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Abstract: Players with one-step memory in an iterated Prisoner’s Dilemma game can adaptively change their strategies
after playing some games with their opponent. The probability of change of strategies depends on noise
levels, the players’ patience (or reaction time), and initial strategies. Players perform partial imitation, since,
realistically, they can only imitate what they observe. Patience determines the frequency of a player’s possible
strategies changes. In this paper, we focus on the evolution of strategies between two major categories of
players whose innate characters belong either to cheaters (traitors) or nice (benevolent) players. We consider
them as agents whose characters are fixed, but their detailed genetic makeup can still vary among several types,
so that, for example, the cheaters can evolve among different types of cheaters. We observe their evolutions
by means of their degree of cooperation, where the variables are initial strategies, noise, and patience. Here,
noise is incorporated in a sigmoid function that accounts for errors in learning. The numerical results show
interesting features that we can explain heuristically: in the iterated games between an adaptive cheater against
a patient nice player in a noisy environment, we observe a minimum degree of cooperation at a specific noise
level.

1 INTRODUCTION

Game Theory describes mathematical models of con-
flict and cooperation between decision-makers (Axel-
rod, 1984; Smith, 1982; Antony, 2011). The field of
evolutionary game theory was first established when
Maynard Smith and Prince introduced the concept of
evolutionary stable strategies in 1973 (Smith, 1982),
and the emergence of cooperation in a population
of selfish individuals has been studied by many re-
searchers since. In evolutionary game theory the suc-
cess of an individual (or a species) is determined by
how it interacts with other individuals (or species). In
this paper, we focus on the Prisoner’s Dilemma (PD)
(Poundstone, 1992), one of the simplest models of
the interaction of two decision-makers. Using the PD
game we investigate the effect of patience on the par-
tial imitation (Wu, 2010) process of agents (or play-
ers). In this work we investigate a prisoner’s dilemma
game in which players have memory and can adapt
their strategy. Players are modeled as being variants
of two basic strategy categories: a strategy that will
look for a short-term gain via betrayal or a strategy
that will look for a long-term gain via cooperation,
both will be in effect unless otherwise influenced by
the actions of the opponent, where the player remem-

bers his and his opponent’s last move. Additionally,
noisy environments in which player strategy execu-
tions are not perfect are also investigated. We also in-
troduce the concept of ”patience” of a player, which
models his willingness to keep a strategy when it is
not yet successful for some time. The observations
of the cheater’s degree of cooperation under different
conditions might be used to maximize a system’s effi-
ciency that contains such individuals. Each player has
two choices: to cooperate (C), which is better for the
overall payoff, or to defect (D), which may be bet-
ter for the individual’s payoff. For example, a PD
game can be represented by the following notation:
CD, where one player cooperated (C), while the other
player defected (D). In the model a certain value, rep-
resenting a payoff, is assigned to each of the four pos-
sible outcomes of a PD game:

Pi j =

�
Payoff CC Payoff CD
Payoff DC Payoff DD

�
=

�
R S
T P

�
(1)

