on details in its execution, other than 
possibly enforcing context-related constraints (e.g. 
to avoid an obstacle in grasping an object). 

These sensory representations consist of neuron 
activation-and-inactivation combinations in the 
prefrontal areas, which in turn evoke sensory 
representations in the frontal premotor areas and in 
parietal, occipital, and temporal sensory and 
associative areas. These parietal, occipital, and 
temporal areas encode both sensory-specific 
representations for the goal (symbolized by the S1 
units in our model) and actual sensations from the 
body and the environment relevant to the task 
(symbolized by the S2 units in our model). These 
representations and sensations are locally sensory-
specific: tactile or proprioceptive in the parietal lobe, 
visual in the occipital lobe, and acoustic or visceral 
in the temporal lobe. Unlike these areas, the 
premotor areas encode the goal in a more abstract 
and multisensory way. Premotor area neurons are S1 
units in our model. Other S1 and S2 units are 
probably located in sub-cortical structures, 
especially in the basal ganglia (S1 units) and the 
thalamus (S2 units).  

All these representations then travel throughout 
these areas, converging towards the primary sensory 
(S1, postcentral gyrus) and motor (M1, precentral 
gyrus) areas and the sub-cortical motor structures 
through subsequent elaboration steps, represented in 
our model by the chained triplets that progressively 
detail the appropriate elementary actions needed to 
reach the goal. These representations gain motor 

detail as they converge to the S1 and M1 brain areas. 
Until the very last step, the first and only one that 
really encodes the former sensory action 
representation into the motor effector 
(neuromuscular) space, all these representations are 
sensory-coded. The neurons making the final 
sensorimotor translation (the output group in our 
basic model) are probably located in sub-cortical 
motor structures, or even in the spinal chord. 

This model is consistent with increasing 
evidence from motor research in primates and 
humans (reviews in Lebedev & Wise 2002, 
Graziano 2006, Cisek & Kalaska 2010. See also 
Miller 2000, Miller & Cohen 2001, Haber 2003, 
Tanji & Hoshi 2008 for specific reviews on the role 
of the prefrontal areas in voluntary movement; 
Rizzolatti & Luppino 2001, Rozzi et al. 2008, Koch 
et al. 2010 for the role of  parietal areas; Burnod et 
al. 1999 for flow and distribution of movement-
related sensory representations; and Zinger et al. 
2013 for the functional organization of information 
flow in the corticospinal pathway and  joint 
specificity of M1 sites). The stages progressively 
elaborating and subdividing motor goals into triplet-
nets are not necessarily exactly those we describe. 
What our simplified model allows us to conclude is 
that the general features underlying triplet network 
chaining concord well with current knowledge on 
intentional movement.  

Along the triplet chain, the role and function of 
some known as well as elusive neuron populations 
become clearer. In particular, the function of the 
second network in the chain reasonably recalls 
known canonical neuron properties. The function of 
the third network recalls known mirror neuron 
properties, at least those described for certain major 
mirror neuron subpopulations, which seem 
essentially to encode the subject’s ability to interact 
with objects (Caggiano et al. 2009, 2011; Casile, 
Caggiano & Ferrari 2011) and reasons for grasping 
an object (Casile, Caggiano & Ferrari 2011). Hence 
the interpretation our sensorimotor model offers for 
mirror neurons is that they primarily exist to allow 
us to move intentionally, being a step in 
sensorimotor mapping that descends from general, 
high-level sensations (“I am hungry”) and Will-
desired sensations (“no longer hungry”) to the 
actions (“get the apple”) able to make the desired 
sensations real. This is a more basic and critical 
function than functions other explanations propose, 
for example that mirror neurons are essential for 
learning by imitation, for the theory of mind, or for 
empathy (Gallese & Goldman 1998; Gallese 2001; 
Gallese, Eagle & Migone 2007; Iacoboni 2009). 
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These earlier conjectural explanations remain 
unproven and highly controversial (Borg 2007; 
Hickok 2009; Dinstein et al. 2010; Heyes 2010; 
Decety 2011; Lamm, Decety & Singer 2011) and are 
somewhat disconcerting when we consider them in 
the monkey, the species in which mirror neurons 
have been primarily found. Conversely, more 
recently emerging findings (Caggiano et al. 2009, 
2011; Casile, Caggiano & Ferrari 2011; Casile 2013) 
seem in line with the model we propose, insofar as 
they showed that many mirror neurons exist to 
encode the subject’s interaction with objects, rather 
than similar interactions by others. These “special” 
mirror neurons and the classic mirror neurons that 
also respond to seeing “their” action performed by 
others should be considered together rather than 
individually. Hypotheses considering single neurons 
isolated from neuron combinations should be 
regarded with caution, especially given that the only 
study that demonstrated mirror neurons in man 
(Mukamel et al. 2010) found confusing and even 
contradictory individual neuron responses. 

