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Institute of Mathematics and Computer Science of the University of Latvia

Raina bulv. 29, Riga, LV-1459, Latvia

Keywords: L-fuzzy Set,L-relation, L-fuzzy Rough Set, cl-monoid, Measure of Inclusion,L-fuzzy Topology,L-fuzzy
Co-topology.

Abstract: We define the measure of upper and the measure of lower rough approximation forL-fuzzy subsets of a
set equipped with a reflexive transitive fuzzy relationR. In case when the relationR is also symmetric,
these measures coincide and we call their value by the measure of roughness of rough approximation. Basic
properties of such measures are studied. A realization of measures of rough approximation in terms ofL-fuzzy
topologies is presented.

1 INTRODUCTION

The concept of a rough subset of a set equipped with
an equivalence relation was introduced by Z. Pawlak
(Pawlak 1982). Rough sets found important applica-
tions in real-world problems, and also arouse interest
among ”pure” mathematicians as an interesting math-
ematical notion having deep relations with other fun-
damental mathematical concepts, in particular, with
topology. Soon after Pawlak’s work, the concept of
roughness was extended to the context of fuzzy sets;
D. Dubois’ and H. Prade’s paper (Dubois and Prade
1990) was the first work in this direction. At present
there is a vast literature where fuzzy rough sets are
investigated and applied. In particular, fuzzy rough
sets are studied and used in (Kortelainen 1994, Ciuci
2009, Yao 1998, Qin and Pai 2005, Qin and Pai 2008,
Hao and Li 2011, Radzikowska and Kerre 2002, Ti-
wari and Srivastava 2013, Mi and HU 2013, Yu and
Zhou 2014) just to mention a few of numerous works
dealing with (fuzzy) rough sets. However, as far as
we know, there were no attempts undertaken to mea-
sure the degree of roughness of a fuzzy set. To state
it in another way, to measure, ”how much rough” is a
given (fuzzy) subset of a set equipped with a (fuzzy)
relation. We undertake such attempt in this paper.
Namely, given anL-fuzzy subsetA of a set equipped
with a reflexive transitiveL-relation we assign toA
an elementα ∈ L showing how much this set differs
from its upper and lower rough approximations.

The structure of the paper is as follows. In the

next section we recall two notions fundamental for
our work, namely a cl-monoidand anL-relation. In
the third section we introduce the measure of inclu-
sion of one fuzzy set into another, and describe the
behavior of this measure.

In Section 4 we define operators of upper and
lower rough approximation for anL-fuzzy subset of
a set endowed with anL-relation. Note that similarly
defined operators under differemt assumptions appear
also in the previous researches, see e.g. (Järvinen and
Kortelainen, 2007, Qin and Pai 2005, Sostak 2010,
Sostak 2012)

In Section 5 we define the measures of upper
K (A) and lowerT (A) rough approximation for anL-
fuzzy subsetA of a set endowed with anL-relation.
Essentially,K (A) is the measure of inclusion of the
upper approximation of anL-fuzzy setA into A, while
T (A) is the measure of inclusion ofA into its lower
approximation. By showingK (A) = T (A) whenever
R is symmetric, we come to the measure of roughness
R A(A) of anL-fuzzy setA.

In Section 6 we interpret the operator of measur-
ing roughness of rough approximation as anL-fuzzy
ditopology (that is a pair of a anL-fuzzy topologyT

and anL-fuzzyK co-topology) on a setX and discuss
some issues of this interpretation.

In the last, Conclusion, section we discuss some
directions for the prospective work.
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2 PRELIMINARIES

2.1 cl-monoids

Let (L,≤,∧,∨) denote a complete lattice, that is a
lattice in which arbitrary suprema (joins) and infima
(meets) exist. In particular, the top 1L and the bottom
0L elements inL exist and 0L 6= 1L.

