
Privacy Preserving Delegated Word Search in the Cloud

Kaoutar Elkhiyaoui, Melek̈Onen and Refik Molva
EURECOM, Sophia-Antipolis, France

Keywords: Privacy Preserving Keyword Search, Delegation, Cloud.

Abstract: In this paper, we address the problem of privacy preserving delegated word search in the cloud. We consider
a scenario where a data owner outsources its data to a cloud server and delegates the search capabilities to a
set of third party users. In the face ofsemi-honestcloud servers, the data owner does not want to disclose any
information about the outsourced data; yet it still wants to benefit from the highly parallel cloud environment.
In addition, the data owner wants to ensure that delegating the search functionality to third parties does not
allow these third parties to jeopardize the confidentiality of the outsourced data, neither does it prevent the
data owner fromefficientlyrevoking the access of these authorized parties. To these ends, we propose a word
search protocol that builds upon techniques of keyed hash functions, oblivious pseudo-random functions and
Cuckoo hashing to construct a searchable index for the outsourced data, and uses private information retrieval
of short information to guarantee that word search queries do not reveal any information about the data to
the cloud server. Moreover, we combine attribute-based encryption and oblivious pseudo-random functions to
achieve an efficient revocation of authorized third parties. The proposed scheme is suitable for the cloud as it
can be easily parallelized.

1 INTRODUCTION

The cloud computing paradigm offers clients the ease
of outsourcing the storage of their massive data with
the advantage of reducing cost and assuring availabil-
ity. Large-scale cloud infrastructures bring up severe
security and privacy issues: Apart from traditional se-
curity challenges, the outsourced storage of ”big data”
raises the challenge of processing it at the cloud in a
secure and privacy preserving manner while consider-
ing the cloud provider itself as a potential adversary.

While data owners (i.e. clients) can simply en-
crypt their data before outsourcing it to the cloud, tra-
ditional confidentiality mechanisms fall short when
it comes to mining/processing the data. Recently,
several solutions have been proposed to allow the
search of words over encrypted data. In this paper
however, we address the problem of delegated word
search whereby in addition to the data owner itself,
some authorized third-parties can perform search op-
erations over private data. In addition to security and
privacy properties that classical search solutions as-
sure under a semi-honest (i.e., honest-but-curious) se-
curity model, a privacy preserving delegated word
search mechanism includes the delegation and revo-
cation operations: The data owner should be able to

remove the search capability of a third party at any
point in time through an efficient revocation mecha-
nism.

We propose a new privacy preserving word search
solution whereby as in (Chor et al., 1997), the data
owner constructs a searchable index with all words
listed in its files and similarly to (Blass et al., 2012),
it applies a private information retrieval to guaran-
tee that the adversary including the cloud itself does
not discover any information about the search query
and its result. The newly proposed solution out-
performs existing ones thanks to a combination of
Cuckoo hashing with private information retrieval for
the search operation. The use of Cuckoo hashing
helps in assigning one word to a unique position in
the index, thus removing the probability of collisions
within the index: The data owner first constructs a
confidential index where each particular element cor-
responds to a unique word and fills it in with some
private information derived from the actual word.
The search operation consists of the computation of
the position corresponding to the queried word using
Cuckoo hashing, and building the corresponding PIR
query to be sent to the cloud provider.

Moreover, the delegation operation is assured
thanks to the use of attribute based encryption (ABE)

137Elkhiyaoui K., Önen M. and Molva R..
Privacy Preserving Delegated Word Search in the Cloud.
DOI: 10.5220/0005054001370150
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 137-150
ISBN: 978-989-758-045-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

which only allows users holding certain ”attributes”
to search over the data. For example, when compa-
nies outsource their logs over the cloud, they can al-
low some data protection commissioner to search over
them under an audit operation. Whereas efficient re-
vocation is achieved by a combination of ABE and
oblivious pseudo random functions. The revocation
operation does not imply the re-encryption of the out-
sourced data and only requires an update of the access
policy by the data owner which can be considered as
a negligible cost.

The major contributions of the paper can be sum-
marized as follows:

• We propose a new word search protocol which
is based on an efficient word-index construction
thanks to the use of Cuckoo hashing and the trans-
formation of PIR into privacy preserving word
search.

• The newly proposed solution also includes del-
egation and revocation capabilities thanks to the
use of Attribute Based Encryption and Oblivious
Pseudo Random Functions. The revocation oper-
ation does not incur any cost except for the update
of the access policy by the data owner.

• We define the main privacy requirements and fur-
ther provide a formal analysis of these properties.

Section 2 introduces the generic problem of pri-
vacy preserving delegated word search and the appli-
cation scenario. The different privacy requirements
are formally defined in section 3. The first version
of the privacy preserving word search solution is de-
scribed in section 4. The entire solution including the
delegation and revocation operations is presented in
section 5. We analyze the new solution in terms of se-
curity and performance in Sections 6 and 7. Finally,
Section 8 reviews the state of the art.

2 BACKGROUND

We consider a scenario where a data owner outsources
some privacy sensitive data to a cloud server and
wishes to later on perform some operations over it
without revealing any details about the data. The op-
eration we are focusing on is word search over en-
crypted data and in our scenario the data owner may
wish to delegate part of the search operations to au-
thorized third parties. An illustrative example of such
a requirement can be a scenario wherein due to regu-
latory matters, some data (such as logs) still need to
be searchable by third parties such as data protection
commissioners. The three entities involved in a pri-
vacy preserving delegated word search and the main

algorithms are formally defined in the following sec-
tions.

2.1 Entities

A privacy preserving delegated word search involves
the following entities:

• Data Owner. O: It possesses a large fileF that
it outsources to the cloud serverS . Without loss
of generality, we assume that the number of dis-
tinct words inF is n and the corresponding set is
defined asLω = {ω1,ω2, ...,ωn}. Similarly to pre-
vious work such as (Curtmola et al., 2006; Blass
et al., 2012), we assume that onceO outsources a
file F , it will no longer modify it.

• Cloud Server. S : It stores anencryptedversion
of the outsourced fileF and a searchable indexI
of the setLω of “distinct” words present inF .

• Authorized User. U: It has access to a set of
credentials that enable it to perform search queries
on F . This authorized user could be an auditor
which as part of its auditing task has to search the
activity logs ofO. We also note that in some cases
an authorized user could correspond to the data
owner that wants to perform word search on its
outsourced data.

2.2 Privacy Preserving Delegated
Word-search

In accordance with the work of (Curtmola et al.,
2006), a privacy preserving delegated word-search
comprises the following algorithms:

• Setup(ζ) → (MK,P): It is a randomized algo-
rithm that is executed by the data ownerO. It
takes as input the security parameterζ, and out-
puts a master keyMK and a set of public parame-
tersP that will be used by subsequent algorithms
to perform the word-search.

• Encrypt(MK,F)→ C: This algorithm is run by
O. It has as input the master keyMK and the file
F , and outputs an encryptionC of file F .

• BuildIndex(MK,F)→ I : This algorithm has as
input the master keyMK and a fileF and outputs
an indexI of distinct wordsωi present inF. This
algorithm is generally run by the data ownerO.

• Delegate(MK,Sto, idu)→ Ku: This algorithm is
executed byO to delegate the search capabilities
on its files to some third party user. On input of the
master keyMK, the current stateSto of O and the
identifier idu of some userU, Delegate outputs a
secret keyKu that will be provided toU.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

138

• Token(ω,Stu,Ku) → τ: This algorithm is exe-
cuted by authorized users or the data ownerO to
generate a search token for some wordω. It takes
as input the wordω, the current stateStu of autho-
rized userU and the keyKu and outputs a search
tokenτ.