Here Pi j is the payoff for an i-strategist against a j-
strategist, R is called the reward for mutual cooper-
ation, S is called the sucker’s payoff, T is called the
temptation for a player to defect, and P is called the
punishment for mutual defection. For two players,
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Alice and Bob, in a Prisoner’s Dilemma, the best pos-
sible outcome for Alice is to defect when Bob is coop-
erating. When both she and Bob cooperate they will
both receive the reward R, this is only the second best
outcome for Alice. If both defect both will receive the
punishment P that is worse than the reward. However,
the worst possible outcome for Alice occurs when she
cooperates while Bob defects, in this case she will re-
ceive the sucker’s payoff S. From this we can see that
a PD game requires that T >R>P> S. An additional
restriction 2R> T +S is often used when the PD game
is played repeatedly; this ensures that mutual coop-
eration yields the highest total payoff of both play-
ers. In this paper the same payoff parameters were
used as in Axelrod’s famous PD computer tournament
(Antony, 1992): S=0, R=3, P=1, T=5. The main con-
flict addressed by a Prisoner’s Dilemma game is the
best strategy for a selfish player is the worst strategy
for the society that benefits from the total payoff from
all players. Nowak et al. summarized five rules for
the emergence of cooperation (Nowak, 2006): kin se-
lection, direct reciprocity (Lindgren, 1994), indirect
reciprocity, network reciprocity (Nowak, 1993) and
group selection. In this paper it is direct reciprocity
that influences the players. The same players play the
PD game repeatedly and the players are given mem-
ory; this means that they can remember a certain num-
ber of past PD games and their results. Each Player
also possesses a set of responses to every possible out-
come of the previous games that are remembered, we
call this set of responses a strategy. A result of this
is that when a player defects, although he may gain a
greater payoff in that round, his opponent might de-
fect more in future rounds. This can result in a lower
payoff for him, which discourages defection. In this
paper the players are additionally given a certain pa-
tience, which determines the frequency of a player’s
strategy changes, as well as the past payoff he consid-
ers at the time of the strategy change. We also exam-
ine the effect of noise on the degree of cooperation of
a cheater (who cannot adapt a strategy that maintains
mutual cooperation).

2 METHOD

2.1 Partial Imitation of Players

A two-player PD game yields one of the four pos-
sible outcomes because each of the two independent
players has two possible moves, cooperate (C) or de-
fect (D). To an agent i, the outcome of playing a
PD game with his opponent, agent j, can be repre-
sented by an ordered pair of responses SiS j. Here Si

can be either C for cooperate or D for defect. Thus,
there are four possible histories for any one game be-
tween them: SiS j takes on one of these four outcomes
(CC;CD;DC;DD). In general, for n games, there will
be a total of 4n possible scenarios. A particular pat-
tern of these n games will be one of these 4n scenar-
ios, and can be described by an ordered sequence of
the form Si1S j1 � � �SinS jn. This particular ordered se-
quence of outcomes for these n games is called a his-
tory of games between these two players. In a PD-
game with a fixed memory-length m, the players can
get access to the outcomes of the past m games and
decide their next move. We use only players with
one-step memory mainly for the sake of simplicity.
There is no contradiction with the concept of patience,
which is measured by the number of games played
before the player changes his strategy. The reason
is that the cumulative effect of unsatisfactory perfor-
mance of a strategy over n games can be accumulated
by the payoff of each game once at a time, which re-
quires only a simple registry of the player with one-
step memory (this will be discussed in more detail in
section 2.3). Extension to players with longer mem-
ory will make the present problem very complex and
will be investigated in future works.

2.2 Player Types

The number of moves in a strategy, given that the
agent can memorize the outcomes of the last m games,
is å4m (Baek, 2008; Antony, 2013). In this paper
we consider only one-step memory players (m = 1)
for their simplicity, the one-step memory-encoding
scheme is now described in detail. We allow our
agents to play moves based on their own last move
and the last move of their opponent. Thus we need 4
responses SP;ST ;SS and SR for the DD, DC, CD and
CC histories of the last game. The agents also need to
know how to start playing if there is no history. We
add an additional first move S0. This adds up to a total
of 5 moves for a one-step memory strategy. A strategy
in one-step memory is then denoted as S0jSP ST SS SR ,
where S0 is the first move. There are 25 = 32 possible
strategies. In this paper, we consider a random player,
whose every move in a PD game is completely ran-
dom, and players with one-step memory. A one-step
memory player can use any of the 32 one-step strate-
gies, which can be classified into types as shown in
Table 1.

Our definition of ”nice” players are those who
start the game with C and when the last game both
players use C, he will also use C. As to the ”cheaters”,
they are players who start with D, and when the last
game both players use C, the cheater will use D. Note
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Table 1: Classification of one-step strategies, as taken from
(Antony, 2013). A square (o) indicates that the category
applies no matter what move is chosen at that point. Thus,
for each square, one can either choose C or D.