Definition 2.1. (Birkhoff 1995)A tuple(L,≤,∧,∨,∗)
is called a cl-monoid if(L,≤,∧,∨) is a complete lat-
tice and the binary operation∗ : L× L → L satisfies
conditions:
(0∗) ∗ is monotone:α ≤ β =⇒ α∗ γ ≤ β∗ γ

for all α,β,γ ∈ L;
(1∗) ∗ is commutative:α∗β = β∗α

for all α,β ∈ L;
(2∗) ∗ is associative:(α∗β)∗ γ = α∗ (β∗ γ)

for all α,β,γ ∈ L;
(3∗) ∗ distributes over arbitrary joins:

α∗ (
∨

i∈I βi) =
∨

i∈I (α∗βi)
for all α ∈ L, for all {βi | i ∈ I} ⊆ L,

(4∗) α∗1L = α, α∗0L = 0L
for all α ∈ L.

(Note, that a cl-monoid can be defined also as an
integral commutative quantale in the sense of (Rosen-
thal 1990).)

Remark 2.2. In caseL = [0,1] the operation∗ :
[0,1]× [0,1]→ [0,1] satisfying properties (0∗), (1∗),
(2∗) and (4∗) (defined in a slightly different form) for
the first time appeared in K. Menger’s papers, see e.g.
(Menger 1979)under the namea triangular norm, or a
t-norm. Latert-norms were thoroughly studied by dif-
ferent authors, see e.g. ( Schweitzer and Sclar 1983,
Klement, Messiar and Pap 2000) At-norm satisfying
property (3∗) is called lower semicontinuous.

In a cl-monoid a further binary operation7→, re-
sidium, is defined:

α 7→ β =
∨

{λ ∈ L | λ∗α ≤ β}.

Residuation is connected with operation∗ by the Ga-
lois connection:

α∗β ≤ γ ⇐⇒ α ≤ (β 7→ γ),

see e.g. (Höhle 1992). In the following proposition
we collect well-known properties of the residium:

Proposition 2.3. (see e.g. Höhle 1992.)
(17→) (

∨
i αi) 7→ β =

∧
i (αi 7→ β)

for all {αi | i ∈ I} ⊆ L, for all β ∈ L;
(27→) α 7→ (

∧
i βi) =

∧
i(α 7→ βi)

for all α ∈ L, for all {βi | i ∈ I} ⊆ L,;

(37→) 1L 7→ α = α for all α ∈ L;
(47→) α 7→ β = 1L

wheneverα ≤ β;
(57→) α∗ (α 7→ β)≤ β for all α,β ∈ L;
(67→) (α 7→ β)∗ (β 7→ γ)≤ α 7→ γ for all α,β,γ ∈ L;
(77→) α 7→ β ≤ (α∗ γ 7→ β∗ γ) for all α,β,γ ∈ L.

In the sequel we will need the following two lem-
mas:

Lemma 2.4. Let (L,≤,∧,∨,∗) be a cl-monoid. Then
for every{αi | i ∈ I} ⊆ L and every{βi | i ∈ I} ⊆ L it
holds:

(∧
i
αi

)

7→
(∧

i
βi

)

≥
∧

i
(αi 7→ βi).

Indeed, applying Proposition 2.3 we have:
∧

i
αi 7→

∧
j
β j =

∧
j
(
∧

i
αi 7→ β j)≥

∧
j
(α j 7→ β j).

Lemma 2.5. Let (L,≤,∧,∨,∗) be a cl-monoid. Then
for every{αi | i ∈ I} ⊆ L, and every{βi | i ∈ I} ⊆ L it
holds:

(∨
i
αi

)

7→
(∨

i
βi

)

≥
∧

i
(αi 7→ βi).

Proof. Applying Proposition 2.3 we have

(αi 7→ βi)∗αi ≤ βi

for eachi ∈ I . Let c=
∧

i(αi 7→ βi). Thenc∗αi ≤ βi
for eachi ∈ I . Taking suprema on the both sides of
the above inequality overi ∈ I we getc∗

∨
iαi ≤

∨
iβi

and hence, by the Galois connection,
∧

i

(αi 7→ βi).≤
∨

i

αi 7→
∨

i

βi .

2.2 L-relations

The concept of a fuzzy relation (or an[0,1]-relation
in our terminology) was first introduced by Zadeh and
then redefined and studied by different authors.