• Query(τ)→ Q : It is a randomized algorithm that
is run by authorized users to generate word search
queries. On input of a tokenτ, Query outputs a
word search queryQ that will be forwarded to
cloud serverS .

• Response(Q ,I)→ R : This algorithm is invoked
by S wheneverS receives a word search queryQ .
It takes as inputQ and the indexI and outputs a
word search responseR .

• Verify(R ,Stu)→ b: It is a deterministic algorithm
run by authorized users to verifyS ’s responses.
On input ofS ’s responseR and the current state
Stu of authorized userU, Verify outputs a bitb=
1 if ω ∈ F andb= 0 otherwise.

• Revoke(MK,Sto, idu) → (St′o,St
′
s): This algo-

rithm is run by the data ownerO to revoke the
access of previously authorized users. It has as
input the master keyMK, the current stateSto of
data ownerO and the identifieridu of some previ-
ously authorized userU, and it outputs an updated
stateSt′o for O and an updated stateSt′s for cloud
serverS .

3 ADVERSARY MODEL

The crucial privacy challenge to address when design-
ing a privacy preserving delegated word search is as-
suring privacy against a misbehaving cloud server. In-
deed, the cloud server may attempt to infer sensitive
information about the outsourced files (and their own-
ers thereof) from the ciphertexts and indexes it keeps.
It may also try to derive information about those files
from the word search queries it processes. Thus, it
is of utmost importance to ensure that the ciphertexts
and the indexes that the cloud stores together with the
word search queries it processes do not leak any in-
formation about the data owners’ files.

Furthermore, the delegation of search capabilities
to third party users inherently raises the requirements
of access authorization and revocation, and therewith
the requirement ofprivacy against revoked users. For
example, a previously authorized user may exploit the
information it collected during its word search oper-
ations that occurred when it was still authorized to
conduct lookup operation after its revocation so as
to learn new information about the outsourced files.

Therefore, one should ensure that even if revoked
users can still issue valid search queries to the cloud
server, they should not be able to decode the cloud
server’s responses.

Along these lines, we provide in the subsequent
sections formal models for the notions of both pri-
vacy against cloud servers and privacy against re-
voked users, which we will employ to assess the se-
curity of our scheme in the appendix of this paper.
Of course, solutions protected against misbehaving
clouds and revoked users are inherently secure against
any other type of external adversaries.

3.1 Privacy Against Cloud Server

In accordance with the work of (Blass et al., 2012)
and (Curtmola et al., 2006), we assume that the cloud
serverS is semi-honest: Although interested in dis-
covering the content of the data and the queries,S
still performs all the required operations correctly.

A privacy preserving delegated word search
should ensure that thesemi-honestcloud serverS
does not discover any information about the content
of an outsourced file from either its encryption or its
index. This means that in addition to not being able
to break the confidentiality of the outsourced data,S
should neither be able to mount statistical attacks on
the outsourced files (e.g. occurrence of words) nor to
tell whether two files contain (or do not contain) the
same words. In compliance with the work of (Blass
et al., 2012), we refer to this requirement asstorage
privacy. Moreover, a solution for privacy preserv-
ing delegated word search should as well guarantee
query privacy: during the lookup phase, cloud server
S should not be able to derive any useful informa-
tion about the queries of authorized users. Namely,
S should not be able to tell whether any two word
search queries were issued for the same word or not
(cf. (Blass et al., 2012)).

To formally capture the adversarial capabilities of
S in the subsequent privacy definitions, we assume
thatS is given access to the following oracles:

• Oencrypt(F,MK)→ C: This oracle takes a fileF
and the master keyMK of some data ownerO as
inputs and computes an encryptionC of file F by
calling the algorithmEncrypt.

• Oindex(F,MK)→ I : On inputs of fileF and the
master keyMK, this oracle executes the algorithm
BuildIndex and returns the indexI associated with
file F .

• Osearch,s(I ,ω)→ views: Cloud serverS invokes
this oracle whenever it wants to receive and pro-
cess a word search query. On inputs of index

Privacy�Preserving�Delegated�Word�Search�in�the�Cloud

139

Algorithm 1: Learning phase of the storage pri-
vacy game.

// S calls oracles Oencrypt and Oindex a polynomial

// number of times
Fi ← S ;
Ci ← Oencrypt(Fi ,MK);
Ii ← Oindex(Fi ,MK);
//S returns a challenge word
ω∗← S ;

Algorithm 2: Challenge phase of the storage
privacy game.

// Let F∗0 and F∗1 be two files s.t. F
∗
1 contains ω∗

// while F∗0 does not
b← {0,1};
C∗b← Oencrypt(F∗b ,MK);
I ∗b ← Oindex(F∗b ,MK);
b∗← S ;

I and wordω, this oracle starts an execution of
the word search protocol with cloud serverS to
check whetherω is in I or not. At the end of the
word search operation,Osearch,s returns the view
views = (Sts, rands,M1,s,M2,s, ...,Ml ,s) of cloud
serverS during the word search, whereSts is the
current state of cloud serverS , rands is its inter-
nal randomness that it used to generate its word
search response andMi,s is the ith message that
S received during the word search from oracle
Osearch,s.

3.1.1 Storage Privacy

We define storage privacy using an
indistinguishability-based game that comprises
two phases: A learning phase (cf. Algorithm 1) and a
challenge phase (cf. Algorithm 2). The goal of cloud
serverS in this game is to tell whether a challenge
file F∗b contains some wordω∗. To this effect, cloud
serverS calls the oraclesOencrypt and Oindex for a
polynomial number of times in the learning phase.
By the end of this phase,S outputs a challenge word
ω∗.

Let F∗0 andF∗1 be two files such thatF∗1 contains
ω∗ while F∗0 does not.

Now in the challenge phase, cloud serverS is pro-
vided with the encryptionC∗b and the indexI ∗b of file
F∗b whereb is picked randomly from{0,1}. At the
end of the challenge phase,S outputs its guessb∗ for
the bit b. We say thatS succeeds in the storage pri-
vacy game ifb= b∗.

Definition 1. [Storage Privacy] Let ΠS
success denote

Algorithm 3: Learning phase of the query pri-
vacy game.

// S calls oracles Oencrypt, Oindex, and Osearch,s

// a polynomial number of times
(Fi ,ωi)← S ;
Ci ← Oencrypt(Fi ,MK);
Ii ← Oindex(Fi ,MK);
views,i ← Osearch,s(I ,ωi);
//S outputs achallenge file F∗ and two distinct

// words ω0 and ω1

(F∗,ω∗0,ω∗1)← S ;

Algorithm 4: Challenge phase of the query pri-
vacy game.

C∗← Oencrypt(F∗,MK);
I ∗← Oindex(F∗,MK);
b←{0,1};
view∗s← Osearch,s(I

∗,ω∗b);
b∗← S ;

the probability thatS succeeds in the storage privacy
game. We say that a word search protocol assures
storage privacy,iff for any cloud serverS , ΠS

success ≤
1
2 + ε, whereε is a negligible function in the security
parameterζ.

3.1.2 Query Privacy

Similarly to storage privacy, we formalize query pri-
vacy through an indistinguishability-based game that
runs in two phases: A learning phase and a challenge
phase. In the learning phase as depicted in Algo-
rithm 3, cloud serverS picks adaptively a polynomial
number of file and word pairs(Fi ,ωi). For each se-
lected pair(Fi ,ωi), S calls first the oraclesOencrypt

andOindex to encryptF and build the corresponding
index respectively, then it queries the oracleOsearch,s
to receive and process a search query for wordωi in
Fi . At the end of the learning phase,S outputs a chal-
lenge fileF∗ and two challenge wordsω∗0 andω∗1.