History DD DC CD CC
Move S0 SP ST SS SR

Grim Trigger C D D D C
Tit For Tat C D C D C
Pavlov C C D D C
always defect D D D o o
always cooperate C o o C C
nice C o o o C
trusting (cheating) o o o o C(D)
sucker (retaliating) o o o C(D) o
contrite (exploiting) o o C(D) o o
repentant (spiteful) o C(D) o o o

that there are in total 32 kinds of players, and there are
only 8 kinds of nice players, and 16 kinds of cheaters,
while the remaining 8 kinds are neither classified as
cheaters or nice players. We expect that this classifi-
cation of players can capture some interesting behav-
iors of real players through this rather simple model.

2.3 Meta-strategies for Strategy
Switching

A player with memory can change his strategy ac-
cording to the results of the previous games in the iPD
(iterated Prisoner’s Dilemma). To do this, a mech-
anism, which we called meta-strategy, must be in-
troduced for the player to switch his strategy intelli-
gently. The mechanisms we used consist of a con-
dition and a switching-rule. The condition applies
to past payoffs: the player remembers his own and
his opponent’s cumulative payoffs for a certain num-
ber of rounds n. After n rounds he compares his and
his opponent’s cumulative payoff of the last n rounds
and may apply the switching rule. Having done this,
the player waits for another n rounds before repeating
the process again. When his cumulative payoff of n
rounds is less than his opponent’s, then the condition
for switching strategy is fulfilled and the player ap-
plies a rule to switch his strategy. This method may
seem strange, since we are considering a one-step
memory player and he can know the payoff of more
than just the last round. However, the player doesn’t
remember any past games or their outcomes beyond
the last game, all he knows is the payoff (which could
be modeling wealth, status, etc.) that he and his coun-
terpart accumulated over the course of n games, af-
ter n games this payoff accumulation is reset. Since
the player does not remember the last n games (when
n > 1), but only accesses information available to him

now, he can have one-step memory. In this paper the
rule used is called partial imitation, (Antony, 2011;
Wu, 2010) by using partial imitation the player imi-
tates the opponent’s last move. After imitating his op-
ponent’s last move the player will use the same move
(C or D) that his opponent used in this game, when he
encounters the same situation his opponent encoun-
tered. The partial imitation rule is different from the
commonly used traditional imitation rule (Wu, 2010;
Antony, 2013), which allows players to imitate (i.e.
copy) the entire strategy of their opponents with all
possible moves. This is rather unrealistic as in each
game, only part of the strategy can be observed (only
one of the five responses in S0jSPST SSSR, is known
to a one-step memory player). The partial imitation
rule makes the more realistic assumption that players
can only imitate what they observed before; the play-
ers do not imitate anything which they have not seen
and thus this is not a copying process of the oppo-
nents entire strategy. Players that use meta-strategies
can be further characterized. A players who waits
longer before deciding to make a switch, uses a meta-
strategy with a greater n, is named a ’patient’ player.
A player who makes the decision of changing their
strategy faster, thus uses a meta-strategy with smaller
n, is called ’impatient’. We will explore the differ-
ence in cumulative playoff and degree of cooperation
of patient players versus impatient ones.

3 ONE-STEP MEMORY PLAYER
VERSUS RANDOM PLAYER

3.1 Introduction

To compare the success of different meta-strategies
we let a one-step memory player play against an op-
ponent that chooses each move randomly. The simu-
lation is run for many iPDs, where each iPD contains
a certain number of games. The one-step memory
player can change his strategy between games within
each iPD, but in the next iPD he will start with a cer-
tain initial strategy. Each iPD is repeated an equal
amount of times for each of the 32 possible one-step
initial strategies.

Parameters
� The number of PD games or rounds played in one

iPD.
� The level of patience (n) of a player; n applies to

the player’s meta-strategy.

Observables
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� The payoff quotient, it is the quotient of
the player’s and his opponent’s total payoff
of all games in the iPD, or, equivalently,
payo f f quotient (t) = C f (t)=Co(t), where C f (t)
is the cumulative payoff of the focal player from
the beginning of an iPD to time t, measured by the
number of games played, and Co(t) is the cumu-
lative payoff of its opponent.