Definition 2.6. (Zadeh 1971, Valverde 1985)An L-
relation on a set X is a mapping R: X×X → L.

(r) L-relation R is called reflexive if
R(x,x) = 1 for each x∈ X;

(s) L-relation R is called symmetric if
R(x,y) = R(y,x) for all x,y∈ X;

(t) L-relation R is called transitive if
R(x,y)∗R(y,z)≤ R(x,z) for all x,y,z∈ X.

A reflexive symmetric transitive L-relation is called an
L-equivalence, or a similarity L-relation.

Let a latticeL be fixed and letREL(L) be the
category whose objects are pairs(X,R), whereX is
a set andR : X ×X → L is a transitive reflexiveL-
relation on it. Morphisms inREL (L) are mappings
f : (X,RX)→ (Y,RY) such that

RX(x,x
′)≤ RY( f (x), f (x′)) for all x,x′ ∈ X.
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3 THE MEASURE OF INCLUSION
OF L-fuzzy SETS

If (L,≤,∧,∨,∗) is a cl-monoid, andX is a set, then the
lattice and the monoidal structures ofL can be point-
wise lifted to theL-powersetLX of X. Namely, given
A,B∈ LX we setA≤ B iff A(x)≤ B(x) for all x∈ X,
and define operations onLX by setting
(A∧B)(x) = A(x)∧B(x),(A∨B)(x) = A(x)∨B(x),

(A∗B)(x) = A(x)∗B(x)
for all x ∈ X. One can easily notice that in this way
(LX

,≤,∧,∨,∗) becomes a cl-monoid.
Definition 3.1. By setting

A →֒ B= inf
x∈X

(A(x) 7→ B(x))

for all A,B∈ LX we obtain a mapping
→֒: LX ×LX → L.

Equivalently,֒→ can be defined by
A →֒ B= inf(A 7→ B),

where the infimum of the L-fuzzy set A7→ B is taken
in the lattice LX . We call A→֒ B by the measure of
inclusion of the L-fuzzy set A in the L-fuzzy set B.

As the next proposition shows, the measure of in-
clusion

→֒: LX ×LX → L
has properties in a certain sense resembling the prop-
erties of the residuation:
Proposition 3.2. Mapping →֒: LX ×LX → L defined
above satisfies the following properties:

(1→֒) (
∨

i Ai) →֒ B=
∧

i (Ai →֒ B)
for all {Ai | i ∈ I} ⊆ LX , for all B ∈ LX ;

(2→֒) A →֒ (
∧

i Bi) =
∧

i(A →֒ Bi)
for all A ∈ LX , for all {Bi | i ∈ I} ⊆ LX ;

(3→֒) A →֒ B= 1L
whenever A≤ B;

(4→֒) 1X →֒ A= infx A(x)
for all A ∈ LX ;

(5→֒) A∗ (A →֒ B)≤ B
for all A,B∈ LX ;

(6→֒) (A →֒ B)∗ (B →֒C)≤ A →֒C
for all A,B,C∈ LX ;

(7→֒) A →֒ B≤ (A∗C →֒ B∗C)
for all A,B,C∈ LX ;

(8→֒) (
∨

iAi) →֒ (
∨

iBi)≥
∧

i(Ai →֒ Bi)
for all {Ai,Bi ∈ I} ⊆ LX ;

(9→֒) (
∧

iAi) →֒ (
∧

iBi)≥
∧

i(Ai →֒ Bi)
for all {Ai,Bi ∈ I} ⊆ LX .

Proof. The proof can be done straightforward from
the definition of operation֒→ and applying properties
of the residium7→: L×L→ L collected in Proposition
2.3, Lemma 1 and Lemma 2.

4 ROUGH APPROXIMATION OF
A FUZZY SET

Let R : X × X → L be a reflexive transitiveL-
relation on a setX and A ∈ LX . By the rough ap-
proximation of theL-fuzzy setA we call the pair
(uR(A), lR(A)) whereuR : LX → LX andlR : LX → LX

are respectively operators of upper and lower rough
approximations ofA defined below.

