
Development of the Protection System Against Malicious Software

D. M. Mikhaylov, A. V. Zuykov, M. I. Froimson and A. S. Smirnov
Engineering Center of the National Research Nuclear University “MEPhI”(Moscow Engineering Physics Institute),

Kashirskoye highway, 31, Moscow, Russia

Keywords: Mobile Security, Antivirus, Malicious Code, Identification of Potentially Dangerous Applications.

Abstract: Nowadays mobile phone manufacturers offer their customers not only devices for calling and sending SMS-
messages, but also multi-functional smartphones with much broader capability. Mobile phones are used to
access the Internet, for e-mailing, social networking, finding phone owner`s location and routing, etc. Due
to its multiple functionalities, a smartphone can store a lot of data that may be breached by theft or data
leakage. This article focuses on development of security software for mobile devices able to detect
malicious software and infected files on the device as well as to protect the user from applications recording
personal conversations, secretly transmitting data and activating programs. Antivirus software monitors
secret camera activation warning the user. The paper also provides the comparison of the proposed security
software with popular antiviruses: Kaspersky Mobile Security, Dr.Web, ESET, Norton Antivirus, etc.

1 INTRODUCTION

Mobile devices has become an important part of our
everyday life as they allow not only making calls
and sending messages but also access the Internet
and perform a wide range of functions (Wang, 2013;
Kim, 2013; Min, 2014; Amalan, 2013; Szakacs-
Simon, 2013; Lee 2013). With the growing number
of smart phone users, the problem of information
security becomes rather significant. Intruders can not
only infect the device and steal confidential
information as well as money from the phone or
mobile bank account but also bring it out of
operation (Mikhaylov and Zhukov, 2013).

Android is the most popular operating system
(OS) nowadays (Northcraft, 2014) and thus there is a
sharp increase in mobile malicious software. The
ease of modifying and the simplicity of the design of
the operating system are the aspects that cause
system vulnerabilities and are drawing malware
developers towards Android smart phones. The issue
of leaking private information because of
vulnerabilities of Android applications is discussed
in (Shahriar, 2014; Sbirlea, 2013; Taenam, 2013).
(Mulliner et al., 2012) consider malicious injection
of cellular signaling traffic from mobile devices.
Stirparo, Fovino, Taddeo and Kounelis tell about
stealing user's credentials and sensitive private
information stored and processed by Android

devices (Stirparo, 2013). Mobile phone can also
suffer attacks performed by malware circulating via
QR codes (Woo Bong, 2011), using security halls of
GSM (Miller, 2011), etc. (Barrere and Cozzette,
2013); and this list can be continued.

Market analysis of the antivirus class products
shows not only the failure of the modern mobile
antivirus software to counterwork the one developed
by attacker, but also brings into question
effectiveness of transferring standard approaches to
developing such software from PC to mobile
platform.

The issue of development of new effective
protection software is of great interest today (Al-
Saleh, 2013; Bläsing, 2010). For example, (Pieterse
and Olivier, 2013) evaluate the current state of
mobile security applications and propose simple
steps for Android mobile device users to protect
their phones. In (Fu-Hau Hsu, 2012) the mechanism
preventing antivirus from being terminated without
the consciousness of the antivirus software users is
proposed. (Chia-Mei Chen and Ya-Hui Ou, 2011)
tell about secure mechanism for mobile web
browsing detecting client-side malicious web sites.
In (Kasama, 2012) a malware detection method
based on investigation of behavioral difference in
multiple executions of suspicious software is
presented. (Dube et al., (2013) propose malware
target recognition of unknown threats.