The payoff quotient represents the player’s suc-
cess (in terms of payoff) relative to the opponent’s
success, thus different iPDs with different number of
games can be compared directly; the average pay-
off quotient is the average over all initial strategies.
Since the opponent in this game is random, the domi-
nant strategy, that yields the highest payoff, is always
defect. Adopting the strategy always defect yields
an average payoff of (P+T )=2 = (1+ 5)=2 = 3 per
game, the random opponent will then receive an aver-
age payoff of (P+S)=2 = (1+0)=2 = 0:5 per game,
thus the highest possible average payoff quotient is
3=0:5 = 6.

3.2 Results

We show in Fig. 1 the results of a one-step mem-
ory player using a meta-strategy with n=1 up to n=5
(n numbers of rounds before each strategy switch)
against a random opponent. The results of up to
20.000 games per iPD are shown. The meta-strategies
that do not use n=3 eventually all reach an average
payoff quotient of 6, which is the highest-possible
payoff quotient. The meta-strategy using n=3, how-
ever, only tends to an average payoff quotient of about
4.4.
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Figure 1: The average payoff quotient of all initial strategies
versus the PD games per iPD of a one-step player using Par-
tial Imitation against a random player for various patience
levels (n). Shown are the averages of 1000 repetitions, for
iPDs with less than 1000 PD games, and 100 repetitions, for
iPDs with more than or exactly 1000 PD games.

It can be seen that, in general, impatient players in-
crease their payoff more quickly (within fewer games)
than patient players. For sufficiently few played
games and the same switching rule, an impatient
player is always more successful than a patient player,
although the differences grow smaller when n be-
comes larger. A smaller n causes a higher frequency
of switching, thus the player can adapt a more suc-
cessful strategy faster. We see that meta-strategies,
using smaller n, are always faster to change, but while
the average results of most meta-strategies eventu-
ally tend to the highest possible payoff quotient 6, the
meta-strategy using n=3 only reaches an average pay-
off quotient of about 4.4. To understand why a certain
average payoff quotient can be reached it is necessary
to look at the strategy-switching process under each
meta-strategy in detail.

3.3 Explanation

Before analyzing the results of each meta-strategy, let
us first consider what strategies can achieve the high-
est possible payoff quotient 6. For discussion pur-
pose, we use the notation DC ! C to denote a par-
tial strategy. What it means is that the partial strat-
egy DC ! C is to respond with a C to a previous
game where the player used D and the opponent used
C. The interpretation of this notation can be easily
extended to other partial strategies, e.g. CC ! C,
CD! D, etc. The player does not have to respond
to all previous outcomes by using D to achieve the
payoff quotient 6. After playing several games, the
player will invariably use D most of the time (since
D yields a higher average payoff than C). Thus, af-
ter several games, the crucial element for achieving
a high payoff is that the parts of the player’s strat-
egy, which react to the player using D in the previous
game, make him use D again (DC!D and DD!D).
If he can adopt such a strategy, then his behavior will
be the same as that of an ’all D’ player and his av-
erage payoff quotient, after sufficiently many games,
will be 6. In the results of partial imitation (Fig. 1),
meta-strategies n=2, 4, 5 all reach an average payoff
quotient of 6 eventually, but n=3 is less successful,
even for large numbers of games per iPD.
The player using n=3 can only reach an average pay-
off quotient of about 4.4. This must mean that, for cer-
tain initial strategies, he is unable to adopt the strate-
gies DC! D or DD! D. Of the two partial strate-
gies, DC! D is the more difficult to adopt, since a
game with outcome DC yields a high payoff for the
player compared to his opponent. Recall that the nec-
essary condition for a switch of strategy to occur is
that the player’s payoff is lower than the opponent’s.
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This condition is more difficult to be satisfied when
DC yields a higher payoff than the opponent’s. We
see that using n=3 results in a relatively unstable aver-
age payoff quotient of about 4.4. We expect that this
lower value of the payoff quotient for n=3 is due to
the fact that some strategies cannot realize the switch
from DC!C to DC!D. The part of the strategy re-
sponding to a previous game DC (the player used D,
opponent used C) can only be switched from DC!C
to DC! D by partial imitation, when, first of all, the
opponent uses D after a previous game CD (player
used C, opponent used D) and, second of all, the op-
ponent got a higher payoff after this subsequent game.
For n=3 the player cannot fulfill these two necessary
conditions to make the switch when using certain ini-
tial strategies (for example when his strategy includes
DC ! C and CC ! D, this will be discussed in in
detail later). Other initial strategies do not necessar-
ily enable the player to make this switch and he can
end up with different final strategies. Since the op-
ponent is random some of those strategies can some-
times adopt DC ! D and achieve the payoff quo-
tient 6, but sometimes they get stuck with the strat-
egy DC!C and then they only achieve the quotient
1.5; this uncertainty makes the results somewhat un-
stable, compared to other n. For example: when the
player’s strategy includes CC!C and CD!D, then
the switch to DC! D is possible as follows:

Table 2: Adapting DC ! D using ’partial imitation’ and
n=3.

Strategy: Cumulative Payoff:
player opponent player opponent
C C 3 3
C D 3 8
D D 4 9

If these three games were to happen at the right
time, then the player using n=3 would imitate the op-
ponent’s strategy of the last game: DC ! D. This
is possible when the player’s strategy includes the
responses: DC ! C and CC ! C. Now, if all re-
sponses in the player’s strategy are D except DC!C,
then there is no possibility for the player to adopt
DC ! D. Thus, a player with the partial strategies
CC ! C, DC ! C adopts CC ! D first, he cannot
adopt DC! D in any subsequent game and he will
only receive an average payoff quotient of 1.5.
When taking a look at the individual results of each
initial strategy we can see which initial strategies are
liable to only receive a payoff quotient of 1.5: Initial
strategies that have all D (CC! D, CD! D, DD!
D) except for DC!C (and with a first move C or D)
always receive the payoff quotient 1.5. Initial strate-

gies that include DC!C and CD!D sometimes do
and sometimes do not make the switch to DC ! D
and their average payoff quotient is thus either 1.5
or 6 (thus the unstable results). A player with pa-
tience characterized by n=3 yields lower payoff than
the other n; because this player will face situations in
which either the crucial change (adopting DC!D) is
never available across the entire iPD when the switch-
ing condition is fulfilled, or the switching condition
cannot be fulfilled (due to payoff differences) once
the crucial change is available. In both cases it is im-
possible for certain initial strategies to adopt DC!C
to DC ! D. For more patient players (using larger
n) this is avoided; when the cumulative payoffs of
more games are considered, there is always a possibil-
ity that their payoff is lower when the crucial change
of strategy is available. This is so because, when the
payoffs of more games are considered, the payoffs of
the last two games do not impact as much on the cu-
mulative payoff. We therefore can argue that patient
players are more flexible in their strategy changes.
Now, how about the very impatient player with n=2?
He can still reach the maximum payoff quotient value
of 6 at long time, while n=2 player considers even less
games than n=3. The previous explanation for n=3
cannot be applied for the n=2 case. For n=3 the av-
erage payoff quotient could not reach 6 because some
of the default strategies could not adopt DC! D (in-
stead of DC ! C), but if we look carefully at the
process of partial strategy imitation with n=2, we see
that this is not the case here. When we imagine that
the player adapted a strategy that responds to every-
thing by using D, except for DC!C (the strategy the
player could not change with n=3), then the change
can still occur for n=2, as shown in Table 3 below.

Table 3: Adapting DC ! D using ’partial imitation’ and
n=2.

Strategy: Cumulative Payoff:
player opponent player opponent
C D 0 5
D D 1 6

After such two games the impatient player (n=2)
will adopt the strategy DC!D (which is not possible
for a player with the same strategy using n=3). Thus
the player using n=2 is able to adopt both DD! D
and DC! D, therefore achieving an average payoff
quotient of 6.
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4 CHEATING ONE-STEP
MEMORY PLAYER VERSUS
NICE ONE-STEP MEMORY
PLAYER