In the challenge phase (cf. Algorithm 4), cloud
serverS queries the oraclesOencrypt andOindex which
provideS with the encryption and the index of the
challenge fileF∗ respectively. Then, the oracle
Osearch,s executes an instance of the word search pro-
tocol for wordω∗b with S , whereb is a randomly se-
lected bit. Finally,S outputs its guessb∗ for the bitb.
We say thatS succeeds in the query privacy game if
b= b∗.

Definition 2. Let ΠS
success denote the probability that

S succeeds in the query privacy game. We say that

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

140

a word search protocol ensures query privacy,iff for
any cloud serverS , ΠS

success ≤ 1
2 +ε, whereε is a neg-

ligible function in the security parameterζ.

3.2 Privacy Against Revoked Users
(”Forward Privacy”)

Ideally, a privacy preserving delegated word search
should assure that when an authorized user is revoked,
it can no longer look for words in the cloud server’s
files (this does not imply that the revoked user can-
not query the server’s database, rather it means that
it cannot successfully interpret the cloud server’s re-
sponses). In other words, a privacy preserving dele-
gated word search should make sure that even if a re-
voked user is able to issue word search queries, it can-
not infer any new informationabout the outsourced
files that it did not learn before its revocation. This
requirement resembles the notion of forward secrecy
whereby a user cannot have access to any data after its
revocation. In the context of word search in addition
to the content of the data, the revoked user should not
infer any additional information from future queries
as well.

Since in this paper we only focus onstatic data
(i.e. the data owner does not update its file once out-
sourced to the cloud server), we argue that the above
intuition can be captured by assuring that revoked
users cannot look up a word for which they did not
issue a search query when they were still authorized.

Without loss of generality, we assume that there
is a data ownerO that outsources its fileF and the
corresponding indexI to cloud serverS , and that a
userU is interested in searching the fileF even after
its revocation. To this effect,U may behavemali-
ciouslyduring the execution of the word search pro-
tocol. Namely,U may provide bogus word search
queries to cloud serverS .

In order to formalize privacy against revoked
users, we use a privacy game that similarly to the two
previous games consists of a learning and a challenge
phase. In addition to the oraclesOencrypt andOindex,
userU has access to the following oracles.

• Odelegate(MK)→ Ku: On input of the data owner
O ’s master keyMK, the oracleOdelegate executes
the algorithmDelegate to allow U to perform
word search onO ’s file F and outputs the secret
keyKu.

• Orevoke: This oracle revokes the right ofU to
search the fileF by executing the algorithm
Revoke which updates the states of data ownerO
and cloud serverS .

• Osearch,u(I ,ω) → viewu: U calls this oracle

whenever it wants to perform a word search
on the indexI . It takes as input an indexI
and a wordω and outputs the viewviewu =
(Stu, randu,M1,u,M2,u, ...,Ml ′,u) of userU during
the word search, whereStu is the current state of
userU andrandu is its internal randomness that it
used to generate its word search query, whereas
Mi,u corresponds to theith message thatU re-
ceived fromOsearch,u during the word search.

• Ochal,u(I ,ω) → chalu,b: When called with an
index I and word ω, this oracle flips a
random coin b ∈ {0,1}. If b = 1, then
Ochal,u returns the actual viewchalu,1 = viewu =

(Stu, randu,M1
1,u,M

1
2,u, ...,M

1
l ′,u) of userU during

the word search forω, such thatStu is the current
state of userU andrandu is its internal random-
ness, whereasMi,u corresponds to theith message
that U received fromOsearch,u during the word
search. Ifb = 0, thenOchal,u outputschalu,0 =

(Stu, randu,M0
1,u,M

0
2,u, ...,M

0
l ′,u), whereStu is the

current state of userU and randu is its internal
randomness, andM0

i,u are generated randomly by
Ochal,u.

Once userU enters the learning phase of the pri-
vacy game (see Algorithm 5), it first calls the oracle
Oindex with a file F of its choosing to get the cor-
responding indexI . Next userU invokes the ora-
cle Odelegate which suppliesU with the secret key
Ku. This key will enableU to execute the word
search protocol with cloud serverS on the indexI
and therewith on fileF . Then userU queries the or-
acleOsearch,u for a polynomial number of wordsωi
of its choosing. Next, the oracleOrevoke revokesU.
After the revocation,U can still issue a polynomial
number of word search queries on fileF by calling
Osearch,u. Finally,U outputs a challenge wordω∗ that
is not present in fileF.

In the challenge phase (see Algorithm 6),U
queries the oracleOchal,u with the wordω∗ and the
index I ∗ that corresponds toF ∪ {ω∗}. The oracle
Ochal,u in turn flips a random coinb∈ {0,1} and out-
puts the challenge viewchal∗u,b. At the end of the chal-
lenge phase, revoked userU outputs a guessb∗ for bit
b.

We say thatU succeeds in the game of privacy
against revoked users ifi.) b= b∗ and if ii.) U did not
issue a search query for the challenge wordω∗ before
calling the oracleOrevoke (i.e. ω∗ 6= ωi , ∀i).
Definition 3. Let ΠU

success denote the probability that
U succeeds in the privacy game against revoked
users. We say that a delegated word search mech-
anism provides privacy against revoked usersiff for
any revoked userU, ΠU

success ≤ 1
2 + ε, whereε is a

Privacy�Preserving�Delegated�Word�Search�in�the�Cloud

141

Algorithm 5: Learning phase of the privacy
game against revoked users.

I ← Oindex(F,MK);
Ku← Odelegate(I);
// U calls Osearch,u for a polynomial number of

// times
ωi ←U;
viewu,i ← Osearch,u(I ,ωi);
Orevoke(U);
// U calls Osearch,u for a polynomial number of
// times after revocation

ω′i ←U;
view′u,i ← Osearch,u(I ,ω′i);
//U returns a challenge word that is not in file F
ω∗←U ;

Algorithm 6: Challenge phase of the privacy
game against revoked users.

I ∗← Oindex(F ∪{ω∗},MK);
chal∗u,b← Ochal,u(I

∗,ω∗);
b∗←U;

negligible function in the security parameterζ.

4 PRIVACY PRESERVING WORD
SEARCH

In this section, we describe the first version of the
proposed word search solution which does not offer
any delegation capabilities and therefore only assures
privacy against honest-but-curious cloud providers.
Similarly to (Chor et al., 1997; Blass et al., 2012),
to assure query privacy against asemi-honestcloud
server, we rely onPrivate Information Retrieval(PIR)
to build our word-search scheme. Actually, PIR al-
lows a user to retrieve a data block from a server’s
database without disclosing any information about the
sought block. However, PIR protocols assume that
the user know beforehand the position in the database
of the data block to be retrieved, and therefore, they
cannot be used directly in privacy preserving word
search wherein a user only holds a list of words to
look for. Fortunately, (Chor et al., 1997) proposed a
technique that transforms any PIR mechanism into a
protocol for private information retrieval by keyword,
and thereby, into a privacy preserving word-search.
The main idea is to first construct an index of all the
distinct words present in the outsourced data and then
apply a PIR to this index. As shown in (Chor et al.,
1997), this can be achieved by representing the index

by a hash-table that maps each word to a unique po-
sition in the table. During the search phase, the user
first computes the position of the requested word in
the hashtable (i.e. the index) and further runs PIR
to fetch the block stored at that position. While the
construction of (Chor et al., 1997) can be easily trans-
formed into a privacy preserving word search, we be-
lieve that it can be further optimized by usingCuckoo
hashingto build the hashtables (i.e. the indexes) of
the words in the outsourced files.

