
quality with minimum effort. Moreover, a short 
product life cycle leads to frequent design changes. 
This increases the challenge on the process designers 
to setup fault free processes the first time right. The 
macro simulation tool provides an opportunity to 
analyse and optimize the machining processes. 
In the macro simulation, the macroscopic 
engagement is calculated on the discrete points of 
the toolpath. Using these calculated macroscopic 
engagement conditions, interpretations regarding the 
real process conditions can be deduced. With an 
extension of the macroscopic simulation, even 
microscopic geometric process characteristics are 
derived. Thus NC machining processes can be 
characterized based on purely macroscopic and 
microscopic geometrical parameters which are 
derived using the macroscopic engagement 
parameters. Further this process analysis is 
independent of empirical process data. 
Prediction of the critical sections on the toolpath, 
where the process technology values can exceed the 
allowable limits set during process design, is 
possible. Through the proactive identification of the 
critical process sections, their elimination at the 
process design phase is possible before the 
machining processes are executed, thereby reducing 
potential expensive damages and machine 
downtime. Moreover there is improvement in the 
process reliability. Thus there is optimization in the 
productivity of the NC machining processes. 
ACKNOWLEDGEMENTS 
The authors would like to thank the German 
Research Foundation DFG for the support of the 
depicted research within the Cluster of Excellence 
"Integrative Production Technology for High-Wage 
Countries". 
REFERENCES 
Altintas, Y., 2012, Manufacturing automation: Metal 
cutting mechanics, machine tool vibrations, and CNC 
design,  2nd edn., Cambridge University Press, 
Cambridge, New York. 
Bouzakis, K.-D., Michailidis, N., Gerardis, S., 
Katirtzoglou, G., Lili, E., Pappa, M., Brizuela, M., 
Garcia-Luis, A. & Cremer, R., 2008, ‘Correlation of 
the impact resistance of variously doped CrAlN PVD 
coatings with their cutting performance in milling 
aerospace alloys’, Surface and Coatings Technology 
203(5-7), 781–785. 
Choi, B.K. & Jerard, R.B., 1998, Sculptured surface 
machining: Theory and applications, Kluwer 
Academic, Dordrecht, London. 
Degner, W., Ham, N. C., Untersuchungen beim spanen 
mit kleinen spanungsdicken, Fertigungstechnik und 
Betrieb 13 (1973), 523 – 528. 
Gey, C., 2002, Prozessauslegung für das Flankenfräsen 
von Titan, VDI-Verl., Düsseldorf. 
Hoischen, H., 2003, Technisches Zeichnen: Grundlagen, 
Normen, Beispiele, darstellende Geometrie ; ein Lehr-
, Übungs- und Nachschlagebuch für Schule, 
Umschulung, Studium und Praxis, 29th edn., 
Cornelsen Girardet, Berlin. 
Klocke, F., 2011, Manufacturing Processes, Springer, 
Berlin, Heidelberg, New York. 
Kronenberg, M., 1969, Grundzüge der Zerspanungslehre: 
Theorie und Praxis der Zerspanung für Bau und 
Betrieb von Werkzeugmaschinen, 2nd edn., Springer, 
Berlin [etc.]. 
Lazoglu, I. & Liang, S. Y., 2000, ‘Modeling of Ball-End 
Milling Forces With Cutter Axis Inclination’, Journal 
of Manufacturing Science and Engineering 122(1), 3. 
Meinecke, M., 2009, Prozessauslegung zum fünfachsigen 
zirkularen Schruppfräsen von Titanlegierungen, 
Apprimus-Verl., Aachen. 
Minoufekr, M., Glasmacher, L., Adams, O., ‘Macroscopic 
Simulation of Multi-axis Machining Processes’, 10th 
International Conference on Informatics in Control, 
Automation and Robotics (ICINCO 2013), 505–516. 
Ozturk, E., Tunc, L. T. & Budak, E., 2009, ‘Investigation 
of lead and tilt angle effects in 5-axis ball-end milling 
processes’,  International Journal of Machine Tools 
and Manufacture 49(14), 1053–1062. 
Schug, P. et al, 2012, Durchgängige CAx-Prozessketten, 
Forschung an der Werkzeugbau Akademie, Apprimus, 
Aachen. 
Zabel, A., 2010, Prozesssimulation in der Zerspanung, 
Vulkan-Verlag, Dortmund. 
ICINCO2014-11thInternationalConferenceonInformaticsinControl,AutomationandRobotics
670