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Abstract: In (Guller, 2012), we have generalised the well-known hyperresolution principle to the first-order Godel logic

for the general case. This paper is a continuation of our work. We propose a modification of the hyperreso-

lution calculus suitable for automated deduction with explicit partial truth. We expand the first-order Godel
logic by a countable set of intermediate truth constantss (0,1). Our approach is based on translation of a

formula to an equivalent satisfiable finite order clausal theory, consisting of order clauses. An order clause is a

finite set of order literals of the formy ¢ €, whereo is a connective eithee or <. = and< are interpreted by
the equality and standard strict linear orderi@yi], respectively. We shall investigate the so-called canonical
standard completeness, where the semantics of the first-order Godel logic is given by the staaldaara

and truth constants are interpreted by themselves. The modified hyperresolution calculus is refutation sound
and complete for a countable order clausal theory under a certain condition for suprema and infima of sets of

the truth constants occurring in the theory.

1 INTRODUCTION of the theory. Most explorations ¢fnorm based log-
ics are focused on tautologies and deduction calculi
Currentresearch in many-valued logics is mainly con- with the only distinguished truth degree 1, (Hajek,
cerned with left-continuousnorm based logics in-  2001). However, in many real-world applications, one
cluding the three fundamental fuzzy logics: Godel, may be interested in representation and inference with
tukasiewicz, and Product ones. From a syntactical explicit partial truth; besides the truth constaft4,
point of view, classical many-valued deduction cal- intermediate truth constants are involved in. In the lit-
culi are widely studied, especially Hilbert-style ones. erature, two main approaches to expansions with truth
In addition, a perspective from automated deduction constants, are described. Historically, first one has
has received attractivity during the last two decades. been introduced in (Pavelka, 1979), where the propo-
A considerable effort has been made in developmentsitional Lukasiewicz logic is augmented by truth con-
of SATsolvers for the problem of Boolean satisfia- stantsr, r € [0,1], Pavelka’s logicPL). A formula of
bility. SAT solvers may exploit either complete so- the formr — @evaluated to 1 expresses that the truth
lution methods (called complete or systemeBiaT value of @ is greater than or equal to In (Novak
solvers) or incomplete or hybrid ones. Complete et al., 1999), further development of evaluated for-
SATsolvers are mostly based on the Davis-Putnam- mulae, and in (Hajek, 2001), Rational Pavelka’s logic
Logemann-Loveland procedur®RLL) (Davis and (RPD - a simplification of PL, are described. An-
Putnam, 1960; Davis et al., 1962) or resolution proof other approach relies on traditional algebraic seman-
methods (Robinson, 1965b; Robinson, 1965a; Gal- tics. Various completeness results for expansions of
lier, 1985), improved by various features, (Biere et al., t-norm based logics with countably many truth con-
2009). t-norm based logics are logics of compara- stants are investigated, among others, in (Esteva et al.,
tive truth: the residuum of &norm satisfies, for all  2001; Savicky et al., 2006; Esteva et al., 2007b; Es-
xy € [0,1],x — y=1if and only ifx <y. Since im- teva et al., 2007a; Esteva et al., 2009; Esteva et al.,
plication is interpreted by a residuum, in the proposi- 2010a; Esteva et al., 2010b).
tional case, a formula of the forp—  is a conse-

quence of a theory ifg|2 < ||| for every mode! Concerning the three fundamental first-order

fuzzy logics, the set of logically valid formulaelit,-
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logic, andX;-complete for Godel logic, as with classi-  Y1,Y, C XU{0,1} andV Y1 = A Y2, either\/ Y1 € Yy,

cal first-order logic. Among these fuzzy logics, only AY2 € Y2, orVV Y1 € Y1, A Y2 € Yo (constants are inter-
Godel logic is recursively axiomatisable. Hence, it preted by themselves). Then the hyperresolution cal-
was necessary to provide a proof method suitable for culus is refutation sound and complete for a countable
automated deduction, as one has done for classicalorder clausal theory if the set of all truth constants
logic. In contrast to classical logic, we cannot make occurring in the theory is admissible with respect to
shifts of quantifiers arbitrarily and translate a formula suprema and infima. This condition obviously covers
to an equivalent (satisfiable) prenex form. In (Guller, the case of finite order clausal theories.

2012), we have generalised the well-known hyperres-  The paper is organised as follows. Section 2 gives
olution principle to the first-order Gddel logic for the the basic notions and notation concerning the first-
general case. Our approach is based on translation oforder Godel logic. Section 3 deals with clause form
a formula of Godel logic to an equivalent satisfiable fi- translation. In Section 4, we propose a hyperresolu-
nite order clausal theory, consisting of order clauses. tion calculus with truth constants and prove its refu-
We have introduced a notion of quantified atom: a tational soundness, completeness. Section 5 brings
formulaa is a quantified atom i& = Qx p(to, . . ., tr) conclusions.

whereQ is a quantifier'¢, 3); p(to, .. .,t) is an atom;

X is a variable occurring ip(to, .. .,t;); foralli <T,

eithert; = x or x does not occur ity. An order clause 2 FIRST-ORDER GC)DEL LOGIC

is a finite set of order literals of the forea < €, where
& is either an atom or a quantified atom; ands a
connective eitheg or <. = and< are interpreted by

the equality and standard strict linear order[0rl], . he set of all variablesfunction symbolg predicate
respectively. For an input theory of Godel logic, the symbols| terms | ground terms| atoms| ground

proposed translation produces a so-called admissiblegiyms of 7. ar; : Func, UPred, —s N denotes

order clausal theory. On the basis of the hyperres- . mapping assigning an arity to every function and

olution principle, a calpulus operating over admissi- predicate symbol of . We assume nullary predicate
ble order clausal theories, has been devised. The Cal'symbols 0,1 € Pred;, ar.(0) = ar (1) = 0; 0

culus is proved to be refutation sound and complete jonotes the false aridthe true inz. In addition. we

for the countable case with respect to the Standardgssume a countable set of nullary predicate symbols
G-algebraG = ([0,1],<,V,A,=, ,=,<,0,1) aug- C.={c| E_E Pred;,ar,(¢) =0,c € (0,1)} C Pred,.
mented by binary operators and < for = and <, 0, 1, ¢ e C, are called truth constants. We denote

respectively, cf. Section 2. As another step, one may Teons = {0,1} UC, C Pred;. Let X C Tcons..
incorporate a countable set of intermediate truth con- e denote77 = {0]0 c XyU{l|le X}_U {c|ce

stantsc, ¢ € (0,1), to get a modification of our hy- C.} C [0,1].
perresolution calculus suitable for automated deduc- 4, fo?muiae of £ built up from Atom; and Var,

tion with explicit partial truth. We shall investigate using the connectives=, negation,A, conjunction
the so-called canonical standard completeness, where, "~ gisjunction, —s im[:;Iication and the quanfi-

the semantics of the first-order Godel logic is given fiers: v, the universal quantifierd, the existential
by the standar@-algebraG and truth constants are  jna |n addition, we introduce new binary connec-

interpreted by themselves. Note that the Hilbert-style o5 . equality, and=, strict order. We denote
ca[qulus for thg flrst—orQer Godel logic |_ntrodyced N Con= {~,A,V,—,=,<}. By OrdForm; we des-
(Hajek, 2001) is not suna_ble for expansion with truth ignate the set of all so-called order formulae of
constants. We havgi- g if and only if @ /= @ (Wrt. it yp from Atom, and Var, using the connec-
G). However, that cannot be preserved after agidmg tives in Con and the quantifiers¥, 3.1 Note that
truth constants. Let € (0,1) and_a be_:_;m atom_d|_f— OrdForm; 2 Form;. In the paper, we shall assume
ferent from a constant. Then|=a (Cis unsatisfi-  ,5¢ / is a countable first-order language; hence, all

able) buty= ¢ — &, i/ ¢ — a, cl7 a (from the sound- 6 ahove mentioned sets of symbols and expressions
ness and the deduction-detachment theorem for this, o -ountable. Let g, 1<i<m|u,1<i<n

calculus). So, we cannot achieve a stric_t canonical ho either an expression or a set of expressions or

standard completenes_s after expansionwith truth con- ¢at of sets of expressions @f in general. By

stants. On the other side, such a completeness can b@ars(sl em) C Var, | freevargey, ... em) C
2000 = ey

By £ we denote a first-order languagéar - | Func, |
Pred, | Term, | GTerm, | Atom; | GAtom, denotes

By Form, we designate the set of

feasible for our hyperresolution calculus under certain var, | boundvarges,...,em) C Var, _|
condition. We say that a s¥tof truth constants is ad- Y -
missible with respect to suprema and infima if, for all lWe assume a decreasing connective and quantifier

precedenceY, 3, -, A, —, =, <, V.
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predges,...,em) € Pred, | atomsges,...,em) C
Atom, we denote the set of all variablgsfree
variables| bound variables predicate symbolg
atoms of £ occurring in€1,...,em. € is closed
iff freevarge) = 0. By ¢ we denote the empty
sequence. Byei,...,em| = mwe denote the length
of a sequences,...,en. We define the concate-
nation of sequencess,...,&n and U1,...,U as

(ala"'vsm)a(ulv"'aun) = €1,...,&€m,V1,...,Un.