Along these lines, we first formalize and describe
the PIR and the Cuckoo hashing algorithms that will
underpin our word search solution.

4.1 Building Blocks

4.1.1 Trapdoor Private Information Retrieval

For efficiency purposes, we opt for a PIR mechanism
calledtrapdoor PIRwhich was proposed by (Trostle
and Parrish, 2010), and whose security is based on the
trapdoor group assumption. We stress however that
this particular PIR can be interchanged by any other
efficient PIR algorithm.

In compliance with the work of (Trostle and Par-
rish, 2010), we model the server’s database on which
private information retrieval is performed by a binary
(k, l)−matrix M . Trapdoor PIR allows a user to re-
trieve the bitb at position(x,y) in M as follows:

• PIRQuery(x)→~α: The user picks asecretlarge
numberp (typically |p| = 200 bits) and selects
randomlyu∈Z∗p andk other valuesai ∈Zp. Next,
it computes thek following values:ex = 1+2 ·ax
and ∀ i 6= x, ei = 2 · ai , and sends the vector
~α = (αi)

k
i=1 = (u ·ei mod p)k

i=1 to the cloud.

• PIRResponse(~α,M) → ~β: On receiving ~α,
the server computes the matrix product~β =
(β1,β2, ...,βl) =~α ·M .

• PIRAnalysis(~β,y) → b: After receiving the
server’s response~β = (β1,β2, ...,βl), the user
computesγy = βy ·u−1 mod p, and retrievesb by
computingγy mod 2.

4.1.2 Cuckoo Hashing

Cuckoo hashing was first proposed by (Pagh and
Rodler, 2004) to build efficient and practical data in-
dexes. It ensuresworst-caseconstant look-up and
deletion time andamortizedconstant insertion time
while minimizing the storage requirements.

In order to storen elements in some indexI ,
Cuckoo hashing uses two hash tablesT andT ′ con-
taining L entries each, and two hash functionsH :

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

142

{0,1}∗→{1,2, ...,L} andH ′ : {0,1}∗→{1,2, ...,L}.
Now, an elementτi is either stored in entryH(τi) in
hash tableT, or in entryH ′(τi) in hash tableT ′ but
never in both.

The lookup operation inI is therefore simple:
When given an elementτ ∈ {0,1}∗, the two entries
at positionsH(τi) andH ′(τi) are queried in tablesT
andT ′ respectively. To delete an elementτi from I ,
the entry corresponding toτi is removed. Finally, to
insert a new elementτi ∈ {0,1}∗ into I , we first check
whether the entry ofT at positionH(τi) is empty. If
it is the case, thenτi is inserted in this entry ofT and
the insertion algorithm converges. Otherwise, if that
entry is already occupied by another elementτ j , then
τ j will be removed from its current entry inT and re-
located to its other possible entryH ′(τ j) in T ′. Now,
if there is an elementτk in the entryH ′(τ j) of T ′, then
τ j will be inserted in entryH ′(τ j) in tableT ′ while
τk will be moved to its other possible entryH(τk) in
T. This insertion process is repeated iteratively until
the insertion of all elements in eitherT or T ′. If this
process of insertion does not converge (i.e., there is an
element that cannot be inserted), or it takes too long to
converge, then all the elements inI will be rehashed
with new hash functionsH andH′.

An analysis of Cuckoo hashing (Pagh, 2001)
shows that ifL≥ n, then there is a family of universal
hash functions that guarantees a small rehashing prob-
ability of orderO(1

n) and a constant expected time for
insertion. For a more comprehensive analysis of the
performance of Cuckoo hashing, the reader may refer
to (Pagh and Rodler, 2004).

4.2 Protocol Description

We recall that in this first version, the data ownerO
wants to upload a large fileF to cloud serverS and
once its data uploadedO wants to further search for
some words within the file without revealing any in-
formation to the semi-honest cloud server. The set
of all distinct words withinF is defined asLω =
{ω1,ω2, ...,ωn}. The proposed protocol can be di-
vided into two main phases:

• During theupload phase, before outsourcing its
data,O builds the index corresponding to then
distinct words present in fileF and encryptsF us-
ing asemantically securesymmetric encryption.

• During thesearchphase,O computes the posi-
tion of the requested wordω in F ’s index and
perform a PIR query to retrieve the information
stored at that position in the index. Upon recep-
tion of serverS ’s PIR response,O verifies this
response and decides accordingly whetherω is
present inF or not.

4.2.1 Setup

The data ownerO calls theSetup algorithm which
takes as input the security parameterζ and outputs a
master keyMK and a set of public parametersP such
that:

• The master keyMK is composed of a symmetric
encryption keyKenc and a MAC keyKmac.

• The public parametersP comprise a MACHmac :
{0,1}ζ× {0,1}∗ → {0,1}κ and a cryptographic
hash functionH : {0,1}∗→{0,1}t .

4.2.2 Upload

The file upload phase consists ofi.) Encrypting the
file F using asemantically secureencryption such as
AES in counter mode (cf.Encrypt) andii.) building
a searchable index forLω (cf. BuildIndex).

The data ownerO first generates a unique file
identifier fid for file F and then encryptsF by call-
ing the algorithmEncrypt. This algorithm takes
as inputs secret keyKenc and file F and outputs
a semantically secure encryptionC = Enc(Kenc,F)
of F . Next, O invokes the algorithmBuildIndex
which on input of master keyMK (more precisely
MAC key Kmac), file identifierfid and the list of dis-
tinct wordsLω = {ω1,ω2, ...,ωn} present inF out-
puts a list of MACsLH = {h1,h2...,hn}, such that
hi =Hmac(Kmac,ωi ||fid) where|| denotes concatena-
tion. Then the algorithmBuildIndex constructs an
index I for LH = {h1,h2...,hn} using Cuckoo hash-
ing. In order to optimize the performance of the
PIR underlying our word-search scheme, our index
will differ from traditional Cuckoo hashing indexes
by comprising two sets oft binary (rectangular) ma-
trices {M j}tj=1,{M ′

j}tj=1 of size (k, l) rather than
two hash-tablesT and T ′. Namely, instead of us-
ing two hash functions that hash into{1,2, ...,L}, we
employ two hash functionsH andH ′ that hash into
{1,2, ...,k}×{1,2, ..., l}. For an elementh∈ {0,1}∗,
the hash functionH (H ′ resp.) returns a position(x,y)
((x′,y′) resp.) in matrices{M j} ({M ′

j} resp.). More
precisely, the algorithmBuildIndex executes the fol-
lowing:

• FirstBuildIndex generates two sets oft binary ma-
trices{M j} and{M ′

j } (1≤ j ≤ t) of size (k, l)
each, where each element is initialized to 0.

• BuildIndex then picks two hashesH andH ′ that
map each elementhi in LH to either a position
(xi ,yi) = H(hi) in matrices{M j} or to a position
(x′i ,y

′
i) = H ′(hi) in matrices{M ′

j }, by following
the Cuckoo hashing algorithm described in Sec-
tion 4.1.2. We recall that in order to ensure worst-
case constant look-up using Cuckoo hashing,k

Privacy�Preserving�Delegated�Word�Search�in�the�Cloud

143

and l have to be chosen such thatkl ≥ n, where
n is the size ofLH .

• BuildIndex subsequently fills the binary matrices
{M j} and{M ′

j } (1≤ j ≤ t) as follows:

– For eachhi, BuildIndex computesH(hi) =
(bi,1,bi,2, ...,bi,t), whereH is a t−bits crypto-
graphic hash function.