4.1 Upper Rough Approximation

Given a reflexive transitiveL-relationR : X×X → L,
we define the upper rough approximation operator
uR : LX → LX by

uR(A)(x) = supx′
(

R(x,x′)∗A(x′)
)

∀A∈ LX
, ∀x∈ X.

Theorem 4.1. The upper rough approximation oper-
ator satisfies the following properties:1

(1u) uR(0X) = 0X;
(2u) A≤ uR(A) ∀A∈ LX ;
(3u) uR(

∨
i Ai) =

∨
i uR(Ai) ∀{Ai | i ∈ I} ⊆ LX ;

(4u) uR(uR(A)) = uR(A) ∀A∈ LX;
Proof. Statement (1u) is obvious. Statement (2u)
follows easily taking into account reflexivity of the
L-relationR. We prove property (3u) as follows:

uR(
∨

i

Ai)(x) = supx′(R(x,x
′)∗ (

∨
i
Ai(x

′))) =

supx′(
∨

i
R(x,x′)∗Ai(x

′))=
∨

i
(supx′(R(x,x

′)∗Ai(x
′)))

=
∨

i
(uR(Ai)(x)) =

(∨
i
(uR(Ai)

)

(x).

Finally, taking into account transitivity of theL-
relation we have:

uR(uR(A))(x) = supx′(uR(A)(x
′)∗R(x,x′)) =

supx′′supx′(A(x
′′)∗R(x,x′)∗R(x′,x′′))≤

supx′′A(x
′′)∗R(x,x′′) = uR(A)(x).

Since the converse inequality follows from (2u), we
get property (4u).

4.2 Lower Rough Approximation
Induced by a Reflexive Transitive
L-relation

Given a reflexive transitiveL-relationR : X×X → L,
we define a lower rough approximation operatorlR :
LX → LX by

lR(A)(x) = infx′
(

R(x,x′) 7→ A(x′)
)

∀A∈ LX ∀x∈ X.

1Similar results can be found e.g. in (Järvinen and Ko-
rtelainen , Qin and Pei 2005, Sostak 2010.)
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Theorem 4.2. The lower rough approximation oper-
ator satisfies the following properties:2

(1l) lR(1X) = 1X;
(2l) A≥ lR(A) ∀A∈ LX ;
(3l) lR(

∧
i Ai) =

∧
i lR(Ai) ∀{Ai | i ∈ I} ⊆ LX ;

(4l) lR(lR(A)) = lR(A) ∀A∈ LX ;

Proof. Statement (1l) is obvious. Statement
(2l) follows easily taking into account reflexivity
of theL-relationR. We prove property (3l) as follows:

lR(
∧

i
Ai)(x) = infx′

(

R(x,x′) 7→
∧

i
Ai(x

′)
)

=

infx′
∧

i

(

R(x,x′) 7→ Ai(x
′)
)

=
∧

i
infx′

(

R(x,x′) 7→ Ai(x
′)
)

=
∧

i
lR(Ai).

Finally, taking into account transitivity of theL-
relation we have:

lR(lR(A))(x) = infx′(R(x,x
′) 7→ lR(A)(x

′)) =

infx′(R(x,x
′) 7→ infx′(R(x

′
,x′′) 7→ A(x′′))) =

infx′(infx′′(R(x,x
′)∗R(x′,x′′) 7→ A(x′′)))≥

infx′′(R(x,x
′′) 7→ A(x′′)) = lR(A)(x).

Since the converse inequality follows from (2l), we
get property (4l).

5 THE MEASURE OF
ROUGHNESS OF AN L-FUZZY
SET

Let R : X×X → L be a reflexive transitiveL-relation
on a setX. Given anL-fuzzy setA∈ LX we define the
measureK (A) of its upper rough approximation by

K (A) = uR(A) →֒ A

and the measureT (A) of its lower rough approxima-
tion by

T (A) = A →֒ lR(A).

Theorem 5.1. If R is also symmetric, that is an equiv-
alence L-relation, thenK (A) = T (A) for every L-
fuzzy set A.