Note that concatenation of sequences is associative.

LetX,Y,ZbesetsZ C X; f: X —Y be amap-
ping. By || X|| we denote the set-theoretic cardinal-
ity of X. X being a finite subset of is denoted as
X C# Y. We designateP(X) = {x|x C X}; P(X) is
the power set 0K; Py (X) = {X|x C¢ X}; Py (X) is
the set of all finite subsets of; f[Z] = {f(2)|z€ Z};
f[Z] is the image o underf; f|z ={(z f(2))|ze
Z}; f|z is the restriction off ontoZ. Lety < w. A
sequence® of X is a bijectiond : y — X. X is count-
able if and only if there exists a sequencexoflLet |
be asetan& #0,i €1, be sets. A selectas over
{S|iel}isamapping : | — U{S |i€l}suchthat
foralliel, S(i) € S. We denoteSel({S|i € 1}) =
{S|Sis aselectorovefS|icl}}. Letce R". logc
denotes the binary logarithmofLet f,g: N — R{.

f is of the order ofg, in symbolsf € O(g), iff there
existng € N andc* € Rar such that for alln > ng,
f(n) <c*-g(n).

Lett € Term,, @ € OrdForm,, T C4 OrdForm;.

The size oft | @, in symbolsjt| | |q|, is defined as

residuum operatoe> of A satisfies the condition of
residuation:

foralla,b,ce GiaAb<c<=a<b=c (1)
Godel negation satisfies the condition:
forallae G;a=a=0; (2)

the following properties, which will be exploited later,
hold?

foralla,b,ce G,

avVbAc=(avb)A(ave),
(distributivity of vV overA) (3)

an(bve)y=aAbvaAc,
(distributivity of A overv) (4)

a=(bvc) =a=bva=rc, (5)
a=bAc= (a=b)A(a=c), (6)
(avb)=c=(a=c)A(b=0), (7)
aAb=c=a=cVb=c, (8)
a=(b=c) =aAb=-c, 9
((a=b)=b)=b=a=-b, (10)
(a=b)=c=((a=b)=b)A(b=c)vc, (11)
(a=b)=0= ((a=0)=0)A(b=-0). (12)

An interpretation/ for L is a triple (2, {f!|f €

the number of nodes of its standard tree representa-Func.},{p’|p € Pred,}) defined as follows:t; #

tion. We define the size of as|T| = Y1 |¢@. By
varsed@), vargvarsedq)) C Var,, we denote the se-
guence of all variables of occurring ing@ which is
built up via the left-right preorder traversal @f For
example, varsed3w (VX p(x,x,2) vV 3yq(x,y,2))) =
WX, X X,Z,Y,X,Y,Z and W, X, X,X, Z Y, X,Y,Z| = 9. Let
Q € {V,3} andX= x4, ...,Xn be a sequence of vari-
ables of£. By Qx@we denotex; ... Qx, ¢.

Godel logic is interpreted by the standa@
algebra augmented by binary operaterand=< for
= and=, respectively.

G: ([O’ 1]7§’V’/\’:7_’I’—<707 1)

whereV | A denotes the supremurimfimum operator
on|[0,1];

as b lifa<hb, - [lifa=0,
" \belse " ) 0else

op_ [1iFa=D. _ [lifa<b,
" |0Oelse " |Oelse

We recall thatG is a complete linearly ordered lat-
tice algebray | A is commutative, associative, idem-
potent, monotone; 0 1 is its neutral element; the

0 is the universum ofl; every f € Func, is inter-

preted as a functioi’ : 72" — @;; everyp e
(P)

Pred, is interpreted as @, 1]-relationp’ : 75" —;
[0,1]; particularly,0’ =0, 1/ = 1, for all ¢ € C,

¢’ =c. A variable assignment id is a mapping
Var, — U;. We denote the set of all variable as-
signments inf asS;. Letee Sy andu € U;. A vari-
ante[x/u] € S; of ewith respect toc andu is defined

as )
u ifz=x,

e/ul(2) = {e(z) else

Lett € Term,, x be a sequence of variables 6f @ €
OrdForm,. In I with respect te, we define the value
It||{ € U; of t by recursion on the structure tfthe
value||x]|{ € u‘,ﬂ of X, the truth valué|g||{ € [0,1] of
¢ by recursion on the structure gf as usual. Letp
be closed. Then, for ab,& € S/, [|¢]|i = [|9]|Z. Let
ec S5y # 0. We denoté|g||’ = ||¢||L.

Let £ | L' be a first-order language ard I’ be
an interpretation forr | L. £’ is an expansion of.

2We assume a decreasing operator precedenge,
=, =,<,V.
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iff Func,, O Func, andPred,, D Pred,; on the other
side, we sayL is a reduct of./. I’ is an expansion
of Ito L' iff L' is an expansion of, U, = U;, for
all f e Func,, f/' = fZ, forall p€ Pred,, p’ = p’;
on the other side, we sakis a reduct ofl’ to £, in
symbolsl = I'| ..

A theory of L is a set of formulae of. An or-
der theory ofL is a set of order formulae of. Let
¢,¢ € OrdForm,, T C OrdForm,, e< S;. @is true in
I with respect te, written asI |=e @, iff [|@||l =1.1
is a model ofg, in symbolsI = g, iff, for all e € §;,
I Ee @ Iisamodel ofT, in symbols! =T, iff, for
al e T, I =@ o@is a logically valid formula iff,
for every interpretation for £, I = @. @is equiva-
lent to @, in symbolsp= ¢, iff, for every interpre-
tation I for £ ande € Sy, |||l = |@||L. We de-
note tcong@) = {0,1} U (predgg) NC,) C Tcons.
andtcongT) = {0,1} U (pred§T)NC,) C Tcons..

3 TRANSLATION TO CLAUSAL
FORM

form Qxa Lete | g, 1<i<m]|u;, 1<i<n,

be either an expression or a set of expressions or

a set of sets of expressions af in general. By
gatomsges, ..., em) € QAtom. we denote the set of
all quantified atoms ofL occurring ingg, ..., en. We
denote qatom&(g1,...,&m) = qatomsey, ..., em) N
QAtonf, Qe {v,3}. LetQxp(to,...,t;) € QAtom.
and p(t),....t;) € Atom,.  Let | = {i]i < t,x¢
vargti)} andrq,...,r, ri <1, k<1, forall 1<i<

i <k, ri <ry, be a sequence such thiat|1 <i <
k} =1. We denote

freetermse(Rx plto, ..., tr)) =try, ... 1,
freetermse(p(ty, . ..,t))) =1tg,...,tl.

We further introduce conjunctive normal form
(CNF) in Godel logic. In contrast to two-valued logic,

we have to consider an augmented set of literals ap-

pearing INCNF formulae. Letl,@ € Form,. | is a lit-
eral of L iff eitherl =aorl =b—corl = (a—d) —
dorl=a—eorl =e— a, ac Atom: — Tcong,
b € Atom, — {0,1}, c € Atom, — {1}, d € (Atom, —
Tcong ) U{0}, e € QAtony, {b;c} Z Tcons. The
set of all literals of~ is designated akit , C Form,.
@ is a conjunctive| disjunctive normal form ofz,

In the propositional case (Guller, 2010), we have pro- in symbols CNF | DNF, iff either ¢ € Tcons. or

posed some translation of a formula to an equivalent

CNF containing literals of the form eitherora — b
or (a— b) — b wherea is a propositional atom and

0= Ai<nVj<m I} | 0= VicnAjem I}, I} € Lit,. Let
D=IyVv--Vl, € Form., |; € Lit,. We denote
lits(D) ={l1,...,In} C Lit,. D is a factor iff, for all

b is either a propositional atom or the propositional 1 < < i’ <n,I; #;.

constanD. An output equivalenENF may be of ex-

We finally introduce order clauses in Godel logic.

ponential size with respect to the input formula; we | gt | ¢ OrdForm;. | is an order literal ofz iff
had laid no restrictions on use of the distributivity | — ¢, o6, & € Atom; U QAtony, o € {=,<}. The

law (3) during translation to conjunctive normal form.