161Mikhaylov D., Zuykov A., Froimson M. and Smirnov A..
Development of the Protection System Against Malicious Software.
DOI: 10.5220/0005060201610170
In Proceedings of the International Conference on Knowledge Management and Information Sharing (KMIS-2014), pages 161-170
ISBN: 978-989-758-050-5
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Almost all existing antivirus products for mobile
platforms use the procedure of scanning files to
detect malicious code in their applications according
to databases of known viruses. Such protection
called signature analysis has a major drawback
which is that the slightest change malicious
application code makes it undetectable to antivirus
until malicious code is listed in the signature
database (Dube, 2013). As a consequence,
antiviruses with protection of this type can only
detect widespread malicious applications and
obviously weak to new threats that may be simply a
modification of the old ones. To provide protection
from threats such antivirus solutions should be
frequently updated (not less than once a day).
Moreover, signature bases reach a large size that is
critical for mobile devices that are not designed to
store large amounts of data.

Consider the most common protection methods
for Android OS:
 Static analysis allows identifying malicious

applications by analyzing the code before
installation on the presence of matching
signatures with values from the database.
Well-developed obfuscation techniques
require creating a new signature for modified
malware codes. This leads to the necessity of
frequent updates and signature database
storage (can reach large size) which is not
suitable for mobile devices with a limited
internal memory. Note that it is often difficult
to distinguish a legitimate application that
uses access to any data from malicious one by
this method. (Hsiang-Yuan 2013; Batyuk,
2011; Yan, 2013)

 Dynamic analysis is generally not used due to
lack of necessary methods for its operation.
The antivirus software is functioning on a
mobile device sending software to be checked
on the developing company server where it is
tested; the results are sent back. Such methods
often require a lot of time and continuous
access to the Internet that is not always
possible. (Yan, 2013)

 Monitoring – large number of projects related
to Android OS protection from viruses aimed
at adding to Android OS capabilities for
tracking user applications and if needed –
prohibiting access to them. An example of
such protection is the TaintDroid project
(Enck, 2010). The drawback of all these
solutions is the necessity of OS modification.
Moreover, because of the fragmentation of
Android devices it is not enough just to insert

changes to operating system`s code once. It is
necessary to support the work of the code for a
large number of different devices on different
versions of Android.

 Virtualization allows running on the same
physical device several Android operating
systems simultaneously. This approach allows
a very strict separation of application as well
as their isolation but greatly reduces the
device speed and requires OS modification.

Therefore, antivirus software based on a
fundamentally new approach to protecting against
malicious applications for mobile platforms is
proposed and implemented within the framework of
the project. It is based on wrapping potentially
dangerous system calls by drive code that allows
monitoring and, if necessary, blocking dangerous
calls. It also provides protection against
unauthorized calls commitment by creating an
intermediate pseudo device filtering commands
between RILd (radio interface layer demon) and
modem. The proposed security software uses the
camera and recorder features to detect unauthorized
access aimed at obtaining information about the
user's environment.

2 SECURITY SOFTWARE
DEVELOPMENT

Before describing the proposed antivirus software,
consider Android operating system (Android
operating system architecture 2011). Each
application in the Android system operates under its
own Linux account (on the core level) and runs its
own virtual machine Dalvik as a separate process.
Thus, direct interaction between the processes
becomes impossible as well as invasion of one
process into the memory of the other and access to
the data of another process. Interaction between
running applications and data sharing is very limited
and regulated by the application that provides data
during the installation. Android system in principle
suppresses the possibility of creating "classic"
computer virus that injects its code into the data area
of other processes, set itself up in the system
modules and also distributes itself over data
networks (because there is no opportunity to start the
installation of malicious application on the remote
device).

The designed antivirus is based on the so-called
proactive protection, the main task of which is to
detect antivirus security threats in real-time by

KMIS�2014�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

162

monitoring applications activity for potentially
dangerous actions (data transmission, locating,
sending SMS, making outgoing calls, reading user
data and accessing integrated phone capabilities –
camera, microphone) and prevent them by blocking
dangerous actions and alerting the user.

The main mechanism of the antivirus is to
incorporate its drive code into the controlled
application. Potentially dangerous methods calls are
covered by shell methods, which request antivirus
for policies in connection to the actions and
accordingly implement or not the target method and
transmits or not information about it to antivirus to
log the action and notify the user.