4.1 Introduction

After we obtain the interesting features associated
with one-step memory players with zero memory
players, we like to consider the competition between
two one-step memory players, but with different char-
acteristics. For social interest, we like to investigate
the evolution of the degree of cooperation between a
cheater with a nice guy. Will the world be better off by
the nice guys playing against the cheaters? We also al-
low possible mistakes made by each player so that the
effect of noise can be included in our investigation.
Our simulation is based on the following setup. The
first player is a cheater (refer to Table 1 for the defi-
nition of cheater) that can change his strategy using a
meta-strategy. Because of his nature of a cheater, we
only allow him to change to one of the 16 cheating
strategies. A cheater always has the partial strategy
of CC! D. The second player is a nice player that
has infinite patience. By his nature, he always starts
with C and responds to CC with C. Since we assume
that the nice player do not change his strategy (infi-
nite patience), his initial strategy is therefore one of
the 8 nice strategies listed in Table 1. For simplicity
we introduce a noise variable that that applies to both
players. The noise in our simulation is modeled by
a probability for players to use the opposite of what
his strategy prescribes. The noise is represented by a
number from 0 to 50 in percentage. Thus when the
player intends to use C, according to his strategy, then
he will use D with a probability that is equal to the
noise level. Noise = 0% is deterministic and noise =
50% is completely random as the player use C or D
equally likely.

Parameters
� The noise, which represents the probability that

a player will do the opposite of what he intends
to do. The noise applies to both players indepen-
dently.

� The level of patience (n) of a player; n applies to
the player’s meta-strategy.

Observables
� Degree of Cooperation (DoC): the DoC shows the

level of cooperation of the player. The DoC is the
number of times C (cooperate) was used by the
player (because of strategy or mistake) divided

by the total number of games played in an iPD,
DoC = NC(t)=T , where NC(t) is the number of
C used by the player up to time t, and T is the
number of games in an iPD. Thus DoC = 0.0 (1.0)
suggests the player is least (most) cooperative.
Here, we only look at the cheater’s DoC since
he is the only player that can change his strategy
during an iPD in the setup of our simulation, so
that the DoC we shown in Fig. 2 is the DoC for
a particular cheater strategy playing against an
opponent with a particular nice strategy. Note
however that the noise can change the strategies
of both cheater and nice players, though not their
fundamental natures as defined in Table 1.

4.2 Results

When we plot the DoC versus the noise of a cheater
with patience n that plays against a fixed nice player
for 1.000 games per iPD, we observe that for all val-
ues of the cheater’s patience (n). The curves start at
DoC approximately at 0.32 for zero noise and reach a
minimum point at a noise between 1% and 3%, after
which the curves increase linearly to DoC = 0.5 (at
noise = 50% both players make completely random
moves). In Fig. 2 we show the mean of the DoC for
patience n=1 to n=5.
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Figure 2: Average Degree of Cooperation (DoC) of n =
1; :::;5 versus the noise. The insert shows a more de-
tailed plot of the minimum (noise = 0 to 0.05). A cheater
with fixed patience n plays against an infinitely patient nice
player for 1000 games in an iPD with 100 realizations for
each combination of initial strategies.

4.3 Explanation

In the game between a cheater and a nice player, both
players possess some fixed moves (see Table 1) which
define their characteristics, but the rest of their strat-
egy can be considered random since we average over
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all possible initial strategies of both players. For the
cheater the strategy CC!D is fixed, even in the pres-
ence of noise, thus the cheater will defect after a game
of mutual cooperation and a stable cooperation be-
tween the players is impossible. When the noise level
is raised to about 2.5% the cheater’s DoC strictly in-
creases. This higher DoC at higher noise can be ex-
plained by the fact that the cheater’s strategy includes
more D than C (his DoC at noise=0 is around 0.3),
thus most of the mistakes due to noise result in the
using C instead of D and so the DoC increases. This
reasoning can also provide a heuristic argument for
the continued increase of DoC for a noise above 10%.
However, for a noise less than approximately 2.5%,
the DoC decreases with increasing noise. In Fig. 2,
a non-linear dependency between noise and DoC can
be seen when the noise level is below 6%. This sug-
gests that there is a second mechanism, stronger than
the first (mentioned above) at noise smaller than 2.5%
that counteract the increase in DoC due to mistake
that changes D to C.