5 CONCLUSIONS 

Our unsupervised ANN simulation confirms, as the 
IMP claims, that voluntary actions can be initiated 
by imagining (desiring) their sensory effects. IMP 
seems a valid model for understanding human 
sensorimotor mapping, intentional movement and 
motor learning. Detailing and extending the IMP in 
what we termed the “chained triplet-net” model  
makes the IMP also helpful in explaining voluntary 
behavior besides elementary actions. Along this 
chain, elusive neuronal systems such as the 
canonical and mirror neuron systems acquire 
definite meanings. Future research should endeavor 
to identify which other non-motor nervous functions, 
such as cognitive functions, the extended IMP and 
the triplet model might help to explain. 

ACKNOWLEDGEMENTS 

We thank Miss Alice M. Crossman for her 
contribution in revising the text. 

This work received financial support from 
Castello della Quiete Srl (Rome, Italy). 

REFERENCES 

Borg, E., 2007. If mirror neurons are the answer, what was 
the question? Journal of Consciousness Studies, 14(8), 
5-19. 

Burnod, Y., Baraduc, P., Battaglia-Mayer, A., Guigon, E., 
Koechlin, E., Ferraina, S., Lacquaniti, F. & Caminiti, 
R., 1999. Parieto-frontal coding of reaching: an 
integrated framework. Experimental Brain Research, 
129(3), 325-346. 

Butz, M. V., Herbort, O. & Hoffmann, J., 2007. Exploiting 
redundancy for flexible behavior: unsupervised 
learning in a modular sensorimotor control 
architecture. Psychological Review, 114(4), 1015. 

Caggiano V., Fogassi L., Rizzolatti G., Thier P. & Casile 
A. 2009. Mirror neurons differentially encode the 
peripersonal and extrapersonal space of monkeys. 
Science, 324(5925), 403–406. 

Caggiano V., Fogassi L., Rizzolatti G., Thier P., Giese 
M.A. & Casile A., 2011. View-based encoding of 
actions in mirror neurons in area F5 in macaque 
premotor cortex. Current Biology, 21, 144–148. 

Casile, A., Caggiano, V. & Ferrari, P. F., 2011. The mirror 
neuron system a fresh view. The Neuroscientist, 17(5), 
524-538. 

Casile, A., 2013. Mirror neurons (and beyond) in the 
macaque brain: an overview of 20 years of research. 
Neuroscience Letters, 540, 3-14. 

Caudill, M. & Butler, C., 1992. Naturally Intelligent 
Systems, MIT press. 

Cisek, P. & Kalaska, J. F., 2010. Neural mechanisms for 
interacting with a world full of action choices. Annual 
Review of Neuroscience, 33, 269-298. 

Dayan, E., Casile, A., Levit-Binnun, N., Giese, M. A., 
Hendler, T. & Flash, T., 2007. Neural representations 
of kinematic laws of motion: evidence for action-
perception coupling. Proceedings of the National 
Academy of Sciences, 104(51), 20582-20587. 

Decety, J., 2011. Dissecting the neural mechanisms 
mediating empathy. Emotion Review, 3(1), 92-108. 

Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & 
Rizzolatti, G., 1992. Understanding motor events: a 
neurophysiological study. Experimental Brain 
Research, 91(1), 176-180. 

Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., 
Behrmann, M. & Heeger, D. J., 2010. Normal 
movement selectivity in autism. Neuron, 66(3), 461-
469. 

Flanagan, J. R. & Rao, A. K., 1995. Trajectory adaptation 
to a nonlinear visuomotor transformation: evidence of 
motion planning in visually perceived space. Journal 
of Neurophysiology, 74(5). 

Gallese, V. & Goldman, A., 1998. Mirror neurons and the 
simulation theory of mind-reading. Trends in 
Cognitive Sciences, 2(12), 493-501. 

Gallese, V., 2001. The 'shared manifold' hypothesis. From 
mirror neurons to empathy. Journal of Consciousness 
Studies, 8(5-7), 5-7. 

Gallese, V., Eagle, M. N. & Migone, P., 2007. Intentional 
attunement: Mirror neurons and the neural 

NCTA�2014�-�International�Conference�on�Neural�Computation�Theory�and�Applications

232



 

underpinnings of interpersonal relations. Journal of 
the American Psychoanalytic Association, 55(1), 131-
175. 

Galtier, M., 2014. Ideomotor feedback control in a 
recurrent neural network. (Online) 
http://arxiv.org/pdf/1402.3563v3 

Graziano, M., 2006. The organization of behavioral 
repertoire in motor cortex. Annual Review of 
Neuroscience, 29, 105-134. 

Haber, S. N., 2003. The primate basal ganglia: parallel and 
integrative networks. Journal of Chemical 
Neuroanatomy, 26(4), 317-330. 

Heyes, C., 2010. Mesmerising mirror neurons. 
Neuroimage, 51(2), 789-791. 

Hickok, G., 2009. Eight problems for the mirror neuron 
theory of action understanding in monkeys and 
humans Journal of Cognitive Neuroscience, 21(7), 
1229-1243. 

Hommel, B., 2013. Ideomotor action control: on the 
perceptual grounding of voluntary actions and agents. 
Action Science: Foundations of an Emerging 
Discipline, 113-136. 

Iacoboni, M., 2009. Imitation, empathy, and mirror 
neurons. Annual Review of Psychology, 60, 653-670. 