set of all order literals of is designated adrdLit, C

To avoid this disadvantage, we have devised transla'OrdFormL. An order clause of is a finite set of or-

tion to CNF via interpolation using new atoms, which
produces an outpu@NF of linear size at the cost of

der literals of£; since= is commutative, we iden-
tify, for all € = €, € OrdLit,, €1 = € and gy =

being only equisatisfiable to the input formula. A ¢, c OrdLit, with respect to order clauses. An order
similar approach exploiting the renaming subformu- clause{ly,...,In} is written in the formly v -V Ip.
lae technique can be found in (Plaisted and Green-The order claus® is called the empty order clause
baum, 1986; de la Tour, 1992; Hahnle, 1994; Non- and denoted dsl. An order clausdl} is called a unit

nengart et al., 1998). £NFis further translated to a

order clause and denotedladf it does not cause the

finite set of order clauses. An order clause is a finite gmpiguity with the denotation of the single order lit-

set of order literals of the forrey ¢ €, whereg; is ei-

erall in given context. We designate the set of all or-

ther a propositional atom or a propositional constant, der clauses of. asOrdCl,. Letl, lo, ..., |, € OrdLit,

0,1, ando € {=,<}.

andC,C’' € OrdCl,. We define the size of as

We have described some generalisation of the IC| = S)ec|ll- By | vC we denote{l} UC where
mentioned translation to the first-order case in | ¢ C. Analogously, bylgV --- VI,V C we denote

(Guller, 2012). At first, we recall the notion of quan-

tified atom. Leta € Form,. ais a quantified atom of
Liff a=Qxplty,...,tr) wherep(t,...,t;) € Atom;,
x € varg(p(to,...,t)), eithert; = x or x ¢ vars(t;).
QAtom, C Form, denotes the set of all quantified
atoms of L. QAtonf C QAtomy, Q € {Vv,3}, de-
notes the set of all quantified atoms @&f of the

40

{lo}U---U{ln}uC where, foralii,i’ <n,i#£i,1; ¢C
andl;j # l;;. By CvC’' we denoteCUC'. C is a sub-
clause ofC’, in symbolsC C C/, iff C C C'. An order
clausal theory of” is a set of order clauses af. A
unit order clausal theory is a set of unit order clauses.
Let@ ¢ € OrdForm,, T,T’ C OrdForm,, S S C
OrdCl,, I be aninterpretation faf, ec S;. Note that
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I =l if and only if eitherl = &; = €, |l&1 = &2||L =
1, [lexlle = llezllé; or I = &1 < €2, [le1 < €2fl¢ = 1,
lleall < |le2||l. C is true in I with respect toe,
written as ! ¢ C, iff there existsl* € C such that
I Eel*. I'is a model ofC, in symbolsI |= C, iff,
for all e€ $;, I =eC. [ is a model ofS, in sym-
bolsI S iff,forall CeS IEC. ¢ | T |C|S
is a logical consequence gf| T | C | S, in symbols
o|T|C|SEJ@|T'|C'|S, iff, for every modell of @|
T|C|Sfors, IE@|T'|IC'|S. @| T|C|Sis
satisfiable iff there exists a model of| T | C | Sfor
L. Note that bothi] andJ € Sare unsatisfiableg|
T | C| Sis equisatisfiable tgf | T' |C' | Siff @ | T |
C | Sis satisfiable if and only ify | T’ | C' | S'is sat-
isfiable. We denotécongS) = {0,1} U (predgS) N
C,) C Tcons. LetSCq OrdCl.. We define the
size ofSas|S| = Sces|C|. | is a simplified order lit-
eral of L iff | =g0€, {€1,€2} L Tcons,, {€1,€2} £
QAtony.. The set of all simplified order literals af
is designated aSimOrdLit; C OrdLit,. We denote
SimOrdC}. = {C|C € OrdCl,,C C SimOrdLit. } C
OrdCl,. Let fo € Func.; fp is a new function sym-

bol. Letl = N x N; I'is an infinite countable set of

indices. LetP = {f;|i € I} such that® N Pred, = 0;

P is an infinite countable set of new predicate sym-

bols.

From a computational point of view, the worst
case time and space complexity will be estimated us-

ing the logarithmic cost measurement. L@tbe an

algorithm. #04(In) > 1 denotes the number of all el-

ementary operations executed.dyon an inputn.

3.1 Substitutions

We assume the reader to be familiar with the standard
notions and notation of substitutions. We introduce Set.

Note that composition of substitutions is associa-
tive. &' is a regular extension d} iff dom(®’) O
dOI’T'('B), '3/|d0n-(19> =9, '3/|d0n-(19/),d0n-(,9) is a vari-
able renaming such thadnge&®’|gonts/)—doms)) N
ranggd) = 0. Letac Atom.. 9 is applicable toa
iff dom§) O varga). Letd be applicable t@ and
a=p(ty,...,t). We define the application §ftoaas
ad = p(t19,...,19) € Atom,. Let Qxac QAtony.
9 is applicable toQxaiff domd) DO freevargQxa)
and x ¢ rang€(¥|feevarsoxa ) Let 3 be applicable
to Qxa We define the application df to Qxa as
(Qxa)8 = Qxa(B|freevargora) UX/X) € QAtony. Let
€10€ € OrdLit .. & is applicable t&1 o€ iff, for both
i, 9 is applicable t;. Letd be applicable t@; o €.
Then, for bothi, 9 is applicable tog;, dom(3) >
freevarge;), dom(d) D freevarges ) U freevarges) =
freevarges o €2). We define the application df to
€10€ as (e10&)d = €19 0€9 € OrdLit,. Let
ECA A=Term, | A= Atom; | A = QAtony, |
A = OrdLit,. 9 is applicable tcE iff, for all e € E, 9
is applicable te. Letd be applicable td&e. Then, for
all e € E, 9 is applicable t&, dom3) 2 freevarge),
dom(®) D U freevarge) = freevargE). We define
the application o to E asEd = {ed|e € E} C A.
Lete,e € A | g,¢ € OrdCl,. € is an instance of
e of L iff there exists®* € Subst such thate’ =
e3*. € is a variant ofe of L iff there exists a vari-
able renamingp* € Subst such thate’ = ep*. Let
C € OrdCl, andSC OrdClI,. C is an instance a
variant of S of £ iff there existsC* € S such that
C is an instance a variant ofC* of L. We denote
Inst,(S) = {C|Cis aninstance of S of} C OrdCl,
and Vit (S) = {C|C isavariantof S ofL} C
OrdClL.

9 is a unifier of L for E iff EDQ is a singleton
Note that there does not exist a unifier @or

a few definitions and denotations; some of them are Let 6 € Subst. 6 is a most general unifier of for
slightly different from the standard ones, but foundto E iff 8 is a unifier of L for E, and for every uni-

be more convenient. L& = {x |1 <i <n} C Var,.
A substitutiond of L is a mapping : X — Term;.
9 may be written in the formx; /8 (x1), ..., % /3 (Xn).
We denotedom(®) = X C¢ Var, andranggd) =
Uxex Vars(®(x)) C # Var,. The set of all substitutions
of £ is designated aSubst. Let3,9’ € Subst. & is
avariable renaming of iff 9 : dom®) — Var,, and
forall x, X' € dom(®), x # X, 9(x) # 3(xX). We define
id, : Var, — Varg, id.(x) = x. Lett € Term.. §
is applicable ta iff dom(®) D vargt). Letd be ap-
plicable tot. We define the applicatia® € Term, of
9 tot by recursion on the structure bfin the stan-
dard manner. Letangg®d) C dom®’). We define
the composition o andd’ asd o9’ : dom($) —
Termg, 9 0d'(X) =3(x)9’, 9 0¥ € Subst, domJ o
9') = dom®), ranggd o ¥') = rang€®’|ranggs))-

fier & of L for E, there existy/* € Subst such that
8|freevar$E) = e|freevars§E) oy". By mgu, (E) C Subst
we denote the set of all most general unifiers.dbr
E. LetE = Ep,...,En E C A;, eitherA; = Term,
or Aj = Atomy or A; = QAtom, or A; = OrdLit,.
9 is applicable toE iff, for all i <n, § is applica-
ble toE. Letd be applicable t&E. Then, for all
i <n, 9 is applicable toE;, domd) D freevargE;),
dom®) D U, freevargE;) = freevar§E). We de-
fine the application o8 to E asEd = Eg9,...,E9,
Ei9 C A;. 9 is a unifier of £ for E iff, for all i <n, 9
is a unifier of £ for E;j. Note that if there exists <n
andE;: = 0, then there does not exist a unifier r0
is a most general unifier of for E iff 0 is a unifier of
L for E, and for every unified of £ for E, there exists

y* € Subst such thatﬁ|freevars{E) = elfreevars{E) oy
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By mgu, (E) C Subst we denote the set of all most
general unifiers of for E.