Control is established as follows. .apk file
(Android application package) is the package file
format used to distribute and install application
software and middleware onto Google's Android
operating system (Lawrence, 2012). First, .apk file
target application is dearchived (it is a zip-archive).

We get a set of files, among which two are used:
classes.dex – contains executable code of the
application – and AndroidManifest.xml – contains
information about the application components,
required permissions, etc. Byte code of classes.dex
file is parsed into classes, their methods, members,
etc., a shell method class and a helper class for
getting application context are added to it
(AndroidManifest.xml file also accordingly
modified). Then classes disassembled code is
searched for all potentially dangerous methods calls,
and those are replaced with shell method calls with
the same parameters and return types. Figure 1
provides general conditioning of .apk file.

Figure 1: General apk-file conditioning.

Then .apk file is reassembled and signed by a
newly generated signature unique to each
application. Unique signature for each application is
needed because of more possibilities of
communication of applications with the same

signature. Then it is installed once more. The source
.apk file is saved for possible rollback.

Control code incorporation is implemented in
C++ language as a native library. To ensure
maximum performance modifications are made
directly in dex format without conversion to smali-
code and vice versa.

Table 1 shows the general structure of the dex-
file.

To integrate the drive code first it is necessary to

Table 1: Dex-file general structure.

Name Format Description

header header_item Heading

string_ids string_id_item[] List of line identifiers.
These identifiers
contain information on
all lines of the file used
both for the internal
designation (e.g., type
descriptors) and
constants used in the
code.

type_ids type_id_item[] Types identifier list
(classes, arrays and
primitive types). Those
types are referenced in
the file, either specified
therein or not.

proto_ids proto_id_item[] Methods counterparts
referenced in the file
identifier list.

field_ids field_id_item[] Fields referenced in the
file, either specified
therein or not,
identifier list.

method_ids method_id_item[] Methods referenced in
the file, either specified
therein or not,
identifier list.

class_defs class_def_item[] Class definition list.
Classes must be sorted
so that for each class
all parent-classes and
implemented interfaces
are defined above.

data ubyte[] The data area that
includes all supporting
information for the
above tables.

link_data ubyte[] The data used in the
statically linked files.

Development�of�the�Protection�System�Against�Malicious�Software

163

merge classes.dex files of the target application and
controlling module. Each section N of the two files
listed in the table is combined according to the
sorting requirements and without allowing
duplicates.

Drive code requires access to the application
context, so it is necessary that the application class
created when staring application contained the code
for reference. This class can be specified by the
application in AndroidManifest.xml:
<applicationandroid:name=”com.mypackage.MyAp

plicationClass”>. If the target application does not
specify the class and the base implementation, for
integration it is enough to add the attribute to the
manifest. However, if the application class is
specified, in order to preserve the functionality of
the application it cannot be replaced by the class of
your own. Inheritance link between classes can be a
solution. Thus, the resulting class will contain both
the original application code, and the code for
getting context of controlling module. Listing below
shows a method of establishing inheritance link.

void DexFileBig::setInheritanceForWAppClass(ClassDef *classDefParent, ClassDef
*classDefChild,DexFileWriter *outClassDefs, DexFileWriter *outClassDatas) {

 classDefChild->superclass_idx = classDefParent->class_idx;

 CountedPtr<ClassData::EncodedMethod> methodOur = this-

>getNonStaticMethodByName(classDefChild, "onCreate");
 ClassDef *lastOverridingClass;
 CountedPtr<ClassData::EncodedMethod> methodTheir = findLastMethodOverride(
 classDefParent, "onCreate", "Landroid/app/Application;",

&lastOverridingClass);
 CountedPtr<ClassData::EncodedMethod> initOur = this->getStaticMethodByName(
 classDefChild, "<init>");
 CountedPtr<ClassData::EncodedMethod> initTheir = this->getStaticMethodByName(
 classDefParent, "<init>");

 if(methodOur == NULL || initOur == NULL || initTheir == NULL) {
 LOGET("DexFileBig::setInheritanceForWAppClass "
 "methodOur:%d, initOur:%d, initTheir:%d",
 methodOur.get(), initOur.get(), initTheir.get());
 return;
 }

 if(methodTheir != NULL) {
 this->replaceIdInCallSuperMethod(methodOur.get(), methodTheir->method_idx,