Karniel, A. & Inbar, G. F., 1997. A model for learning 
human reaching movements. Biological Cybernetics, 
77(3), 173-183. 

Kiesel, A. & Hoffmann, J., 2004. Variable action effects: 
Response control by context-specific effect 
anticipations. Psychological Research, 68(2-3), 155-
162. 

Koch, G., Cercignani, M., Pecchioli, C., Versace, V., 
Oliveri, M., Caltagirone, C., Rothwell, J. & Bozzali, 
M., 2010. In vivo definition of parieto-motor 
connections involved in planning of grasping 
movements. Neuroimage, 51(1), 300-312. 

Lamm, C., Decety, J. & Singer, T., 2011. Meta-analytic 
evidence for common and distinct neural networks 
associated with directly experienced pain and empathy 
for pain. Neuroimage, 54(3), 2492-2502. 

Lebedev, M. A. & Wise, S. P., 2002. Insights into seeing 
and grasping: distinguishing the neural correlates of 
perception and action. Behavioral and Cognitive 
Neuroscience Reviews, 1(2), 108-129. 

Melcher, T., Weidema, M., Eenshuistra, R. M., Hommel, 
B. & Gruber, O., 2008. The neural substrate of the 
ideomotor principle: An event-related fMRI analysis. 
Neuroimage, 39(3), 1274-1288. 

Melcher, T., Winter, D., Hommel, B., Pfister, R., Dechent, 
P. & Gruber, O., 2013. The neural substrate of the 
ideomotor principle revisited: evidence for 
asymmetries in action-effect learning. Neuroscience, 
231, 13-27. 

Miller, E. K., 2000. The prefontral cortex and cognitive 
control. Nature Reviews Neuroscience, 1(1), 59-65. 

Miller, E. K. & Cohen, J. D., 2001. An integrative theory 
of prefrontal cortex function. Annual Review of 
Neuroscience, 24(1), 167-202. 

Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M. & 
Fried, I., 2010. Single-neuron responses in humans 

during execution and observation of actions. Current 
Biology, 20(8), 750-756. 

Pfister, R., Melcher, T., Kiesel, A., Dechent, P. & Gruber, 
O., 2014. Neural correlates of ideomotor effect 
anticipations. Neuroscience, 259, 164-171. 

Rizzolatti, G. & Luppino, G., 2001. The cortical motor 
system. Neuron, 31(6), 889-901. 

Rozzi, S., Ferrari, P. F., Bonini, L., Rizzolatti, G. & 
Fogassi, L., 2008. Functional organization of inferior 
parietal lobule convexity in the macaque monkey: 
electrophysiological characterization of motor, sensory 
and mirror responses and their correlation with 
cytoarchitectonic areas. European Journal of 
Neuroscience, 28(8), 1569-1588. 

Rumelhart, D. E., Hinton, G. E. & Williams, R. J., 1986. 
Learning Internal Representations by Error 
Propagation. In Rumelhart, D. E., McClelland, J. L. & 
The PDP Research Group, Parallel Distributed 
Processing. Explorations in the Microstructure of 
Cognition, MIT Press. 

Sauser, E. L. & Billard, A. G., 2006. Parallel and 
distributed neural models of the ideomotor principle: 
An investigation of imitative cortical pathways. 
Neural Networks, 19(3), 285-298. 

Shadmehr, R., 2005. The computational neurobiology of 
reaching and pointing: a foundation for motor 
learning. MIT press. 

Shepherd, G. M., 1992. Canonical neurons and their 
computational organization. In Single Neuron 
Computation. Academic Press Professional, Inc., 27-
60 

Shin, Y. K., Proctor, R. W. & Capaldi, E. J., 2010. A 
review of contemporary ideomotor theory. 
Psychological Bulletin, 136(6), 943-974. 

Stock, A. & Stock, C., 2004. A short history of ideo-motor 
action. Psychological Research, 68(2-3), 176-188. 

Tanji, J. & Hoshi, E., 2008. Role of the lateral prefrontal 
cortex in executive behavioral control. Physiological 
Reviews, 88(1), 37-57. 

Watanabe, M. & Sakagami, M., 2007. Integration of 
cognitive and motivational context information in the 
primate prefrontal cortex. Cerebral Cortex, 17(suppl 
1), 101-109. 

Wulf, G. & Prinz, W., 2001. Directing attention to 
movement effects enhances learning: A review. 
Psychonomic Bulletin & Review, 8(4), 648-660. 

Wohlschläger, A., Gattis, M. & Bekkering, H., 2003. 
Action generation and action perception in imitation: 
an instance of the ideomotor principle. Philosophical 
Transactions of the Royal Society of London. Series B: 
Biological Sciences, 358(1431), 501-515. 

Zinger, N., Harel, R., Gabler, S., Israel, Z. & Prut, Y., 
2013. Functional Organization of Information Flow in 
the Corticospinal Pathway. The Journal of 
Neuroscience, 33(3), 1190-1197.  

The�Ideomotor�Principle�Simulated�-�An�Artificial�Neural�Network�Model�for�Intentional�Movement�and�Motor�Learning

233