Theorem 3.1 (Unification Theorem) Let E =
Eo,...,En, either E C4 Term, or E C4 Atom,. If
there exists a unifier o for E, then there exists
0% € mgu, (E) such that rangé®*|,5r5)) < varsE).

Proof. By induction on||vargE)]||. O

Theorem 3.2 (Extended Unification Theorem)et
E = Eo,...,En, either E Cy Term, or E Co
Atomy, or E; C¢ QAtom, or E C4 OrdLit,, and
boundvar§E) CV C g Var,. If there exists a unifier
of £ for E, then there exist8* € mgu, (E) such that

range(e*lfreevarsﬁ)) nv =0.

Proof. A straightforward consequence of Theo-
rem 3.1. O

3.2 A Formal Treatment

Translation of a formula or a theory t6NF and
clausal form, is based on the following lemma:

Lemma 3.3. Letny,ng € N, 9 € Form,, T C Form,.
() There exist either g= 0 or Jy = {(ng, )| ] <

Nt Jp © {(ng,j)[J € N}; a CNF ¢ €

Formeup;(jespy, S S SIMOrdCE(p; e,

such that

(@) [[Joll <2-|q);

(b) there exists an interpretatiofl for L and
2 = @if and only if there exists an interpre-
tation 2’ for LU{P;|j € Jp} and A’ =y,
satisfying2l = 2’| ;;

(c) there exists an interpretatiofl for £ and
2 = @if and only if there exists an interpre-
tation 2’ for LU{f;|j € Jp} and 2’ |= S,
satisfying2l = 2| .;

(d) |w| € O(|¢|?); the number of all elementary
operations of the translation af to , is in
O(|@?); the time and space complexity of the
translation of@ to y, is in O(|@? - (log(1+
N) +log|@)));

(e) |Sy| € O(|@?); the number of all elementary
operations of the translation @fto S, is in
O(|@?); the time and space complexity of the
translation of@ to Sy, is in O(|@? - (log(1+
N) +log|@)));

(f) for all a € qatomgy), there existsj* € Jp
and predsa) = { - }:

(9) forall j € Jy, there exist a sequengef vari-
ables of£ and f§;(X) € atomg) satisfying,
for all a € atomgy) and predéa) = {p;},

a = Pj(x); if there exists & € qatomgy)
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and pred¢a®) = {fj;}, then there exists
Qxp;(X) € qatomgy) satisfying, for all
a € gqatomsgy) and predsa) = {p;}, a=
Qx;(X);

(h) for all a € qatomgSy), there existg* € Jy
and predga) = { ;- };

(i) forall j € Jy, there exist a sequengef vari-
ables of£ and fj; (x) € atomgS,) satisfying,
for all a € atomgSy) and predséa) = {f;},
a = P;(x); if there exists & € gatomsSy)
and pred¢a®) = {f;}, then there exists
Qxp;(X) € gatomsS,) satisfying, for all
a € gqatomsgS,) and pred¢a) = {f;}, a=
Qx;(X);

() tcongS,) Ctcong).

() There exist 4 C {(i,j)|i > np} and § C
SimOrdeU{f,Ji lje3r) such that

(a) there exists an interpretatiol for £ and
2 =T if and only if there exists an interpre-
tation A’ for LU {f;|j € Jr} and?l’ = Sy,
satisfying?l = 2| ;;

(b) if T C¢ Form,, then & Cg¢ {(i,j)|i > no},
[3r(l <2-[T[; Sr S SImOrdCl 5, jedr}
ISr| € O(|T|?); the number of all elemen-
tary operations of the translation of T to
Sr, is in O(|T|?); the time and space com-
plexity of the translation of T toS is in
O(|T[?-log(1+no+[TI));

(c) for all a € gatomgSy), there existg* € Jr
and pred¢a) = {f+};

(d) forall j € Jr, there exist a sequengef vari-
ables of£ and p; (x) € atomgSr) satisfying,
for all a € atomgSr) and pred$a) = {f;},
a = P;(x); if there exists & € gatomgSr)
and pred¢a®) = {f;}, then there exists
Qxf;(x) € gatomgSr) satisfying, for all
a € qatomgSr) and predsa) = {f;}, a=
Qxf; (X);

(e) tcongSr) C tcongT).
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Proof. Technical using interpolation.

Letng € N and6 € Form,. There exist®' € (13)
Form, such that

(a) =6

(b) |&/| <2-16|; & can be built up via a pos-
torder traversal 06 with #0(8) € O(|6|)
and the time, space complexity ®(|6)| -
(log(1-+ng) +log|6]));

(c) © does not contairr;

(d) © € Tcong; or 1 is not a subformula of
0'; for every subformula o6’ of the form
€108, 0 € {A\,V}, & #0,1, {1,682} €
Tcons; for every subformula 06’ of the
formes — €2,€1£0,1,e2#1, {€1,62} &
Tcong;

(e) tcong®’) C tcongB).

The proof is by induction on the structure@f

Letl € Lit .. There exist€ € SImOrdC|. such (14)
that

(a) for every interpretatio®l for £, for allee
Sy A el ifand only if A = C;
(b) |C|] < 3-]l|, C can be built up from with
#O(1) € O(|l]).
In Table 1, for every form of, C is assigned so that
for every interpretatiofl for £, for all e € Sy, 2 e
if and only if 2 =¢ C.
Let ng € N, 8 € Form, — Tcong,, (13c-e) (15)
hold for 8; X be a sequence of variables,
varg0) C varsx) C Varg; i = (ng,ji) €
{(ne,j)[j € N}, B € P, ar(py) = [x].
There exist J = {(ng,j)|ji +1 < j <
ngt € {(ng,j)|j € N}, i <ny, 1 ¢J;
a CNF U° € Formy s ju(p;jjes S S
SimOrdeU{mu{f,mEJ}, s= +,—, such that
for boths,

Table 1: Translation of to C, a,b € Atom; —Tcons:, Ce
C.,d e QAtony.

Case | C 11 IC|

a<dva=d | +|d+1 2-|a|+2-|d]+2<3]l|

1 a a=1 E] la]+2<3-l|
2 a=0 a=0 la|+2 la] +2<3-l|
3 ¢—b c<bvc=b [b|+2 2:|b|+4<3-l|
4 a—cC a<cva=¢C la]+2 2-|la|+4<3-l|
5 a—b a<bva=b laj+[bj+1 2-]aj+2-[b]+2< 3|l
6 (a—0)—0 0<a lal +4 la]+2<3-l|
7 (a—b)—b b<avb=1 |a/+2-|b]+2 la|+2-[b]+3<3-I|
8

9

d<avd=a |a/+]|d|+1 2-|a]+2-|d|+2<3-]l|

@ [ <[8]-1;

(b) there exists an interpretatichh for £ U
{P:} and?l = f; (x) — 6 € Formg g,y if
and only if there exists an interpretatigih
for LU{P:} U{P;|j €I} and2’' |=¢T,
satisfying2l = 2’| zu¢p, 3

(c) there exists an interpretatichh for £ U
{P:} and?l = 0 — [ (x) € Formg g,y if
and only if there exists an interpretatigih
for LU{Pi} U{P;|j €I} andd' =y,
satisfying? = 2’| ()3

(d) there exists an interpretatichh for £ U
{P:} and?l = pi(X) — 8 € Formy g,y if
and only if there exists an interpretatigih
for LU{B:} U{P;|j €I} andA' |~ ST,
satisfyingl = 2’| Lu{p}s

(e) there exists an interpretati®y for £ U
{f:} andA =0 — Pi(X) € FormLU{ﬁi} if
and only if there exists an interpretatigih
for LU{f:}U{p;|j e} andA S,
satisfying? = 2| ;5,13

(f) |ws] <15 8] (1+ (), W® can be built up
from 6 and fo(X) via a preorder traversal
of 8 with #0(8, fo(X)) € O(|8| - (1 + |X]));

(9) |S’] <15-18]- (14 |x]), S’ can be built up
from 8 and ﬂ;()Q via a preorder traversal
of 8 with #0(8, fo(X)) € O(|6] - (1+|X]));

(h) for all a € qatoms$y®), there existg* € J
andpredsa) = { ;- };

(i) for all j e {1} UJ, P;(X) € atomgy®)
satisfying, for all a € atomguys®)
and predfa) = {f;}, a = B(X);
p: ¢ predgqatomsy®)), for all j € J,
if there exists a* € gatoms$y®) and
predga®) = {f;}, then there exists
Qxp;(X) € qatomgy®) satisfying, for all
a € qatom$y®) and predga) = {p;},
a= Qxf;(x);

() for all a € gatomsS®), there existg* € J
andpredsa) = {fj }:

(k) for all j € {1} UJ, f;(X) € atomgS’)
satisfying, for all a € atomsgS)
and predga) = {f;}, a = P(X);
p: ¢ predggatomsS’)), for all j € J,
if there exists a* € gatom$S’) and
predfa*) = {f;}, then there exists
Qxp;(X) € gatomgS®) satisfying, for all
a € gatomg¢S’) and predga) = {p;},
a= Qxp;(x);

() tcongB) = tcongy®) = tcongS).