0x106f);
 this->setNeededAccessFlagsOnWAppMethod(methodTheir.get());
 if (lastOverridingClass != classDefParent) {
 setNeededAccessFlagsOnWApp(lastOverridingClass);
 outClassDefs->pushMove(lastOverridingClass->offset);
 lastOverridingClass->dump(outClassDefs);
 outClassDefs->pop();
 outClassDatas->pushMove(lastOverridingClass->class_data->offset);
 lastOverridingClass->class_data->dump(outClassDatas);
 outClassDatas->pop();
 }
 } else {
 LOGWT("DexFileBig::setInheritanceForWAppClass methodTheir not found");
 }

 this->replaceIdInCallSuperMethod(initOur.get(), initTheir->method_idx, 0x1070);

 this->setNeededAccessFlagsOnWApp(classDefParent);
 this->setNeededAccessFlagsOnWAppMethod(initTheir.get());
}

KMIS�2014�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

164

publicstaticvoid requestLocationUpdates(LocationManager lm, String provider,
long minTime, float minDistance, LocationListener listener) {

 Log.d(TAG, "Watcher watches requesting location updates");
 Context awa = WApplication.getAppContext();
 int[] permissions;
 if (awa != null)
 permissions = Politics.getPermissionFromDb(awa, awa.getPackageName(),

"act_location");
 else
 permissions = newint[] { Politics.NONE, Politics.NONE };
 int recPermission = Math.min(permissions[0], permissions[1]);
 switch (recPermission) {
 case Politics.NOTIFY:
 sendNotification(awa, ACTION_LOCATION, MSG_LOCATION, recPermission, null,

null, null, null);
 case Politics.NONE:
 case Politics.IGNORE:
 lm.requestLocationUpdates(provider, minTime, minDistance, listener);
 Log.d(TAG, "Location updates requested");
 break;
 case Politics.BLOCK:
 showAlertWindow(awa, ACTION_LOCATION, ACTION_DESCR_LOCATION, null, null);
 case Politics.BLOCKONLY:
 sendNotification(awa, ACTION_LOCATION, MSG_LOCATION, recPermission, null,

null, null,null);
 thrownew SecurityException();
 }
}

Potentially dangerous methods call control is
implemented by shell method. Listing below shows
an example of such a method for location request

To integrate these control shells in the
application code, all potentially dangerous methods
calls are found in data-section dex-file and replaced
with calls to the relevant shells. As there are no
chances to interact with user data or other
applications without particular API call and the
limited number of such methods, we can wrap all
these calls with control code. Thus, we will have
control of all methods that could be potentially
dangerous. The proposed algorithm bypasses the
need to modify Android OS and download new virus
base while providing much of the security the user
desire.

Potentially dangerous activities are grouped as
follows according to a threat to user: INTERNET
(data transmission), TRACKING (using camera,
microphone), LOCATION (positioning), MONEY
(outgoing calls and SMS), USERDATA (access to
personal user data) CONFIG (system settings
change). These groups are made according to the
user friendly sense separation, which the standard
Android Package Installer allowance confirm dialog
during applications installation lacks.

For each of the above permission groups one of

the policies is set:
 allow – the action is performed in normal

mode;
 notify – the action is performed, but the user is

notified and the action is recorded in the log;
 notify and block – the action is not performed

and a window with information about the
blocked action is shown to the user;

 block – the action is not performed and a
notification is not shown.

In case of potentially dangerous method call of a
controlled application, processing is performed
according to the algorithm shown in Figure 2.

An important aspect of the described proactive
approach of the antivirus software is to prevent
unauthorized camera activation by malicious
software.