– Now, if hi is mapped to a position(xi ,yi) =
H(hi) in M j (or to a position(x′i ,y

′
i) = H ′(hi)

in M ′
j resp.), then the bit at position(xi ,yi) in

M j (the bit at position(x′i ,y
′
i) in M ′

j resp.) will
be set tobi, j . Hence, ifhi is mapped to a posi-
tion (xi ,yi) = H(hi) in {M j} (1≤ j ≤ t), then:

H(hi) = (M1(xi ,yi),M2(xi ,yi), ...,Mt (xi ,yi))

• Finally, BuildIndex outputs the searchable
index I = {H,H ′,M,M′} such that M =
{M1,M2, ...,Mt} andM′ = {M ′

1,M
′
2, ...,M

′
t }.

At the end of this phase, data ownerO sends the
file identifierfid, the encryptionC and the indexI to
cloud serverS .

4.2.3 Word Search

The search phase is divided into the three following
steps:

Search Query. To look for a wordω in file F , O
calls the algorithmToken which computes the MAC
h=Hmac(Kmac,ω||fid). Further,O runs the algorithm
Query which computesH(h) = (x,y) and H ′(h) =
(x′,y′). We recall that(x,y) and (x′,y′) correspond
to the potential position ofh in {M j} and{M ′

j } re-
spectively. Next, algorithmQuery outputs two PIR
queries~α = PIRQuery(x) = (α1,α2, ...,αk) and~α′ =
PIRQuery(x′) = (α′1,α′2, ...,α′k) that will allow O to
retrieve thexth andx′th rows respectively of(k, l) bi-
nary matrices, as depicted in Section 4.1.1. Finally,O

sends its search queryQ = (~α, ~α′) to serverS .

Search Response. On receiving O ’s search
query Q = (~α,~α′), S runs algorithm Response
which on input of Q , M = {M1,M2, ...,Mt}
and M′ = {M ′

1,M
′
2, ...,M

′
t }, computes two

sets of t PIR responsesR = {~β1,~β2, ...,~βt} and
R′ = {~β′1,~β′2, ...,~β′t} such that for all 1≤ j ≤ t:

~β j = PIRResponse(~α,M j) =~α ·M j

~β′ j = PIRResponse(~α′,M ′
j) =~α′ ·M ′

j

S sends then its word search responseR =
{R,R′} to O.

Verification. To verify whetherω is in file F , the
data ownerO runs the algorithmVerify. When called,
algorithmVerify unblinds theyth element of each vec-
tor~β j by executingPIRAnalysis(y) and they′th ele-

ment of each vector~β′j by runningPIRAnalysis(y′),
as was shown in Section 4.1.1. This allowsVerify to
derive a bitb j from~β j and a bitb′j from~β′j respec-
tively for all 1≤ j ≤ t.

We denote by~b and ~b′ the string of bits
(b1,b2, ...,bt) and (b′1,b

′
2, ...,b

′
t) respectively. After

obtaining~b and ~b′, algorithmVerify computes the
hashH(h) and checks whether~b = H(h) or ~b′ =
H(h). If so, thenVerify outputs 1 meaning thatω∈F ;
otherwise,Verify outputs 0.

5 PRIVACY PRESERVING WORD
SEARCH WITH DELEGATION

In this section we describe the entire solution includ-
ing the delegation capabilities. We recall that data
ownerO wants to:i.) upload a large fileF that con-
tainsn distinct wordsLω = {ω1,ω2, ...,ωn} to cloud
serverS , ii.) delegate the search capabilities on fileF
to third party users and finallyiii.) be able to revoke
these third party users at any point of time. There-
fore the final solution involves in addition to the pre-
viously mentioned two phases from the basic proto-
col (i.e.Upload andWdSearch), aDelegationand a
Revocationphase. We modify theUpload andWord
Searchphases so as to allow the data owner to up-
load the necessary material that will enable authorized
users to perform search operations, whereas during
the newly definedDelegationphase, the data owner
provides authorized users with the MAC key used to
build the index. Finally, theRevocationphase is de-
fined in order to grant the data owner the capability to
revoke authorized users efficiently.

The additional two phases are defined thanks to
the use ofCiphertext-Policy Attribute-Based Encryp-
tion (CP-ABE) andOblivious Pseudo Random Func-
tions (OPRF). We stress here that by combining
OPRF and ABE, we do not only allow for seamless
revocation but also we ensure theanonymity of autho-
rized users. As opposed to traditional access control
mechanisms, the proposed solution does not require
authorized users to identify and authenticate them-
selves to the cloud server.

Before providing a detailed description of our
scheme, we summarize and formalize in the next sec-
tion the algorithms underlying CP-ABE and OPRFs.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

144

5.1 Building Blocks

5.1.1 Ciphertext-policy Attribute-based
Encryption

A ciphertext-policy attribute-based encryption allows
a user to encrypt a messageM under some access pol-
icy AP in such a way that only parties possessing at-
tributes that matchAP can deriveM from the cipher-
text. Actually, a CP-ABE consists of the following
algorithms, cf. (Bethencourt et al., 2007):

• Setupabe(ζ)→ (MKabe,Pabe): It is a randomized
algorithm that takes as input a security parameter
ζ, and outputs a master keyMKabe and a set of
public parametersPabe that will be used by subse-
quent algorithms.

• Encabe(M,AP) → C: It is a randomized algo-
rithm that takes as input a messageM and some
access policyAP, and outputs a ciphertextC =
Encabe(M,AP) such that only users holding the
attributes satisfying the access policyAP can de-
cryptC.

• CredGenabe(MKabe,Ai)→ credi : It is a random-
ized algorithm which on input of master key
MKabe and a set of attributesAi , generates a set of
credentialscredi that are associated withAi . This
algorithm is generally executed by a trusted third
party (for instance a certification authority) whose
aim is to define a set of admissible attributesA

and to issue credentialscredi to any user possess-
ing attributesAi ⊂ A.

• Decabe(C,credi) → M̂: It is a deterministic al-
gorithm that takes as input a ciphertextC and
a set of credentialscredi . Assume thatC en-
crypts a messageM under the access policyAP
(i.e.,C= Encabe(M,AP)) and that the credentials
credi are associated with the set of attributesAi .
If the attributesAi satisfy the access policyAP,
thenDecabe decryptsC successfully and outputs
M̂ = Decabe(C,credi) = M. Otherwise, the de-
cryption fails andDecabe outputsM̂ =⊥.

5.1.2 Oblivious Pseudo-random Functions

An OPRF (Freedman et al., 2005; Jarecki and Liu,
2009) is a two-party protocol that allows a senderS
with inputδ and a receiverR with inputh to compute
jointly the function fδ(h) for some pseudo-random
function family fδ, in such a way that receiverRonly
learns the valuefδ(h), whereas senderS learns noth-
ing from the protocol interaction.

Definition 4 (Oblivious Pseudo-Random Function
(Freedman et al., 2005)). A two-party protocolπ be-

tween a sender S of inputδ and a receiver R of in-
puth is said to be an oblivious pseudo-random func-
tion (OPRF), if there is some pseudo-random function
family fδ such that at the end of the execution ofπ:

• Receiver R gets fδ(h) while learning nothing
about S’s inputδ.

• Sender S learns nothing about R’s inputh or the
value of fδ(h).
In the following, we provide a quick overview of

the generic algorithms underpinning an OPRF that
evaluates the output of some pseudo-random function
family fδ:

• Setupoprf(ζ)→ (δ,Poprf): It is a randomized algo-
rithm that is run by the senderS. It takes as input
the security parameterζ and outputs an OPRF se-
cret keyδ and a set of public parametersPoprf that
will be used by subsequent algorithms.