The proof is by induction on the structure ®lsing
the interpolation rules in Tables 2-5.
(1) By (13) for ngy, @, there existsy € Form,
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Table 2: Binary interpolation rules for andV.

Case

Laws

0=0,16

Positive interpolation Pi(X) — 61162

(B: (3 Bry () A (B3 09 — Py (09) A (B, (%) = B1) A (B, (%) — B2)

(6) (16)

|Consequent=9-+4- X + [Pz (X) = 81|+ [P, (X) — 82| < 13- (1+ X)) + |z, (X) — O1] + [Pz, (X) — 62

Pi (X) — 61102

Positive interpolation

{0: (0 < Pag (9 V Pz (X) = Pz g (%), Pz (X) < Bz, () V P (X) = P, (), Pz () — O1, Pz, (X) — B2}

1)

|Consequet=12-+8- X+ [P () — 61| + 1B, (%) — 8] < 15- (1+[X) + [Pz (%) — 84 + |Bs,,(X) — 03|

Negative interpolation 6116 — P; (X)

(Biy (9 B (0 V Prp (9 — B3 () A (81 — Py 00) A (6 P, (9)

(8) (18)

|Consequent=9-+ 4- X1+ 8, — P, (%)| +182 — By (3| < 13- (1+[X) + 101 = B (3| +[82 — P, (D]

Negative interpolation

0178, — P; (X)

{1z, (%) < Bz (%) V By (X) = P (%), Pip (%) < By (X)V Bz, (X) = Pz (%), 01 — Py (X), 62 = Bz, (X)}

(19)

|Consequent= 12+ 8- X+ [81 = Pz (X)| + (82 — B, ()] < 15- (1+[X]) + |61 — Bz (X[ + 182 = Pz, (X

[

Positive interpolation Pi(X) = (61 v 6a)

(B (%) = By () V P (X) = Pip (X)) A (Biy (%) = 82) A (Bi, (X) = 2)

(5) (20)

|Consequert=9-+ 4- X+ | (1 — 81 +|Bz, (%) — 8] < 13- (L+[%) + |y, (%) = B + [P () — B

P (X) — (81 V 62)

Positive interpolation

{1z (%) < Pay (¥ V P (X) = Py () V B3 (X) < Piy (X) V B3 (X) = By (X), By (X) = 1, By (X) — B2}

(1)

|Consequent= 12+8-|X+ |Ps; (X) — O1| + [P, (X) = 82| < 15 (14 X)) + [Pz (X) — O1]+|Pi,(X) — 2]

Negative interpolation (61 V) = P: (¥

(B (9 — B3 (0) A (B, (%) — Bz (9) A (81— iy (%) A (02— i, (X))

™ (22)

|Consequent=9-+ 4- X1+ 8, — P, (%)|+ 182 — By (3| < 13- (1+[X) + 101 — P (3| +[82 — P, (D]

Negative interpolation

(61V62) — B (¥)

{P:7 (0 < B: () V Bz g () = B3 (%), P () < Pz () V Pz, (X) = B3 (%), 01 — Pz (X),02 — Bz, ()}

(23)

|Consequent=12-+8- X+ 8, — fs (V)] +182 — Bi, ()| < 15- (1+[X) +181 — Ba, (| + 182 — P, ()

such that (13a—e) hold fomy, @, ¢. We distin-
guish three cases fap. Case 1: ¢ € Tcong —
{1}. We putdy=0C {(ng,j)|J EN}, Y=g €
Form;, Sy = {O} C# SIMOrdC}. Case 2:¢/ = 1.
We putJy=0C {(ng,j)|j € N},  =1€e Formg,
S =0 C4 SimOrdCl. Case 3:¢f ¢ Tcons. We
put x = varsedq), j; =0, 1 = (ng, ji), ar(f;) =
IX. We get by (15) fomy, @, X, 1, f; that there
exist J = {(ng, j)|1 < j <y} € {(ng,])]] € N},
Ji <ny i ¢ J, aCNF U™ € Formeyp s et
St Cq SimOI’deU{m}U{f,jueJ}, and (15a,b,d,f-l)
hold for ¢/, X, fi:, J, W, S*. We putny, = ny,
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Jo={(ng, 1) [] <ng} S {(Ng, ) [] €N}, W= (X) A
Wt € Formyp, jegy) So= {F:(X) = 1}US" Cy
SimOrdeU{f,j li€3}- (1) straightforwardly follows
from (1). O

The described translation produces order clausal
theories in some restrictive form, which will be
utilised in inference using our order hyperresolution

calculus to get shorter deductions in average case. Let

P C P andSC OrdCl, p. Sis admissible iff
(a) for alla e qatomsS), predga) C P;
(b) for all p € P, there exist a sequenceof vari-
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Table 3: Binary interpolation rules for.

Case Laws

0=067 —6,,60#0

Pi(X) — (61— 62) (9).(® 24

Posiive Interpolaton g IV By (9 — Py (9) A (81— By () A (B 09 = 62)

|Consequentt=9+4-[X+ 8 — B (%] + [Pz, (9 — 2] < 13- (L+[X) +[81 — P, (9] + |3, (%) — ]

Bz (X) — (81 — 62)

{5200 < Bry (O B (0 = Bip (Y By (00 < iy (0 By (0 = i (9.1 — Ba (0 P (0 — 0} @

Positive interpolation

|Consequentt= 12+ 8- [+ |81 — B, (X)| + [P (9 — B2 < 15- (1+ [) + By = Py (K| + Bz, (0 — B

(81 — 02) — P (X)

Negatve INterPOlaton g (= By () = Bip 00V B () A (Biry (M — s ()1 (B 00— B1) A (B2 i)

(11), (3). (1) (26)

|Consequert= 13-+ 6- X+ | (%) — 81|+ (82 — Fi, (9| < 13- (1+[%) + |Bs; (%) — O] + 182 = P, ()|

(61 —62) — p: (¥)

Negatve Interpolaton 1 (5= B, (X1 Py (M = 1V B (0 = L. iy (0 < Ba (9 Py (9 = P (0. s, 00 > 01,8 = P, 00F 1)
|Consequent= 15+ 8- <]+ B (%) —> B+ 82 — P, (V] < 15+ (1 [¥]) + By (X) — B+ 82 — B, ()
Table 4: Unary interpolation rules fos. (a) and (b) imply that for alQxa Q'X' & € gatomsS),

if predgfa) = predga’), then Q = Q/, x = X,
boundindsd€Qxa) = boundinds€QY'x &).

Case Laws
Theorem 3.4. Let n e N, ¢ € Form,, T C
=60 Form,. There exist 3 C {(i,j)|i > no} and § C
P: (X — (61— 0) SimOrdCl such that

Positive interpolation

CAG RN RN e e B LU{P;13<37}

|Consequeitt= 8+ 2- [+ 83— P, (9] < 13- (LX) + |6 - s, (3| (i) there exists an interpretatio%l fpr L an_dQl E
T, 2 |~ @if and only if there exists an interpre-
tation?l’ for LU{f; |j € I¥} andA’ = P, sat-

Pi (x) = (81— 0)

Posiive INePORICN 15,10 = 0\ i, (0 = 061 P, (0] 9 isfying2 = 2’| ;
|Consequent= 6+2-|X[+ 61 — Py, (X)| < 15- (1+[X]) + 81 — Bz, (X)| (II) if T ggf FOrmL, then 4P Qg {('7 J) | i >
) noy, |97l € O(T| + |9y St <&
Negative interpolation GRS Ogeigvoi');i)p)i/(\i(jﬁil(i) o) (11) (30) SImOI’dClLU{fJJ \‘]iEJ;-p}’ |g|£)| € O(lT |2 + |(p|2),
|Consequent=8-+2- K]+ Bz (X) — 6] < 13- (1+ |X)) + | B, (X) — 04| the number of all elementary operations of the
translation of T andpto S, isin O(|T|2+|¢?);
eqate emoton 01— 0) > B o the time and space complexity of the translation

(0= piy (VB (9 =L B, (9 — 01} of T and@to S, is in O(|T|?-log(1+ no +

|Consequent=6-+2- X1+ |Bs (X) — 8] < 15- (L+ X))+ |s, () — 8y IT|) + |®?- (log(1+ no) + log|@)));

(iiiy S} is admissible;

ables of£ andp(x) € atomgS) satisfying, for all (iv) tcongS}) C tcongg) UtcongT).

ac atomgS) andpredga) = {p}, ais aninstance

of p(x) of LUP; if there existsa* € gatomsS) Proof. We get by Lemma 3.3(ll) forno + 1, T

andpredga*) = {p}, then there exist@xp(x) ¢~ that there existdr C {(i,j)[i > no+ 1}, Sr C

gatomsS) satisfying, for alla € qatomgS) and ~ SImOrdCl 5, je3,1, and 3.3(ll a—e) hold fono + 1,

predga) = {p}, a is an instance oRxf{(x) of T, Jr, Sr. By (13) forng, ¢, there existsp € Form,

LUP. such that (13a—e) hold faw, ¢, ¢. We distinguish
three cases fog. Case 1:¢ € Tcong — {1}. We
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Table 5: Unary interpolation rules forand3.