Proof. For the measure of the upper rough approxi-
mation we have

K (A) = uR(A) →֒ A= infx(uR(A)(x) 7→ A(x)) =

infxsupx′(A(x)∗R(x,x′) 7→ A(x′)) =

infxinfx′
(

A(x)∗R(x,x′) 7→ A(x′)
)

.

2Similar results can be found e.g. in (Järvinen and Ko-
rtelainen , Qin and Pei 2005, Sostak 2010.)

On the other hand, for the lower rough approxima-
tions we have

A →֒ lR(A) = infx(A(x) 7→ lR(A)(x)) =

infx(A(x) 7→ infx′
(

R(x,x′) 7→ A(x′))
)

=

infx inf
x′
(A(x) 7→ (R(x,x′) 7→ A(x′)) =

infxinfx′(A(x)∗R(x,x′) 7→ A(x′).

SinceR(x,x′) = R(x′,x) in caseR is symmetric, to
complete the proof it is sufficient to notice that

(α∗β) 7→ γ = α 7→ (β 7→ γ)

for anyα,β,γ ∈ L. Indeed

(α∗β) 7→ γ =
∨

{λ | λ∗ (α∗β)≤ γ},

and

α 7→ (β 7→ γ) =
∨

{λ | λ∗α ≤ β 7→ γ}=
∨

{λ | (λ∗α)∗β 7→ γ};

the last equality is justified by Galois connection be-
tween7→ and∗.
2

The previous theorem allows us to introduce the
following definition:

Definition 5.2. Let R be an equivalence L-relation on
a set X and A∈ LX . The measure of rough approxi-
mation of A is defined by

R A(A) = uR(A) →֒ A= A →֒ lR(A).

In the next theorem we collect the main properties
of the operatorsK : LX → L and T : LX → L, and
hence also of the operatorR A : LX → L in case the
relationR is symmetric.

Theorem 5.3. Measures of roughness of upper and
lower rough approximationK ,T : LX → L has the
following properties:

1. K (0X) = 1L
(0X : X → L is the constant function
0X(x) = 0L ∀x∈ X);

2. T (1X) = 1L
(1X : X → L is the constant function
1X(x) = 1L ∀x∈ X);

3. K (u(A)) = 1L
for every A∈ LX ;

4. T (l(A)) = 1L
for every A∈ LX ;

5. K (
∨

i Ai)≥
∧

i K (Ai)
for every family of L-fuzzy sets{Ai | i ∈ I} ⊆ LX;

6. T (
∧

i Ai)≥
∧

i T (Ai)
for every family of L-fuzzy sets{Ai | i ∈ I} ⊆ LX.
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Proof. (1) Referring to Theorem 4.1 and applying
Proposition 3.2(3 →֒) we have

K (A) = uR(0X) →֒ 0X = 0X →֒ 0X = 1L.

(2) Referring to Theorem 4.2 and applying Proposi-
tion 3.2(3 →֒), we have

T (A) = 1X →֒ lR(1X) = 1X →֒ 1X = 1L.

(3) Referring to Theorem 4.1 and applying Proposi-
tion 3.2(3 →֒), we have

K (u(A))) = uR(uR(A) →֒ uR(A) = uR(A) →֒ uR(A) = 1.

(4) Referring to Theorem 4.2 and applying Proposi-
tion 3.2(3 →֒), we have

T (l(A))) = lR(A) →֒ lR(lR(A)) = lR(A) →֒ lL(A) = 1′

(5) Referring to Theorem 4.1 and applying Proposi-
tion 3.2(8 →֒), we have

K (
∨

i

Ai) = uR(
∨

i

Ai) →֒
∨

i

Ai =

∨

i

uR(Ai) →֒
∨

i

Ai ≥
∧

i

(u(Ai) →֒ Ai).

(6) Referring to Theorem 4.2 and applying Proposi-
tion 3.2(9 →֒), we have

T (
∧

i

Ai) = (
∧

i

Ai) →֒ l(
∧

i

Ai) =

∧

i

Ai →֒
∧

i

l(Ai)≥
∧

i

Ai →֒ l(Ai).