Android security policy does not allow the
camera to run without preview image, which should
protect against unauthorized access to this feature,
but there is no restriction on size or position of the
preview that still allows an attacker to conduct
covert photography. Developed antivirus software
monitors the calls to camera and warns the user
when the camera is run without a corresponding
display on the screen. Analysis shows that existing
antivirus software lack these features.

Development�of�the�Protection�System�Against�Malicious�Software

165

Figure 2: Algorithm of processing a potentially dangerous
method call of a controlled application.

Protection against malicious applications that
record telephone conversations and conversations
nearby the user was developed on the basis of
working features of such applications. Features of
the application described above were obtained from
an analysis of opportunities for recording telephone
calls to user-level applications. During the analysis it
was found that each application installed by the user
on the mobile device must contain the access right to
particular OS functions. In addition, simultaneous
access to the microphone and the speakers of the
mobile device for recording incoming data can be
got by only one application (if other applications try
to call for, they will get the device-is-busy-by-
another-application exception).

On the basis of the features of malicious
applications that record telephone conversations and
conversations nearby the user, the algorithms
implementing the following were developed:
 creating a list of running applications that may

to record conversations (Figure 3);
 mobile device microphone and speakers

availability check (Figure 4).

Figure 3: Flowchart of making the list of running
applications that have access rights to the microphone and
speakers of the mobile device.

Checking access rights to mobile device
microphone and speaker is based on the presence of
android.permission.RECORD_AUDIO permission
in the configuration file of running application
(Figure 4).

The mobile device microphone and speaker
availability check is performed by an attempt to
record a telephone conversation or nearby
conversation. Success of the attempt to record
indicates the absence of applications calling to the
microphone and speaker.

In the case of exception proving the microphone
and speaker being used, a list of running applications
that may record conversations is created. This list of
applications is shown to the user, who can terminate
any application from the given list or add it to the
white list. Applications from the white list will be
marked as trusted.

Protection against malicious applications that
perform program calls and hidden data transmission
is developed on the basis of features, revealed during
analysis of program calls and hidden data
transmission capabilities. During the analysis it was
found that the program for rooted devices developed

KMIS�2014�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

166

Figure 4: Flowchart of microphone and speaker availability check.

by an attacker must interact directly with the radio
interface layer (RIL), sending AT-commands for the
call and the data transfer.

According to the described features of malicious
applications that perform program calls and hidden
data transmission, to ensure protection it is
necessary to filter AT-commands received by
baseband-processor. In order to filter AT-commands
received by baseband-processor, a layer responsible
for the interaction between baseband-processor and
RIL demon was developed.

Creation of the interaction layer between
baseband-processor and RIL demon means renaming
pseudo-terminals /dev/smd0 в /dev/smd0Real, and
then creating the process that will create а proxy
/dev/smd0 and two streams for working with
pseudo-terminals and proxy (Figure 5). Initial
/dev/smd0 is a driver for the baseband. All

interactions between the phone and base stations
pass through this driver.

Figure 5: Stages of a filtering mechanism introduction for
Android.

To implement AT-commands transferred through
RIL to baseband-processor filtering mechanism,
streams were set up as follows:

Development�of�the�Protection�System�Against�Malicious�Software

167

 pthread_1 stream connects to the pseudo-
terminals and records AT-command got from
pthread_2 stream to it;

 pthread_2 stream (filter stream) connects to the
created proxy new /dev/smd0 and transfer AT-
commands that do not follow filtering rule. So
all suspicious AT- commands will be filtered
on this stream.

Filtering is conducted according to the AT-
commands responsible for outgoing calls and data
transfer identified during the analysis:

ATD – dial an outgoing call;
ATA – answer an incoming call;
AT+CMGS – send a data message;
AT+CMSS – send a saved message;
AT+CBST – establish connection for data

transmission through the Internet.
The algorithm that provides the foundation for

filtering outgoing calls is shown in Figure 6.

Figure 6: Flowchart of outgoing calls filtering.