Case

Vx81

Pi (X) — Vx61

Positive interpolation — ~ =
P (5200 = Wiy (D) A (Bs, () — B1)

(32)

|Consequent= 6+ 2- X + [Pz (X) = 81| < 13- (1+[X]) + [Pz (X) — 61

Pi (X) — Vx8y
{0: (9 < ¥xPsg (X) V Pz (X) = X Pz (%), By (X) — B2}

Positive interpolation (33)

|Consequent= 10+ 4+ |X] + [ B3, (X) — 81| < 15- (1+ |X]) + Bz, (X) — 64

X8y B (9
(%P2, (%) = B: (9) A (81— Py, (V)

Negative interpolation (34)

|Consequerit= 6+ 2- X+ (81 — P (X)| < 13- (1-+|3]) +181 = s, (|

V%81 — B (X)
{X Pz, () < Bz (%) VX i (X) = Bz (%), 81 — Py ()}

Negative interpolation (35)

[Consequerit=10+4-|X + (81 — Ps (X)| < 15- (1+X]) + (61 — Pz, ()|

Ix01

P (X) — 3x61

Positive interpolation — ~ =
P (B2 () = Py 00) A (Bs, (%) — B1)

(36)

|Consequert= 6+ 2- S+ | (%) — 81| < 13- (1K) +1s, (9 — 61

Pi (X) — 3x6y

Positive interpolation — — = = =
P B: (0 <X, (0 V B (%) = 3xPiy (0. Py () = B1)

(37

|Consequent= 10+ 4+ |X] + [ B3, (X) — 81| < 15- (1+ |X]) + Bz (X) — 64

IxB1 — P (X)

Negative interpolation —~ —~ =
(3xPay (¥) = Bz (X)) A (81 — Py (X))

(38)

|Consequent=6-+2- X+ (61 — fz; ()| < 13- (1+[X)) + (81 — P, ()|

X601 — B: (X)

Negative interpolation — — — ~ =
9 P (5xP2, (%) < B: (9 VX Piy 00 = B (9,61 Bz, (9)

(39)

|Consequent=10+4-|X+ (81 — Ps; (X)| < 15: (1+|X]) 461 — Pz, (X)]

put 3 = Jr C{(i,j)|i > no+1} < {(i,j)i > no}
andSf =Sy C SIMOrdC, , 0, Case 2 = 1.

We putdf =0 C {(i,j)|i > no} andS} = {0} C
SimOrdCl. Case 3: ¢ ¢ Tcons. We putx =
varsedq), j; =0, i = (no, j;), ar(f;) = |[X]. We
get by (15) forng, VX@, X, 1, f; that there exisf =
{(no,j)[1<j<ns} S{(no,j)|j €N}, js <ny,i &,
S Cx SimOrdCLU{m}u{ﬁJj jedy, and (15e,g9,j-1) hold
for vx@, X, fii, 3, S . We putd? = Jru{ilud C

{(i,))[i > no} and S} = SrU{p:(X) < 1}US C
S|mOrdCILU{ﬁj‘j€J$}. O
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Corollary 3.5. Let m € N, ¢ € Form,, T
Form,. There exist J C {(i,j)|i > no} and &
SlmOrdCILu{ﬁJj §ed?) such that

(i) T Eo@ifand only if $‘3 is unsatisfiable;

(iy if T Cy Form,, then & C4 {(i,j)]i >
noy, I3l € O(T| + |¢); S o
SIMOrdC |, o\ oy STl € O(|T P + |@?);
the number of all elementary operations of the
translation of T andpto S, isin O(|T|2+|¢?);
the time and space complexity of the translation
of T and@to S, is in O(|T|?-log(1+ no +
T} + |92 (log(1+ o) + log|}));

(iii) S? is admissible;

(iv) tcongS?) C tcongg) UtcongT).

Proof. A straightforward consequence of Theo-
rem 3.4. O

4 ORDER HYPERRESOLUTION
RULES

At first, we introduce some basic notions and notation
concerning chains of order literals. A chamf £ isa
sequence& = gyogUo, - - ., EnonUn, § <j Uj € OrdLit,,
such that for ali < n, v; = €;1. & is the beginning
element of= andu, the ending element &E. g= vy,
denotes= together with its respective beginning and
ending element. LeE = gyogUo,--.,EnonUn be a
chain of L. = is an equality chain of iff, for all

i <n, oj ==. = is an increasing chain of iff there
existsi* < n such thatij+ =<. = is a contradiction
of L iff = is an increasing chain of of the form
€=0o0r 1=vu, or gg=¢y. Let SC OrdCl, be unit
and= = gy g Uy, ...,EnonUn be a chairj an equality
chain| an increasing chaiha contradiction of£. =

is a chain| an equality chain an increasing chaipa
contradiction ofSiff, for all i <n, g oj Vi € S,

_Let W = {W; |i € I} such thatW N (Func, U
{fo}) = 0; W is an infinite countable set of
new function symbols. LetL contain a con-
stant (nullary function) symbol. LeP C P and
S C OrdCl p. We denoteGOrdCl, = {C|C €
OrdCl, is closed C OrdCl,, GInst.(S) = {C|C €
GOrdCl, isaninstance of S of£} C GOrdCl,,
ordtcongS) = {C1 < C2|C1,C2 € tcongS),c1 < ¢} C
GOrdCl,. A basic order hyperresolution calculus is
defined in Table 6. The basic order hyperresolution
calculus can be generalised to an order hyperresolu-
tion one in Table 7. Let,o = LUP, a reduct of
LUWUP, andS = 0 C GOrdCl,, | OrdCl,,. Let
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Table 6: Basic order hyperresolution rules.

(Basic order hyperresolution ru)g40)

loVCo,...,InVCn € S-1.
" H
VGex
i=0

lo,...,Inis a contradiction of£y 1.

\/i“:0 C; is a basic order hyperresolventlgfv C, . ..,InV Cn.

(Basic order trichotomy rule(41)

a,be atomgSc_1),{a b} Z Tcons ,qatomss) # 0

a<bva=bvb<aeX

a<bva=bVb<ais a basic order trichotomy resolventaandb.

vxac qatom§ (Sc_1) .
vxa<ayvvxa=aye '

teGTerm, ,.y=x/teSubst ,.domy)=

¥xa= ayVVxa= ayis a basic order-quantification resolvent ofxa

Ixac qatoms (Sc_1) .
ay < Ixavay=Ixae S’

teGTerm, ,.y= x/te Subngirdon(v) =

ay < dxaVv ay = Jxais a basic ordet-quantification resolvent aixa.

¥xae qatom¥ (Sc_1),b € atomgS,_1) UgatomsS, 1)
ay<bVvb=Vxavb<Vvxae &

weW— Func, ;. ar(W) = |freetermse(i’x ), freetermsetb)|, y = x/W(freetermse(x a), freetermseth)) € Subsy, ,dom(y) =

ay < bVvb=VxaVvb< Vxais a basic ordev-witnessing resolvent éfxaandb.

Ixae qatoms (S_1),b € atomgS,_1) UgatomsS,_ 1)
b<ayv3ixa=bvixa<be &

WeW— Func, ,,ar(W) = [freetermse(pxa), freetermse(p) |, y = x/W(freetermse(fx a), freetermse(h)) € Subst, ,domly) =

b < ayv3Ixa=bVvIxa<bis a basic ordes-witnessing resolvent aixaandb.

(Basic orderv-quantification rul@ (42)

{x} =varg(a).

(Basic order3-quantification rulg (43)

{x} =varg(a).

(Basic orderv-witnessing rul (44)

{x} =vars(a).

(Basic order3-witnessing rul (45)

{x} =varg(a).