This second mechanism, that decreases the DoC
with increasing noise, could be connected to the
noise’s effect on the nice player. The nice player is
fixed to use C as his initial move and has a fixed re-
sponse CC!C, thus, by the same argument as for the
cheater, the nice player will use more D when noise
is introduced. When the nice player uses more D, the
cheater’s payoff decreases, since a PD game against
an opponent that uses D always yields less payoff than
against an opponent that uses C. Receiving less payoff
puts more pressure on the cheater to change his strat-
egy, since he is now more likely to have received less
payoff than his opponent in the last n games. Strat-
egy changes generally tend to be changes to D and
only seldom to C, because the player only imitates
the opponent when the opponent achieved a higher
payoff, to receive a higher payoff it is necessary to
use D at least once and normally several times, thus
there is a greater likelihood that the opponent’s last
move before the player decides to imitate him was D.
Therefore, when the cheater is under more pressure to
make strategy changes, he will more likely change his
response to D, and consequently his DoC decreases.
This second mechanism (caused by the nice player
defecting more) is stronger than the first mechanism
(caused by the cheater cooperating more) for noise
smaller than 2.5%, as a result there is a minima in the
DoC with an initial rapid decrease on the lower side,
and a linear increase larger side in the curve DoC vs.
noise.

5 CONCLUSION AND
DISCUSSION

We investigated one-step memory players, that used
meta-strategies to change their strategy, and com-
pared their relative success when playing against a
random opponent in an iPD. We observed ’patient’
and ’impatient’ players in particular, who make de-
cisions on strategy changes more and less frequently
and base their decision partially on the cumulative
payoff that they documented. We found that impatient
players are faster to adopt more successful strategies,
and thus they are always more successful than patient
players for sufficiently few games. However, we also
found that impatient players are less flexible than pa-
tient players when switching strategy. Impatient play-
ers are not able to imitate certain moves (since imita-
tion is only possible when a payoff lower than the op-
ponent’s was achieved during the last n games and the
right strategies were used in the most recent game).
In some situations an impatient player cannot fulfill
both of the conditions necessary for a certain switch
and thus he may be unable to adopt a more success-
ful strategy. In certain cases this makes the impatient
player less successful than the patient player in the
long run.

We also investigated iPD games between one-
step memory players who use only cheating and nice
strategies respectively. The nice player was very pa-
tient and thus didn’t change his initial strategy, the
cheater however used partial imitation to change his
strategy and we observed his degree of cooperation
after a large number of game. We found that the
cheater’s patience only makes a small difference in his
degree of cooperation and that the cheater always co-
operated about 33% (DoC = 0.33) of the times. This
leads us to think about possible mistakes the player
can make in their decision processes. We handled
this situation simply by studying the effect of noise
on the cheater’s degree of cooperation. We took the
average results at different patience levels and varied
the noise from zero to a maximum noise that leads to
completely random decisions of C and D. At a certain
small noise level the DoC reached a minimum value,
after that, it steadily increased for higher noise levels.
At the maximum noise level the cheater cooperated
50% of the times, since at that noise he chooses defec-
tion and cooperation with an equal probability. This
is the first effect we discussed in section 4 where we
argue that the DoC will increase as noise increases.
This effect is dominant at high levels of noise. There
is also a second effect at small noise levels. By com-
mitting mistakes the nice player defects more, thus
the cheater receives a lower payoff and is under more
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pressure to adopt a more successful strategy. The
best strategy against a defecting opponent is to defect,
and thus the cheater’s DoC decreases. This effect is
dominant at low levels of noise, so that we expect a
minimum DoC to emerge as a result of the compe-
tition between these two effects that both influence
the cheater’s DoC. Indeed, after the minimum, when
the noise increases further, all the cheater’s moves be-
come increasingly random and thus his DoC tends to
0.5. Because the first effect is more prevalent at small
and the second effect is more prevalent at large noise
levels, the cheater becomes most uncooperative at a
certain noise level. In future works, we aim at an ana-
lytical calculation of these interesting phenomena, es-
pecially the noise level when least cooperation occurs,
as this may be useful for optimization problems.
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