The algorithm shown in the figure 4.6 is
implemented in pthread_2 stream. When an AT-
command comes from the created proxy /dev/smd0,
the stream checks it with ATD. Getting ATD order
means that an outgoing call takes place, but nothing
proves if it is initiated by the software. To identify
the software call the stream conducts a flow
outgoing call database query. If the phone number
being called is the same as in the last number in
outgoing calls database record, the pthread_2 stream
transmits AT-command to the pthread_1 stream,
which in turn transmits it to baseband-processor, and
the outgoing call is being performed. Otherwise, the
pthread_2 stream drops AT-command and notifies
the user about an attempt to communicate with the
number specified in the command.

3 TESTING

The proposed antivirus security software has been
tested following the steps:
 antivirus installation on the infected device;
 virus database update;
 full scan;
 infected files delete. Cache delete;
 attempt to download an infected object from the

Internet.
In order to evaluate the performance of antivirus,

devices with different security software (namely
Kaspersky Mobile Security, Dr.Web, ESET, Norton
Antivirus, F-Secure Mobile Security, McAfee
Mobile Security, AVG Mobilation, Avast!, Avira
Anroid Security, Trend Micro Mobile Security,
Lookout Premium and the proposed one) were
infected by viruses such as
Android.SmsSend.186.origin and remote control spy
programs such as Mobile Spy (Trojan
Android.SmsSend.186.origin 2012, Mobile Spy
2013).

The testing results are presented in Table 2.

Table 2: Popular antiviruses’ performance testing on
devices infected by Android.SmsSend.186.origin.

 Proposed
security
software

Kaspersky Mobile
Security, Dr.Web,
ESET, Norton
Antivirus

Effectiveness
Detect all
tested malware

No one detects all
malware

Database
update

Only software
update;
database update
is not required

Daily database
update is required
taking lots of
memory

Full scan

All infected
files are found

All infected files
are found only by
Kaspersky Mobile
Security

Infected files
delete

Dialog window
with options:
delete, ignore

Dialog window
with options:
delete, ignore

Attempt to
download an
infected
object

Prohibited Prohibited only by
Kaspersky Mobile
Security and
Dr.Web

Based on the testing, it was concluded that

proposed antivirus has the same operation quality as
Kaspersky Mobile Security and Dr.Web, which are
widespread in Russia. In addition to direct protection
against viruses and malware, the developed software
can provide such additional functions as: hide
personal contacts and information, block unwanted

KMIS�2014�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

168

calls and SMS, unauthorized camera and
microphone activation prevention.

4 CONCLUSIONS

The proposed antivirus can detect hazardous
applications and programs that lead to malfunction,
incorrect system work, device speeding down, data
loss or corruption, system alert. It is able to protect
the user from applications recording conversations,
both personal and telephone, and does not allow spy
applications to secretly transmit data and activate
programs. Antivirus software monitors camera
activation and warns the user when the camera is on
without displaying on the screen corresponding
information. This feature is not available in the
existing well-known antivirus software.

The work is underway to improve the
effectiveness and speed of the proposed antivirus,
diversify its functions and carry out additional tests
and simulations confirming security software
efficiency.

REFERENCES

Wang Guolu; Qiu Kaijin; Xu hai; Chen Yao. 2013. The
design and implementation of a gravity sensor-based
mobile phone for the blind. 4th IEEE International
Conference on Software Engineering and Service
Science (ICSESS). Pages: 570 – 574.

Dohee Kim; Eunji Lee; Sungyong Ahn; Hyokyung Bahn.
2013. Improving the storage performance of
smartphones through journaling in non-volatile
memory. IEEE Transactions on Consumer
Electronics, (Volume: 59, Issue: 3). Pages: 556 – 561.

Xing, Min; Xiang, Siyuan; Cai, Lin. 2014. A Real-Time
Adaptive Algorithm for Video Streaming over
Multiple Wireless Access Networks. IEEE Journal on
Selected Areas in Communications (Volume: 32,
Issue: 4). Pages: 795 – 805.