D =Cy,...,Cn, C € GOrdCl, 5 p | OrdCl, i ps
n> 1 D is a deduction ofC, from S by basic
order hyperresolution iff, for all K k < n, C €
ordtcongS) U GlInst,, ,(S), or there exist K ji <
K—1,k=1,...,m, such thaC is a basic order re-
solvent oiji,...,Cm € S-1 using Rule (40)—(45)
with respect to’x 1 andSc_1; D is a deduction o€,
from Sby order hyperresolution iff, for all £ k < n,
C« € ordtcongS) USS, or there exist K ji <k —1,
k= 1,...7m, such thatCy is an order resolvent of
Cisr-o .Gy € §/", using Rule (46)—(51) with respect
to LK 1 andS< 1 WhereC’* is a variant 0{3 € S-1

of Lx_1; Lx andS are deflned by recur5|on ond
K < nas follows:

Ly_1U{W} in case of Rulg¢44),(45) |

L else
S = S-1U{C} € GOrdCl,, | OrdCly, ,

S =Vt (S) € OrdClIy, .

D is a refutation oSiff C, = . We denote

clo?”(S) = {C|there exists a deduction of C from S
by basic order hyperresolutign
C GOrdCl, i ps
clo” (S) = {C|there exists a deduction of C from S

by order hyperresolutioh
C ordCl s p-

Lemma 4.1(Lifting Lemma). Let £ contain a con-
stant symbol. Let & P and SC OrdCl, p. Let

C e clo?¥(S). There exists Ce clo”(S) such that
C is aninstance of Cof LUWUP.

Proof. Straightforward. O

Lemma 4.2 (Reduction Lemma) Let £ contain a
constant symbol. Let E P and SC OrdClp.

Let {\X_ge} ol vl VGi|i < n} C clo®(S) such that
for all § € Sel({{J|J < ki}ili £ n}), there ex-
ists a contradiction of{a'j(l) <>'5(i) U'S(i)|i <n}C
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Table 7: Order hyperresolution rules.

(Order hyperresolution rule(46)

" 0.0,,0 0 o Vi
n.n.n n r

Vegoiuiv VIj... Velofulv VI e §4

=0 =t =0 =1 .

3

n .
(V Vi)ees

i=0j=1
foralli <i’ < n,freevarsvl;‘:[,sij ool v\/?lllij)mfreevars{\/ilo sij’ oij/ uij, \/Vrini:’ll}/) =0,
eemguLKJ(\/Tgog%?gﬂlg’,...)l,?b)...).\/'j"los'}'o?u?,li‘)...,lﬂh,{ug,s%})...,{Ugfl}sg},{a,b}), .
dom(B) :freevari{a'j <>'i u'j [j<k,i< n},{l'i [1<j<m.i< n}),a:sg,b:l ora:uB,b:OOra:sg,b: ug, there existsi < n such thabg ==<.

n M ivgi 0,0,0,,\/70 |0 kn en.n,n ™ n
(\/izo\/jzllj)elsanorderhyperresolventﬁfjgoaj<>J- VPV IR Vi o ol v VT 1L

(Order trichotomy rulég (47)

abeatomgs/", ). {a b} Z Tcons ,qatomss) # 0
a<bva=bvb=<ae !

varg(a) Nvars(b) = 0.
a<bva=bVvb=<aisan order trichotomy resolvent afandb.
(Order V-quantification rul¢ (48)

vxae gatoms (S¢_1)
vxa<avvxa=ae S

¥xa=<aVVvxa= ais an ordetv-quantification resolvent ofxa.

(Order 3-quantification rulg (49)

Ixae qatoms (S_1)
a<3Ixava=3Ixae S’

a~< dxaVva= Jxais an ordes-quantification resolvent aixa.

(Order V-witnessing rulg (50)

vxae qatom§ (/" ;),b € atomgS/" ;) UgatomsS/" ) )
ay<bvb=Vvxavb=<Vxae & ’

freevargvxa) N freevargb) = 0, e W — Func,, _, ,ar(W) = [freetermse(yxa), freetermsep)|.
y = x/W(freetermse(ivx a), freetermse(h)) Uid \Varqa),{x) € Subst, ,dony) = {x} U (vars(a) — {x}) = varg(a).

ay < bVvb=VxaVvb < Vxais an ordetv-witnessing resolvent 6fxaandb.

(Order 3-witnessing rulg(51)

Ixac qatoms (§ ;)b € atomg§/" ;) UgatomgS/" ;)
b<ayvixa=bvixa<be K ’

freevarg3xa) Nfreevargb) = 0,W e W — Func, ;. ar(W) = |freetermse(fxa), freetermseth)|,
y = x/W(freetermse(pxa), freetermse(h)) Uid \Varia),{x) € Subst, ,dony) = {x} U (vars(a) — {x}) = varg(a).

b < ayv3Ixa=bVv3Ixa<bis an ordes-witnessing resolvent aixaandb.

GOrdCl, 5 p- There exist® # I* C {i|i < n} such Proof. An immediate consequence of Konig's
that V.- G € clo?”(s). Lemma and Lemma 4.2. O

Proof. Straightforward. u We are in position to prove the refutational sound-

) ) ness and completeness of the order hyperresolution
Lemma 4.3(Unit Lemma) Let L containaconstant  .5culus. Let{0,1} C X C Tcons. X is admissi-

SV'E?{OL Let Eg ]P: "’I‘”‘? SC OrdCleup. LetD ¢ ble with respect to suprema and infima iff, for all
clo™(S) = {ijosj o} U} [t <V}, y< w. There exists Y1, Y2 C XgndV_Y_l :_/\\72, eitherV Y1 e YL, A2 € Yz,
S e Sel({{jlj <k}t <y}) such that there does ory Y1 ¢ Y, AY2 ¢ Y.

not exist a contradiction ofe'. , o'\ U\ [l < .
(8- 5 Vse0) | Theorem 4.4(Refutational Soundness and Complete-
y} € GOrdCl, 5 p-

ness) Let £ contain a constant symbol. Let®P,
SC OrdCl,p, tcongS) be admissible with respect to
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suprema and infimald e clo™ (S) if and only if S is
unsatisfiable.

Proof. (=) Let 2 be a model ofS for LUP and
Ceclo’(s) OrdCl, 5 p- Then there exists an
expansiorgl’ of 2l to LUW UP such that?l’ = C.
The proof is by complete induction on the length of a
deduction ofC from S by order hyperresolution. Let
0 e clo™ (S) and2( be a model oBfor LUP. Hence,
there exists an expansiéfi of 2[ to LUW UP such
that2l’ = 0J, which is a contradictionS is unsatisfi-
able.

(<) Let O & clo™(S). Then, by Lemma 4.1 for
S, 0, 0 € clo®(S); we haver, P, W are countable,
P C P, SC OrdClup, clo®(S) € GOrdCl, 4 p:
P, LUP, OrdCl.p, S, LUWUP, GOrdCl, s ps
clo®”(S) are countable; there exisgs < w and] ¢
clo®(8) = {\_oe} o{ vl [t < y1}; by Lemma 4.3 for
S, there existss™ € Sel({{j]j <k} |t <wvi}) and
there does not exist a contradiction ﬁa“y(l) 0‘5*(1)
Uiy It <"y} € 'GOrdCl i p- -~ We put S =
{5+ 1) 951y Vi) [V < Y1} € GOrdCl i 5p. Then
S D ordtcongS) is countable, unit,(q)atomgS) C
(q)atomgclo®(S)). We put

GT if gatomgS) = 0
‘Um—{ ermp  if qatomgs) =0, Sy

GTermy, s p €lsg

and B = atomsS) U gqatomsgS) C GAtony g p U
QAtomy, sy ,p- We haveS is countable. Then
tcongS) C atomgordtcongS)) C atomsS) C B,
B = tcongS) U (B — tcongs)), tcongS) N (B —
tcongS)) = 0, atomsS), gatomsS), B, tcongs),
B —tcongS) are countable; there exigt < w and
a sequencé; : Yo — B —tcongS) of B —tcongS).
Letey, & € B. €1 £ &, iff there exists an equality chain
€1 =€, of S. Note that2 is a binary symmetric transi-
tive relation onB. g1 < g, iff there exists an increasing
chaing; =&, of S. Note that< is a binary transitive
relation onB.

0£1,120,0<1,140,
foralle € B,e40,14¢,e /€.

(52)

The proof is straightforward; we have that there does

not exist a contradiction of. Note that< is also
irreflexive and a partial strict order aB.

LettcongS) C X C B. A partial valuation? is a
mapping? : X — [0, 1] such that}/(0) =0, V(1) =
1, for all c€ tcondS)NC,, V(C) = c. We denote
dom %) = X, tcongS) C dom V) C B. We define a
partial valuationl by recursion om <y, in Table 8.