• Queryoprf(h) → Qoprf : It is a randomized algo-
rithm that is executed by the receiverR when-
ever R wants to generate an OPRF query. This
algorithm has as input an elementh ∈ {0,1}κ and
outputs a matching OPRF queryQoprf that will be
sent later to senderS.

• Responseoprf(Qoprf ,δ)→Roprf : It is a randomized
algorithm which is operated by senderS when-
everS receives an OPRF query. On input of an
OPRF queryQoprf , the algorithmResponseoprf re-
turns the corresponding OPRF responseRoprf that
will be forwarded to the receiver.

• Resultoprf(Roprf ,Str)→ fδ(h): It is deterministic
algorithm that is run by receiverRand takes as in-
put an OPRF responseRoprf and the current state
Str of R. Without loss of generality, we assume
thatR received the responseRoprf as a follow-up
to a previous OPRF query that was generated for
h ∈ {0,1}κ. Accordingly, the algorithmResultoprf
outputs fδ(h), i.e. the evaluation of the pseudo-
random functionfδ at pointh.

In the remainder of this paper, we employ the
OPRF proposed by (Jarecki and Liu, 2009) which al-
lows a receiverR and a senderS to compute jointly
the evaluation of the pseudo-random functionfδ(h) =

g
1/(δ+h) for anyh∈Z∗N, whereN is an RSA safe mod-

ulus andg is a random generator of a groupG of order
N. However for ease of exposition, we will omit the
implementation details of this OPRF and we will only
refer to the generic OPRF algorithms when describing
our scheme.

5.2 Protocol Description

In the sequel of this paper and in accordance with
the work of (Curtmola et al., 2006), we assume that

Privacy�Preserving�Delegated�Word�Search�in�the�Cloud

145

the cloud server does not collude with revoked users.
We indicate that if such a collusion happens, then our
protocol will not be able to deter revoked users from
searching the outsourced files.

Without loss of generality, we also assume that
there is some certification authority which is in charge
of: i.) defining the universe of admissible attributes
A= {att1,att2, ...}, ii.) providing potential data own-
ers and potential authorized users with their creden-
tials credi that match their attributesAi ⊂ A follow-
ing for instance the CP-ABE scheme proposed by
(Bethencourt et al., 2007).

5.2.1 Setup

As in the first version of the protocol, the data owner
O calls theSetup algorithm which takes as input the
security parameterζ and outputs a master keyMK and
a set of public parametersP such that:

• The master keyMK is composed of a symmet-
ric encryption keyKenc, a MAC keyKmac and an
OPRF secret keyδ.

• The new public parametersP comprise a MAC
Hmac : {0,1}ζ×{0,1}∗→ Z∗N (whereN is a safe
RSA modulus), a cryptographic hash functionH :
{0,1}∗→ {0,1}t and the public parametersPoprf

of the OPRFfδ(h) = g
1/(δ+h).

5.2.2 Upload

The file upload phase amounts toi.) Encrypting
the file F using AES encryption (cf.Encrypt) ii.)
building a searchable index forLω (cf. BuildIndex).
Now instead of building the indexI based onLH =
{h1,h2...,hn} as was done previously, the index
will be constructed using the OPRF valuesfδ(hi) =

g
1/(δ+hi). Since the computation of OPRF is deemed

to be demanding, we suggest thatBuildIndex be exe-
cuted jointly byO and thesemi-honestcloud server
S in such a way thatO is only required to com-
pute symmetric operations (e.g. hash functions and
AES encryption) whereas the cloud server performs
the more computationally intensive operations (i.e.
OPRF and Cuckoo Hashing). Henceforth, we denote
BuildIndexO the sub-algorithm ofBuildIndex that is
executed by data ownerO andBuildIndexS the sub-
algorithm of BuildIndex that is operated by cloud
serverS .

Processing at the Data Owner. As in the previ-
ous protocol, data ownerO first generates a unique
file identifier fid for file F and then encryptsF by
calling the algorithmEncrypt which outputs an AES

encryptionC = Enc(Kenc,F) of F . Then, O in-
vokes the algorithmBuildIndexO which outputs a
list of MACs LH = {h1,h2...,hn}, such thathi =
Hmac(Kmac,ωi ||fid). Next, O defines the access pol-
icy AP that will be associated with fileF and fi-
nally forwards (via a secure channel) the file iden-
tifier fid, the encryptionC, the list of MACsLH =
{h1,h2, ...,hn}, the access policyAP and the OPRF
secret keyδ to cloud serverS .

Processing at the Cloud. The processing at the
cloud comprises two operations. The first one
is to compute OPRF over the MACs inLH =
{h1,h2, ...,hn} using the secret keyδ. The second
operation is to build an index with the resulting val-
ues using Cuckoo hashing. More precisely, upon re-
ceipt of file identifierfid, ciphertextC, list of keyed
hashesLH = {h1,h2, ...,hn}, access policyAP associ-
ated withC and the OPRF keyδ, S calls the algorithm
BuildIndexS which proceeds as explained below:

• First, BuildIndexS computes τi = fδ(hi) =

g
1/(δ+hi) for all 1≤ i ≤ n.

• BuildIndexS prepares an indexI for T =
{τ1,τ2, ...,τn} using Cuckoo hashing. Namely,
BuildIndexS generates two sets oft binary ma-
trices{M j} and{M ′

j } (1≤ j ≤ t) of size (k, l)
each, where each element is initialized to 0.
BuildIndexS then selects two hashesH and H ′

that map each elementτi in T to either a position
(xi ,yi) = H(τi) in matrices{M j} or to a position
(x′i ,y

′
i) = H ′(τi) in matrices{M ′

j }, by executing
the Cuckoo hashing algorithm.

• BuildIndexS fills the binary matrices{M j} and
{M ′

j } (1≤ j ≤ t) similarly to the previous ver-
sion of the protocol. The only difference is that
instead of storing the hashesH(hi) in {M j} and
{M ′

j }, we store the hashesH(τi).

• Finally, BuildIndexS outputs the searchable
index I = {H,H ′,M,M′} such that M =
{M1,M2, ...,Mt} andM′ = {M ′

1,M
′
2, ...,M

′
t }.

5.2.3 Delegation

To delegate the word search capabilities on the en-
crypted file F to third party users, data ownerO
encrypts its MAC keyKmac under its access pol-
icy AP using attribute-based encryption and provides
cloud serverS with the resulting ciphertextCmac =
Encabe(Kmac,AP). Thereafter,S publishes the cipher-
textCmac and the file identifierfid.

We note that an authorized userU will in principle
possesses a set of attributesA (and therewith a set
of credentialscred) that satisfy the access policyAP.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

146

Hence,U will be able to decrypt the ciphertextCmac

usingcred and derives the MAC keyKmac. This MAC
key Kmac will be then used byU to perform word
search onO ’s file as will be shown in the next section.

5.2.4 Word Search

To search the encrypted fileC for some wordω, the
authorized userU performs the following operations:

Token Generation. The token generation phase
consists of executing an OPRF protocol between the
authorized userU and the cloud serverS , whereU
corresponds to the receiverR andS to the senderS
(following the notations in Section 5.1.2). Conse-
quently, to generate a tokenτ for wordω, U executes
algorithmToken as follows:

• On inputs of the wordω, the file identifierfid
and the MAC keyKmac, the algorithmToken first
computesh = Hmac(Kmac,ω||fid). Then it calls
the algorithmQueryoprf which on input ofh out-
puts an OPRF queryQoprf to evaluatefδ(h) =

g
1/(δ+h). Next, the algorithmToken forwards the

OPRF queryQoprf to cloud serverS .