2

Theorem 5.4. Let RX : X×X → L and RY : Y×Y →
L be reflexive transitive L-relations on sets X and Y
respectively. Further, let f: X →Y be a mapping such
that

RX(x,x
′)≤ RY( f (x), f (x′))

for every x,x′ ∈ X. Then

KX( f−1(B))≥ KY(B) andTX( f−1(B))≥ TY(B)

for every B∈ LY.

Proof. follows from the next sequences of
(in)equalities:

KX( f−1(B)) = uRX ( f−1(B)) →֒ f−1(B) =

inf
x
(uRX ( f−1(B)(x) 7→ f−1(B)(x)) =

inf
x
(supx′B( f (x))∗R(x,x′) 7→ B( f (x))) ≥

inf
x
(supx′B( f (x′)∗R( f (x), f (x′)) 7→ B( f (x)) ≥

inf
y
(sup′yB(y

′)∗R(y,y′) 7→ B(y)) = KY(B)

and

TX( f−1(B)) = f−1(B) →֒ lRX ( f−1(B)) =

inf
x
( f−1(B)(x) 7→ lRX ( f−1(B))(x)) =

inf
x
(B( f (x)) 7→ inf

x′
(R(x,x′) 7→ f−1(x′)) =

inf
x

in fx′(B( f (x)) 7→ (R(x,x′) 7→ B( f (x′)))≥

inf
x

inf
x′
(B( f (x)) 7→ (R( f (x), f (x′)) 7→ B( f (x)) ≥

inf
y

inf
y′
(B(y) 7→ (R(y,y′) 7→ B(y)) =

B →֒ lRY(B) = TY(B).

2

Example 5.5. Let ∗L be the Łukasiewicz t-norm on
the unit interval L= [0,1], that is

α∗β = min(α+β−1,1)

and 7→L: L× L → L be the corresponding residium,
that is

α 7→L β = max{1−α+β,0}.

Then, given an equivalence L-relation R on a set X
and A∈ LX we have:

K (A) = inf
x

inf
x′
(2−A(x)+A(x′)−R(x,x′));

T (A) = inf
x

inf
x′
(2−A(x)+A(x′)−R(x′,x)).

In particular, if R: X×X → [0,1] is the discrete rela-
tion, that is

R(x,x′) =

{

1 if x = x′

0 otherwise,

we have

R A(A) = 1 for every A∈ LX
.

On the other hand for the indiscrete relation (that is
R(x,x′) = 1 for all x,x′ ∈ X)

R A(A) = 1− infx,x′ | A(x)−A(x′) | for all A ∈ LX
.

Example 5.6. Let ∗ = ∧ be the minimum t-norm on
the unit interval L= [0,1], and 7→: L×L be the cor-
responding residium, that is

α 7→ β =

{

1 if α ≤ β
β otherwise

.

Then given a reflexive transitive L-relation R on a
set X and A∈ LX we have:

K (A) = inf
x

inf
x′
(A(x′)∧R(x,x′) 7→ A(x));

T (A) = inf
x

inf
x′
(A(x′)∧R(x′,x) 7→ A(x)).

In particular,R A(A) = 1 for every A∈ LX in case the
relation R is symmetric.
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Example 5.7. Let ∗= · be the product t-norm on the
unit interval [0,1], and7→: L×L be the corresponding
residium, that is

α 7→ β =

{

1 if α ≤ β
β
α if α > β

.

Then, for a reflexive transitive L-relation we have:

K (A) = inf
x

inf
x′
(A(x′) ·R(x,x′) 7→ A(x));

T (A) = inf
x

inf
x′
(A(x′) ·R(x′,x) 7→ A(x)).

In particular

R A(A) = inf
x

inf
x′
(A(x′) ·R(x,x′) 7→ A(x))

in case R is symmetric.