Amalan, D.; Jurangpathy, B.Z.; Kodituwakku, S.D.;
Luckshan, M.A.; Weerakkody, P.K.; De Silva,
K.P.D.H. 2013. Voice active mobile browser for
windows phone 7 (A browser that helps visually
impaired people). IEEE Global Humanitarian
Technology Conference: South Asia Satellite (GHTC-
SAS). Pages: 144 – 148.

Szakacs-Simon, P.; Moraru, S.A.; Perniu, L. 2013.
Android application developed to extend health
monitoring device range and real-time patient
tracking. IEEE 9th International Conference on
Computational Cybernetics (ICCC). Pages: 171 – 175.

Jaehyun Lee; Junhyung Ahn; Yoonji Lee; Chulyun Kim.
2013. Implementation of Semantic Directory Service

on Image Gallery Application of Mobile Devices.
International Conference on Information Science and
Applications (ICISA). Pages: 1 – 2.

Mikhaylov Dmitry, Zhukov Igor, Starikovskiy Andrey,
Kharkov Sergey, Tolstaya Anastasia, Zuykov
Alexander. 2013. Review of Malicious Mobile
Applications, Phone Bugs and other Cyber Threats to
Mobile Devices. Proceedings of 2013 5th IEEE
International Conference on Broadband Network &
Multimedia Technology (5th IEEE IC-BNMT 2013),
November 17-19th 2013 Guilin, China. Pages 302-
305.

Zhukov Igor, Mikhaylov Dmitry, Starikovskiy Andrey,
Dmitry Kuznetsov, Tolstaya Anastasia, Zuykov
Alexander. 2013. Security Software Green Head for
Mobile Devices Providing Comprehensive Protection
from Malware and Illegal Activities of Cyber
Criminals. International Journal of Computer Network
and Information Security (IJCNIS) Vol. 5, No. 5,
April 2013. Рages 1-8.

Patrick Northcraft. 2014. Android: The Most Popular OS
in the World. AndroidHeadlines.com, February 15,
2014. URL: http://www.androidheadlines.com/2014/
02/android-popular-os-world.html.

Shahriar, Hossain; North, Sarah; Mawangi, Edward.
Testing of Memory Leak in Android Applications.
2014. IEEE 15th International Symposium on High-
Assurance Systems Engineering (HASE). Pages: 176 –
183.

Sbirlea, D.; Burke, M.G.; Guarnieri, S.; Pistoia, M.;
Sarkar, V. 2013. Automatic detection of inter-
application permission leaks in Android applications.
IBM Journal of Research and Development (Volume:
57, Issue: 6), Nov.-Dec. 2013. Pages: 10:1 - 10:12.

Taenam Cho; Jae-Hyeong Kim; Hyeok-Ju Cho; Seung-
Hyun Seo; Seungjoo Kim. 2013. Vulnerabilities of
android data sharing and malicious application to
leaking private information. Fifth International
Conference on Ubiquitous and Future Networks
(ICUFN). Pages: 37 – 42.

Mulliner, C.; Liebergeld, S.; Lange, M.; Seifert, J.-P.
2012. Taming Mr Hayes: Mitigating signaling based
attacks on smartphones. 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN). Pages: 1 – 12.

Stirparo, Pasquale; Fovino, Igor Nai; Taddeo, Marco;
Kounelis, Ioannis. 2013. In-memory credentials
robbery on android phones. World Congress on
Internet Security (WorldCIS). Pages: 88 – 93.

Woo Bong Cheon; Keon il Heo; Won Gyu Lim; Won
Hyung Park; Tai Myoung Chung. 2011. The New
Vulnerability of Service Set Identifier (SSID) Using
QR Code in Android Phone. International Conference
on Information Science and Applications (ICISA).
Pages: 1 – 6.

Miller, C. 2011. Mobile Attacks and Defense. IEEE
Security & Privacy, (Volume: 9, Issue: 4), July-Aug.
2011. Pages: 68 – 70.

Barrere, M.; Hurel, G.; Badonnel, R.; Festor, O. 2013. A
probabilistic cost-efficient approach for mobile

Development�of�the�Protection�System�Against�Malicious�Software

169

security assessment. 9th International Conference on
Network and Service Management (CNSM). Pages:
235 – 242.