• Upon receipt ofQoprf , S calls the OPRF algo-
rithmResponseoprf . This algorithm uses the secret
OPRF keyδ and the OPRF queryQoprf to output
an OPRF responseRoprf .
Here instead of sending the OPRF responseRoprf

in clear toU, S will obfuscate it in such a way
that only an authorized (i.e. non-revoked) user
will be able to deriveRoprf . This obfuscation is
performed as follows:

– S picks randomly a symmetric encryption key
K′enc and encrypts the OPRF responseRoprf us-
ing K′enc and thesemantically secureencryp-
tion Enc. This will result in a ciphertextC′ =
Enc(K′enc,Roprf).

– Then it computes a CP attribute-based encryp-
tion Cenc = Encabe(K′enc,AP) of the encryption
keyK′enc under the access policyAP of the data
ownerO.

Notice that in this manner, we make sure that
only authorized users will be able to decrypt the
OPRF response and therewith obtain the token
τ = fδ(h) = g

1/(δ+h) necessary to perform the
word search.
At the end of this step,S forwards the ciphertexts
C′ andCenc to authorized userU.

• On receiving the ciphertextsC′ andCenc, the al-
gorithmToken first decryptsCenc using the cre-
dentialscred that U obtained from theCA and

getsK′enc = Decabe(Cenc,cred). Then it computes
the OPRF responseRoprf by decrypting the ci-
phertextCenc using the secret keyK′enc. Next,
the algorithmToken calls the OPRF algorithm
Responseoprf which takes as inputRoprf and out-
puts consequently the word search tokenτ =
fδ(h) = g

1/(δ+h).

Search Query. After obtaining the tokenτ cor-
responding to the wordω, U runs the algorithm
Query which first computesH(τ) = (x,y) andH ′(τ) =
(x′,y′). Then, as in the previous solution, it computes
two PIR queries(~α, ~α′) to retrieve thexth and thex′th

row of a(k, l) binary matrix and sends the word search
queryQ = (~α, ~α′) to cloud serverS .

Search Response. On receivingU’s search query
Q = (~α,~α′), cloud serverS runs algorithmResponse
which computes the two sets oft PIR responsesR =

{~β1,~β2, ...,~βt} andR′= {~β′1,~β′2, ...,~β′t} such that for
all 1≤ j ≤ t:

~β j = PIRResponse(~α,M j) =~α ·M j

~β′ j = PIRResponse(~α′,M ′
j) =~α′ ·M ′

j

S sends then its word search responseR =
{R,R′} to U.

Verification. To verify whether ω is in the en-
crypted fileC, the authorized userU runs the original
algorithmVerify as described in Section 4.2.3. But
after obtaining~b and~b′, algorithmVerify computes
the hashH(τ) instead of the hashH(h) and checks
accordingly whether~b = H(τ) or ~b′ = H(τ). If it is
the case, thenVerify outputs 1 meaning thatω ∈ F ;
otherwise,Verify outputs 0.

5.2.5 Revocation

For sake of simplicity, we assume that the data owner
O revokes attributesatti ∈ A instead of individual
usersU. We believe that this assumption is suffi-
cient in the context of our application as described in
Section 2, where the data owner delegates the word
search capabilities to regulators or auditors that are
not identified by their identities but by their attributes.

Now to revoke an attributeatti , O runs the algo-
rithm Revoke which outputs a new access policyAP′

that will be given to the cloud serverS . For instance,
if we assume that the initial access policyAP of O
states thatauditors from EU and theUS can perform
word search onO ’s files, then a revocation of attribute
US will lead to a new access policyAP′ that says that

Privacy�Preserving�Delegated�Word�Search�in�the�Cloud

147

only auditors from theEU can perform word search.
In this manner,auditors from theUS will no longer
have access toO ’s file.

6 PRIVACY ANALYSIS

In this section, we briefly analyze the privacy prop-
erties of the proposed scheme. The interested reader
may refer to the full version of this paper (Elkhiyaoui
et al., 2014) for a more formal analysis.

6.1 Storage Privacy

Our scheme insures storage privacy thanks to the use
of semantically secure encryptionand message au-
thentication codeduring the upload phase. Actually,
the semantically secure encryption assures that cloud
serverS cannot derive any information about the file
F from its encryptionC. In addition, by computing
MACs that not only depend on the words present in
the file but also on its unique identifier, we ensure that
the indexI does not leak any information about the
outsourced file. Notably, cloud serverS cannot tell
whether two outsourced files have words in common
or not, based on their indexes.

6.2 Query Privacy

Query privacy is assured by the use of bothOPRFand
PIR. On the one hand, OPRF allows authorized user
U to generate a word search tokenτ without disclos-
ing anything to cloud serverS about the wordω that
U is interested in. On the other hand, PIR enablesU
to preform word search onS ’s database while mak-
ing sure thatS learns nothing about the word search
queries or their corresponding results.

6.3 Privacy Against Revoked Users

Since in this paper, we only focus on the case where
data ownerO revokes attributes instead of individual
users, it follows that using for instance the CP-ABE
scheme proposed by (Bethencourt et al., 2007) suf-
fices to ensure efficient revocation. As shown in the
previous section, revocation is achieved by updating
the access policy associated with fileF and by ex-
ploiting the properties of OPRF: ObfuscatingS ’s re-
sponses during the token generation phase (cf. Sec-
tion 5.2) stops a revoked user from deriving new word
search tokens and consequently from verifyingS ’s re-
sponses.

Note also that even if revoked users gain access to
the cloud server’s database, they cannot decrypt the

content of the outsourced files as they do not have ac-
cess to the encryption keyKenc. All they can achieve
is performing a dictionary attack on the indexI using
the MAC keyKmac and the OPRF secret keyδ, which
can be computationally intensive.

7 PERFORMANCE EVALUATION

During the upload phase, the data owner is only re-
quired to encrypt the file to be outsourced using a
symmetric encryption and to compute a MAChi for
each wordωi ∈ Lω. On the other hand, the cloud
server computes the OPRFs (i.e. tokens)τi = fδ(hi)
and builds the corresponding indexI by following
the algorithm of Cuckoo hashing. Although the com-
putation of the OPRF proposed in (Jarecki and Liu,
2009) may be deemed computationally demanding as
it calls for exponentiations, it can be efficiently par-
allelized at the cloud server. Actually, if the cloud
server possessesN machines for instance, it can pro-
vide each one of its machines with1N fraction of the
list of MACs LH = {h1,h2, ...,hn} supplied by the
data owner. Each machine will consequently compute
n
N exponentiations whose results will be given back to
the cloud server to construct the indexI .

While some would argue that using PIR to com-
pute the responses of the cloud server to word search
queries is computationally intensive, we note that this
computation consists ofmatrix multiplicationswhich
can easily be parallelized. Actually, the cloud server
can store at each one of its machine1

N -fraction of the
binary matrices{M j} and{M ′

j }. Upon receipt of a
word search query,S forwards the PIR queries it re-
ceives to itsN machines which accordingly compute
the corresponding PIR responses.

Furthermore, we emphasize that in this paper we
employ PIR to retrieve a hash of word search tokens
instead of their actual values. This fact drastically en-
hances the computation and the communication per-
formances of our scheme. For example, if we instan-
tiate the OPRF in the token generation phase with the
OPRF presented in (Jarecki and Liu, 2009), then we
will end up with tokens of size 1024 bits. This means
that if we retrieve the actual values of the token to per-
form word search, then each search query will consist
of retrieving 1024 bits which is far from being prac-
tical. Instead in our protocol, each search operation
consists of fetchingt-bit (t is typically 80) hash. We
note also that setting the size(k, l) of the matrices
{M j} and{M ′

j } to (
√

tn,
√n

t) results in a minimal
communication cost ofO(

√
tn).

