Quadrupedal Locomotion Based in a Purely Reflex Controller

César Ferreira, Vitor Matos, Cristina P. Santos, Auke Ijspeert

2014

Abstract

Quadruped locomotion in irregular and unknown terrains is still a problem to solve. The concept of reflexes is used in this work to contribute for the continuous search of answers about this theme. Biological researches show that spinal reflexes are crucial for a successful locomotion in the most varied terrains, so robotics investigation in this area could be a great advance in the robot’s locomotion. In this work, we present a sensory driven reflex controller, capable of generating locomotion in a quadruped compliant robot. This controller is totally dependent on sensory information, so the robot’s movements are the result of the robot interactions with the environment. Results show that the proposed controller is capable of generating movements in a flat terrain and is resilient to unexpected perturbations such as a small ramp.

References

  1. Ajallooeian, M., Gay, S., Tuleu, A., Sprowitz, A., and Ijspeert, A. J. (2013a). Modular control of limit cycle locomotion over unperceived rough terrain. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 3390-3397. IEEE.
  2. Ajallooeian, M., Pouya, S., Sproewitz, A., and Ijspeert, A. J. (2013b). Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 3321-3328. IEEE.
  3. Burke, R. E. (2007). Sir charles sherrington's the integrative action of the nervous system: a centenary appreciation. Brain, 130(4):887-894.
  4. Cruse, H., Kindermann, T., Schumm, M., Dean, J., and Schmitz, J. (1998). Walkneta biologically inspired network to control six-legged walking. Neural networks, 11(7):1435-1447.
  5. Duysens, J. and Pearson, K. (1976). The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Experimental Brain Research, 24(3):245-255.
  6. Ekeberg, O. and Pearson, K. (2005). Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. Journal of Neurophysiology, 94(6):4256-4268.
  7. Fukuoka, Y., Kimura, H., and Cohen, A. H. (2003). Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. The International Journal of Robotics Research, 22(3-4):187- 202.
  8. Geyer, H. and Herr, H. (2010). A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 18(3):263-273.
  9. Grillner, S. and Rossignol, S. (1978). On the initiation of the swing phase of locomotion in chronic spinal cats. Brain research, 146(2):269-277.
  10. Hiebert, G. W., Gorassini, M. A., Jiang, W., Prochazka, A., and Pearson, K. G. (1994). Corrective responses to loss of ground support during walking. ii. comparison of intact and chronic spinal cats. Journal of neurophysiology, 71:611-611.
  11. Hiebert, G. W., Whelan, P. J., Prochazka, A., and Pearson, K. G. (1995). Suppression of the corrective response to loss of ground support by stimulation of extensor group i afferents. Journal of neurophysiology.
  12. Kimura, H., Fukuoka, Y., and Cohen, A. H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. The International Journal of Robotics Research, 26(5):475-490.
  13. Kimura, H., Fukuoka, Y., and Nakamura, H. (2000). Biologically inspired adaptive dynamic walking of the quadruped on irregular terrain. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM-, volume 9, pages 329-336.
  14. Maufroy, C., Kimura, H., and Takase, K. (2008). Towards a general neural controller for quadrupedal locomotion. Neural Networks, 21(4):667-681.
  15. McVea, D., Donelan, J., Tachibana, A., and Pearson, K. (2005). A role for hip position in initiating the swingto-stance transition in walking cats. J Neurophysiol, 94:3497-3508.
  16. Pearson, K. (2008). Role of sensory feedback in the control of stance duration in walking cats. Brain research reviews, 57(1):222-227.
  17. Pearson, K. G. (2004). Generating the walking gait: role of sensory feedback. Progress in brain research, 143:123-129.
  18. Rossignol, S., Dubuc, R., and Gossard, J.-P. (2006). Dynamic sensorimotor interactions in locomotion. Physiological reviews, 86(1):89-154.
  19. Wadden, T. and Ekeberg, O. (1998). A neuro-mechanical model of legged locomotion: single leg control. Biological cybernetics, 79(2):161-173.
Download


Paper Citation


in Harvard Style

Ferreira C., Matos V., P. Santos C. and Ijspeert A. (2014). Quadrupedal Locomotion Based in a Purely Reflex Controller . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 324-331. DOI: 10.5220/0005062403240331


in Bibtex Style

@conference{icinco14,
author={César Ferreira and Vitor Matos and Cristina P. Santos and Auke Ijspeert},
title={Quadrupedal Locomotion Based in a Purely Reflex Controller},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={324-331},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005062403240331},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Quadrupedal Locomotion Based in a Purely Reflex Controller
SN - 978-989-758-039-0
AU - Ferreira C.
AU - Matos V.
AU - P. Santos C.
AU - Ijspeert A.
PY - 2014
SP - 324
EP - 331
DO - 10.5220/0005062403240331