Table 8:7%.

{VO :{(Ovo)v(lvl)}u

{(c,c)|cetcondS)NC };
'Va = ‘Va—lu{(62(q - 1):)\0(—1)}

(1 <a <yyisasuccessor ordinal
Eq-1 = {Vy-1(a)|a% (o —1),a e dom ¥y 1)},
Do-1={%-1(a)|a<sd(a —1),a€ dom(Vu-1)},
Ua-1={%-1(8)|&2(a — 1) <a,a€ dom Vy-1)},

Dg-1+AUqg_1 .
- VDg-1+AUqg-1 if Bq_q =0,
VEq 1 else
Y, = |J %% (y2is alimit ordinal)

a<ys

For alla < a’ < y,, V4 is a partial valuation,(53)
dom(7V4) = tcongS) U d[a], ¥y C V.

The proofis by induction o < ys.

For alla <y, for all a,b € dom(%%),
if a2 b, then?y(a) = Vu(b);
if a<ib, then?y(a) < Vy(b).

(54)

The proof is by induction o < y, using the as-
sumption thatcongS) is admissible with respect to
suprema and infima.

We put? = 144, dom(?V) &3

= tcongS) Udz[y2] =
B.

Foralla,b € B =dom 7)),
if a2 b, then?(a) = V(b);
if a<tb, then?(a) < V(b);
if a=Vxc, then?(a) = Aycqy V(c(X/U));
if a=3xc, then?(a) = Ve, V(c(X/U)).

(55)

The proof. A straightforward consequence of (54).
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We put
if gatomgS) = 0,

f2(ug,...,u) = f(u,..., W),
f € Func, p, Ui € Usy;

p*(

ula"'auT):

{’V(p(ul,...7uT)) if p(ug,...,u) € B,
0 else
p € Pred.up, Ui € Uy
A= (Uy, {f*|f € Funceup},
{p*|p e Predzup}),
an interpretation forL UP;
if gatomgsS) # 0,
f2(ug,...,ur) = f(ur,...,up),
f € Func, g e, Ui € Usi;
Ql(ul,...,uT) =

V(p(ug,...,u)) if p(ug,...,ur) € B,
0 else

p

p € Pred, 5 p, Ui € Usi;

A= (Uy, {T*|f € Func, s p},

{le lpe PredLuWuP})’
an interpretation forc UWUP.

Hence, it is straightforward to prove that for all
acBandec Sy, [[a|d = V(a); forall | €S
andec Sy, |I|2 =1; for all Ce Sandec
Sats e|freevars§C) € SUbSEUWuPa don(e|freevar$C)) =
freevar¢C), rangé(€lfreevarsc)) = 0, C(Elfreevarsc)) €
clo®(s), there exists|* € C(€lfeevarsc)) and
I* €S, |[I*]|& = 1; there existsI™* ¢ C and
I* = 1** (Eltreevarsc)): I1**[13 = 11" (Elfreevarsc)) 18" =
2 =1; A = C; A =S Al p E S Sis satisfi-
able. O

ConsideiS= {0<a}uU{a< %|ne N} C OrdCl,,
ac Pred, — Tcong, ar.(a) = 0. tcongS) is not ad-
missible with respect to suprema and infima; §o}
and{i|ne N}, V{0} = A{i|neN} =0, 0€ {0},
0¢ {%|ne N}. Sis unsatisfiable; both the cases
la|* = 0 and||a|* > 0 lead to2( = Sfor every in-

terpretatiorRl for £. However[J ¢ clo™ (S) = S. So,
the condition ortcongS) being admissible with re-
spect to suprema and infima, is necessary.
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Corollary 4.5. Let £ contain a constant symbol. Let
no € N, e Form,, T C Form,, tcongT) be admis-
sible with respect to suprema and infima. There exist

K C{Gi,j)]i>n}and § C SImOrdCl, /oy
such that tconS?) is admissible with respect to
suprema and infima; T= @ if and only if O €

clo” (D).

Proof. A straightforward consequence of Corol-
lary 3.5 and Theorem 4.4. O

In Table 9, we show thap = Vx(qgz(x) — 0.3) —
(3xu(x) — 0.5) € Form, is logically valid using the
proposed translation to order clausal form and the or-
der hyperresolution calculus.

5 CONCLUSIONS

In the paper, we have proposed a modification of the
hyperresolution calculus from (Guller, 2012) which
is suitable for automated deduction with explicit par-
tial truth. The first-order Godel logic is expanded
by a countable set of intermediate truth constants —
c e (0,1). We have modified translation of a formula
to an equivalent satisfiable finite order clausal theory,
consisting of order clauses. An order clause is a fi-
nite set of order literals of the forrey ¢ €, whereo

is a connective eithex or <. = and < are inter-
preted by the equality and standard strict linear or-
der on|0,1], respectively. We have investigated the
so-called canonical standard completeness, where the
semantics of the first-order Godel logic is given by the
standards-algebra and truth constants are interpreted
by themselves. The modified hyperresolution calcu-
lus is refutation sound and complete for a countable
order clausal theory if the set of all truth constants
occurring in the theory is admissible with respect to
suprema and infima. This condition covers the case
of finite order clausal theories.

Lete Form,; @ contains a finite number of truth
constants. Then the problem thatis unsatisfiable
can be reduced to the deduction problets 0 (after
a constant number of steps). As an immediate conse-
guence of Corollary 3.5 and Theorem 4.4¢if= 0,
then we can decide it after a finite number of steps.
This straightforwardly implies that the set of unsatis-
fiable formulae ofZ (in the general first-order Godel
logic with intermediate truth constants) is recursively
enumerable.
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Table 9: An exampleg = Vx(qgy(x) — 0.3) — (Ixcz(x) — 0.5).
0= x(Qu(x) = 03) — (Ixau(x) — 05)
{Bo(x) < 1, (Vx(qu(x) = 0.3) = (Ixn(x) = 0.5)) = Po(x)} (27)
) )
{Bo(x) < 1, f2(x) < Pr(X) V P2(x) = 1V Po(X) = 1, 2 (X) < Fo(X) V P2(X) = Po(x), Br(X) = VX (a1 (x) = 0.3), (xau(x) = 05) — Fa(x)} (33),(27)
—_—— ——
B3(x) Ba(x) P5(x)
{Bo(x) <1, P2(%) < Pr(x) V P2(X) = 1V fio(x) = 1, B2(X) < Po(¥) V P2(X) = fo(X), Pr(¥) < VX P3(X) V p1(X) = X f3(x), B3(¥) = (au(x) = 0.3),
\\/-/ ~
g P
PBs(x) < Pa(x) V Ps(x) = 1V F2(x) = 1, f5(X) < P2(X) V Ps(X) = Pa(X), fa(x) — HX&() 05 < Ps(x) V05 = fs(x)} (25),(37)
Pg(x)
Rule (46): [1][2] :
sf= { Po(x) <1 1] B2 (X) < Pr(X) V| Pa(x) = 1 (13
() < Bu)V B = 1| ol = 1 2 L w
X) < X)V X) =1V X) =
P TR p B2 = Po(x) |V Pal) < B0 14
P2(X) < Po(x) |V P2(X) = Po(x) (3] Rule (46): [1][13][14] :
(1900 < VB V P () = WxBs() | ¢ P2(x) < P () 5
| Bo(x) < Br(x) v Ba(x) = Br(x) |V Bo(x) < Br(x) v Rule (46): [BI(19
) ; Bs() < Bu) V| B9 = 1] 16
Pe(X) = Pr(x) 9] Rule (46): [9][16 -
[ 00 < B V%) = ()| ) Bs() = B2 (X) |V Bs(x) < Fa(x) 17
| 5109 <03V py(x =03 7 Rule (46): [15][16][17 :

B0 < XV o) = 1v] o0 = 1] 8 Pl = Pu e

Rule (48): VX f(X) :
Ps(X) < P2(x) |V Ps(x) = P2(X) (9] | WX Ba(X) < Pa(X) V VX Pa(x) = Pa(x) | 19
repeatediyRule (46): [4][5][7][9][12][15][19 :

| Bu(X) < 3XBs() v Ba(x) = XPs(x) | 10
- - | Bs(x) < Br() v Bo(x) = Br(x) | 20

[ o) < 100V P = (¥ | 1) Rule 5 XP00.05

| 05~ (9 V05 = ps(x) \} 12 05 < o(i00)) V| FxPa(x) < OBV 3 ps() =05 [21]
repeatediRule (46): [10][12)[18][21] :
0.5 < fis(W(o0)) [22
repeatedhRule (46): [6][7][11][20]; Wo0) : [22] :
| 23
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