6 MEASURE OF ROUGHNESS OF
A FUZZY SET:
DITOPOLOGICAL
INTERPRETATION 3

Notice that conditions (2), (4), and (6) of Theorem
5.3 actually mean that the mappingT : LX → L is an
L-fuzzy topology on the setX, (see e.g. Sostak 1989,
Sostak 1996), while conditions (1), (3), and (5) of this
Theorem mean that the mappingK : LX → L is anL-
co-topology on this set (see e.g. (Sostak 1985, Kubiak
1985, Sostak 1989, Sostak 1996). Since the mappings
T andK are not mutually related via complementa-
tion on the latticeL (which even need not exist on
the lattice) we may interpret the pair(T ,K ) as an
L-fuzzy ditopology on the setX (Brown, Ertürk and
Dost 2000).

Let α ∈ L be fixed and let

Kα = {A | K (A)≥ α} and Tα = {A | T (A)≥ α}.
Then, applying again Theorem 5.3, we easily con-
clude thatTA satisfies the axioms of a Chang-Goguen
L-topology, see (Chang 1968, Goguen 1973) and
KA satisfies the axioms of a Chang-GoguenL-co-
topology. Hence for eachα ∈ L the pair (Tα,Kα)
can be realized as a a Chang-GoguenL-topology on
X (Brown, Ertürk and Dost 2000).

From Theorem 5.4 we conclude that iff :
(X,RX) → (Y,RY) is a morphism in the category
REL(L) of sets endowed with reflexive transitiveL-
relations, then

f : (X,TX,KX)→ (Y,TY,KY)

3In this section we give an alternative view on the con-
cepts studied in the work. A reader not interested in the
topological aspects of approximation, may omit this sec-
tion.

is continuous mapping of the correspondingL-fuzzy
ditopological spaces. Thus we come to the following

Theorem 6.1. By assigning to every object(X,RX)
from the categoryREL(L) (see subsection 2.2) an L-
fuzzy ditopological space(X,TX,KX), and interpret-
ing a morphism f: (X,RX) → (Y,RY) of REL(L) as
a mapping f: (X,TX,KX)→ (Y,TY,KY) we obtain a
functor

Φ : REL(L)→ L-DiTop(L),
where L-DiTop(L), is the category of L-fuzzy ditopo-
logical spaces and their continuous mappings.

Corollary 6.2. Let α ∈ L be fixed. By as-
signing to every object(X,RX) from the cate-
goryREL(L) a Chang-Goguen L-ditopological space
(X,T Xα,K Xα), and realizing a morphism f:
(X,RX) → (Y,RY) from REL(L) as a mapping f:
(X,TXα,KXα)→ (Y,TYα,KYα) we obtain a functor

Φα : REL(L)→ L-DiTop,
where L-DiTop is the category of Chang-Goguen L-
ditopological spaces and their continuous mappings.

7 CONCLUSION

In this paper we proposed an approach allowing to
measure the roughness of lower and upper rough ap-
proximation for fuzzy subsets of a set endowed with
a reflexive transitiveL-relation. The basics of the the-
ory of roughness measure were developed here. Be-
sides, a natural interpretation of the operator of mea-
sure of rough approximation as a fuzzy ditopology
was sketched here. However, several crucial issues
concerning this theory remain untouched in this work.
As one of the first goals for the further work we see
the development of a consistent categorical viewpoint
on the measure of rough approximation. In particular,
it is important to study the behavior of the measure
of approximation under operations of products, direct
sums, quotients, etc, and to research the behavior of
the measure of roughness under images and preim-
ages of special mappings between sets endowed with
reflexive transitive fuzzy relations..

Another interesting, in our opinion, direction of
the research is to develop the topological model of this
theory sketched in Section 6. The restricted volume of
this work does not allow us to linger on this subject.
However, in our opinion the topological interpretation
of the theory could be helpful for further studies.

Besides we hope that the concept of measure of
rough approximation will be helpful also in some
problems of practical nature, since since it allows in a
certain sense to measure the quality of the rough ap-
proximation.
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Šostak, A. Two decades of fuzzy topology: Basic ideas,
notions and results,Russian Math. Surveys 44 (1989)
125–186
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