Cozzette, A.; Lingel, K.; Matsumoto, S.; Ortlieb, O.;
Alexander, J.; Betser, J.; Florer, L.; Kuenning, G.;
Nilles, J.; Reiher, P. 2013. Improving the security of
Android inter-component communication. IFIP/IEEE
International Symposium on Integrated Network
Management (IM 2013). Pages: 808 – 811.

Al-Saleh, M.I.; Espinoza, A.M.; Crandall, J.R. 2013.
Antivirus performance characterization: system-wide
view. IET Information Security, (Volume: 7, Issue: 2).
Pages: 126 – 133.

Bläsing, T.; Batyuk, L.; Schmidt, A.-D.; Camtepe, S.A.;
Albayrak, S. 2010. An Android Application Sandbox
system for suspicious software detection. 5th
International Conference on Malicious and Unwanted
Software (MALWARE). Pages: 55 – 62.

Pieterse, H.; Olivier, M.S. 2013. Security steps for
smartphone users. Information Security for South
Africa. Pages: 1 – 6.

Fu-Hau Hsu; Min-Hao Wu; Chang-Kuo Tso; Chi-Hsien
Hsu; Chieh-Wen Chen. 2012. Antivirus Software
Shield Against Antivirus Terminators. IEEE
Transactions on Information Forensics and Security,
(Volume: 7, Issue: 5). Pages: 1439 – 1447.

Chia-Mei Chen, Ya-Hui Ou. 2011. Secure mechanism for
mobile web browsing. IEEE 17th International
Conference on Parallel and Distributed Systems
(ICPADS). Pages: 924 – 928.

Kasama, T.; Yoshioka, K.; Inoue, D.; Matsumoto, T.
2012. Malware Detection Method by Catching Their
Random Behavior in Multiple Executions. IEEE/IPSJ
12th International Symposium on Applications and the
Internet (SAINT). Pages: 262 – 266.

Dube, T.E.; Raines, R.A.; Grimaila, M.R.; Bauer, K.W.;
Rogers, S.K. 2013. Malware Target Recognition of
Unknown Threats. IEEE Systems Journal, (Volume: 7,
Issue: 3). Pages: 467 – 477.

Hsiang-Yuan Hsueh; Kun-Fu Huang; Wei-Ming Wu;
Chih-Lin Li. 2013. Evaluating the risk of Android
application: Design and implementation of static
analysis system. 6th International Conference on
Advanced Infocomm Technology (ICAIT). Pages: 236
– 237.

Batyuk, L.; Herpich, M.; Camtepe, S.A.; Raddatz, K.;
Schmidt, A.-D.; Albayrak, S. 2011. Using static
analysis for automatic assessment and mitigation of
unwanted and malicious activities within Android
applications. 6th International Conference on
Malicious and Unwanted Software (MALWARE).
Pages: 66 – 72.

Yan Ma; Sharbaf, M.S. 2013. Investigation of Static and
Dynamic Android Anti-virus Strategies. Tenth
International Conference on Information Technology:
New Generations (ITNG). Pages: 398 – 403.

William Enck, Peter Gilbert, Byung-Gon Chun. 2010.
TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones.
Pages: 1 – 15.

Android operating system architecture. 2011. Android-
shark. URL: http://android-shark.ru/arhitektura-
operatsionnoy-sistemyi-android.

Michael Lawrence. 2012. Tutorial How to Install Games
on Galaxy Mini. Tutorial For Android. URL:
http://tutorialfor-android.blogspot.ru/2012/05/tutorial-
how-to-install-games-on-galaxy.html.

Trojan Android.SmsSend.186.origin. 2012. IT-sector.
URL: http://it-sektor.ru/android.smssend.186.origin-
troyan-otpravlyauschiyi-platnye-sms-
soobscheniya.html.

Mobile Spy. 2013. Top 10 Spy Software. URL:
http://top10spysoftware.com/review/mobilespy.

KMIS�2014�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

170