Finally, we stress that contrary to related work
(Curtmola et al., 2006), revocation in our protocol

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

148

does not require the re-encryption of the outsourced
files. Rather, it only calls for an update of the access
policy of the data owner at the cloud server.

8 RELATED WORK

As opposed to the proposed solution, most of existing
word search mechanisms be them asymmetric (Bel-
lare et al., 2007; Boneh et al., 2004; Waters et al.,
2004) or symmetric (Curtmola et al., 2006; Kamara
et al., 2012; Song et al., 2000; Golle et al., 2004) seem
to guarantee query privacy partially: Indeed, in these
solutions, although the outsourced data and queries
are encrypted, the cloud can discover the response to
any encrypted query. Furthermore very few of current
solutions (Curtmola et al., 2006; Dong et al., 2008)
propose the ability to delegate the search operation;
unfortunately, these solutions provide the authorized
user with the data encryption key and therefore revo-
cation of a user requires the re-encryption of the en-
tirely outsourced data and the distribution of this new
key to the authorized users.

The first solution which transforms an original
PIR mechanism into a privacy preserving word-search
solution is proposed by Chor et. al. in (Chor et al.,
1997). Similarly to our solution, in (Chor et al.,
1997), the owner of the data constructs an index based
on all distinct words in the outsourced file. This index
is a hash-table that is filled according to the perfect
hashing algorithm of (Fredman et al., 1984). Our so-
lution outperforms the solution in (Chor et al., 1997)
thanks to the use of Cuckoo hashing instead of perfect
hashing. Namely, in the scheme of (Chor et al., 1997),
a word search query consists of three PIR queries,
whereas in our protocol it is composed of two PIR
queries. Additionally, the PIR queries in the case of
Cuckoo hashing are independent. This implies that
the server can execute the two PIR instances in paral-
lel to respond to the word search query.

Another solution that resembles the proposed so-
lution is PRISM (Blass et al., 2012) where the cloud
constructs some binary matrices in which each cell
represents one or more words without knowing their
content and the owner sends PIR requests to retrieve
the content of one of these cells. Thanks to the use of
Cuckoo hashing, our solution outperforms the origi-
nal PRISM mechanism without lowering the security
level. PRISM defines a matrix in which each cell cor-
responds to one or more words; therefore, two words
can turn out to be represented by the same cell. In
order to decrease the probability of such collisions,
the data owner send multiple (q) queries for the same
word. In the newly proposed mechanism, the prob-

ability of collisions within the binary matrices is 0
and the data owner and/or the authorized user need
to send a single query for each word. Additionally,
PRISM does not offer any delegation capability and
a straightforward delegation operation would require
the distribution of the data encryption key to autho-
rized users which can increase privacy risks.

9 CONCLUSION

We introduced a protocol for privacy preserving del-
egated word search in the cloud. This protocol al-
lows a data owner to outsource its encrypted data to a
cloud server, while empowering the data owner with
the capability to delegate word search operations to
third parties. By employing keyed hash functions and
oblivious pseudo-random functions, we ensure that
authorized users only learn whether a given word is
in the outsourced files or not. In addition, we use pri-
vate information retrieval to make sure that the cloud
server cannot infer any information about the out-
sourced files from the execution of the word search
protocol. Furthermore, we combine attribute-based
encryption and oblivious pseudo-random functions to
accommodate efficient revocation. Finally, the data
owner in our protocol is only required to perform
symmetric operations, whereas the computationally
intensive computations are performed by the cloud
server, and they can easily be parallelized.

ACKNOWLEDGEMENT

This work was partially funded by the Cloud Ac-
countability project - A4Cloud (grant EC 317550).

REFERENCES

Bellare, M., Boldyreva, A., and O’Neill, A. (2007).
Deterministic and efficiently searchable encryption.
In Proceedings of the 27th Annual International
Cryprology Conference on Advances in Cryptology,
(CRYPTO’07), pages 535–552.

Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. InSecu-
rity and Privacy, 2007. SP ’07. IEEE Symposium on,
pages 321–334.

Blass, E.-O., di Pietro, R., Molva, R., andÖnen, M. (2012).
PRISM - Privacy-Preserving Search in MapReduce.
In Proceedings of the 12th Privacy Enhancing Tech-
nologies Symposium (PETS 2012). LNCS.

Boneh, D., Crescenzo, G. G., Ostrovsky, R., and Per-
siano, G. (2004). Public key encryption with keyword

Privacy�Preserving�Delegated�Word�Search�in�the�Cloud

149

search. InProceedings of Eurocrypt 2004, volume
3027, pages 506–522. LNCS.

Chor, B., Gilboa, N., and Naor, M. (1997). Private informa-
tion retrieval by keywords.

Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R.
(2006). Searchable symmetric encryption: improved
definitions and efficient constructions. InProceedings
of the 13th ACM conference on Computer and com-
munications security, CCS ’06, pages 79–88. ACM.

Dong, C., Russello, G., and Dulay, N. (2008). Shared and
searchable encrypted data for untrusted servers. In
Proceeedings of the 22nd annual IFIP WG 11.3 work-
ing conference on Data and Applications Security,
pages 127–143, Berlin, Heidelberg. Springer-Verlag.

Elkhiyaoui, K., Önen, M., and Molva, R. (2014). Privacy
Preserving Delegated Word Search in the Cloud.

Fredman, M. L., Komlós, J., and Szemerédi, E. (1984).
Storing a Sparse Table with 0(1) Worst Case Access
Time. J. ACM, 31(3):538–544.

Freedman, M., Ishai, Y., Pinkas, B., and Reingold, O.
(2005). Keyword search and oblivious pseudorandom
functions. InProceedings of the Second international
conference on Theory of Cryptography, TCC’05,
pages 303–324, Berlin, Heidelberg. Springer-Verlag.

Golle, P., Staddon, J., and Waters, B. (2004). Secure
conjunctive keyword search over encrypted data. In
Jakobsson, M., Yung, M., and Zhou, J., editors,Proc.
of the 2004 Applied Cryptography and Network Secu-
rity Conference, pages 31–45. LNCS 3089.

Jarecki, S. and Liu, X. (2009). Efficient Oblivious Pseudo-
random Function with Applications to Adaptive OT
and Secure Computation of Set Intersection. InThe-
ory of Cryptography, volume 5444 ofLecture Notes
in Computer Science, pages 577–594. Springer Berlin
Heidelberg.

Kamara, S., Papamanthou, C., and Roeder, T. (2012). Dy-
namic searchable symmetric encryption. InProceed-
ings of the 2012 ACM conference on Computer and
communications security, CCS ’12, pages 965–976,
New York, NY, USA. ACM.

Pagh, R. (2001). On the cell probe complexity of member-
ship and perfect hashing. InProceedings of the thirty-
third annual ACM symposium on Theory of comput-
ing, STOC ’01, pages 425–432, New York, NY, USA.
ACM.

Pagh, R. and Rodler, F. (2004). Cuckoo hashing.Journal of
Algorithms, 51(2):122–144.

Song, D. X., Wagner, D., and Perrig, A. (2000). Prac-
tical techniques for searches on encrypted data. In
Proceedings of the 2000 IEEE Symposium on Secu-
rity and Privacy, SP ’00, pages 44–, Washington, DC,
USA. IEEE Computer Society.

Trostle, J. and Parrish, A. (2010). Efficient Computation-
ally Private Information Retrieval from Anonymity
or Trapdoor Groups. InProceedings of Conference
on Information Security, pages 114–128, Boca Raton,
USA.

Waters, B. R., Balfanz, D., Durfee, G., and Smetters, D. K.
(2004). Building an encrypted and searchable audit
log. In Proceedings of NDSS’04.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

150

