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Abstract: This work deals with dynamics and control of the flexible manipulator viewed as a system with distributed
parameters. It is in fact described by a mixed problem (with initial and boundary conditions) for a hyperbolic
partial differential equation, the flexible manipulator being assimilated to a rod. As a consequence of the
deduction of the modelvia the variational principle of Hamilton from Rational Mechanics, the boundary con-
ditions result as “derivative” in the sense that they contain time derivatives of higher order (in comparison with
the standard Neumann or Robin type ones). To the controlled model there is associated a control Liapunov
functional by using theenergy identitywhich is well known in the theory of partial differential equations.
Using this functional the boundary stabilizing controller is synthesized; this controller ensures high precision
positioning and additional boundary damping. All this synthesis may remain at the formal level, mathemati-
cally speaking. The rigorous results are obtained by using a one to one correspondence between the solutions
of the boundary value problem and of an associated system of functional differential equations of neutral type.
This association allows to prove in a rigorous way existence, uniqueness and well posedness. Moreover, in
several cases there is obtained global asymptotic stability which is robust with respect to the class of nonlinear
controllers - being in fact absolute stability. The paper ends with conclusions and by pointing out possible
extensions of the results.

1 INTRODUCTION

A. In order to start a motivation for the present paper
and the reported research, we shall reproduce from
a survey paper in the field (Dwivedy and Eberhard,
2006): “Robotic manipulators are widely used to help
in dangerous, monotonous, and tedious jobs. Most
of the existing robotic manipulators are designed and
build in a manner to maximize stiffness in an at-
tempt to minimize the vibration of the end-effector to
achieve a good position accuracy. This high stiffness
is achieved by using heavy material and a bulky de-
sign. Hence, the existing heavy rigid manipulators are
shown to be inefficient in terms of power consumption
or speed with respect to the operating payload. Also,
the operation of high precision robots is severely lim-
ited by their dynamic deflection, which persists for a
period of time after a move is completed. The settling
time required for this residual vibration delays sub-
sequent operations, thus conflicting with the demand
of increased productivity. These conflicting require-
ments between high speed and high accuracy have
rendered the robotic assembly task a challenging re-

search problem. Also, many industrial manipulators
face the problem of arm vibrations during high speed
motion.

In order to improve industrial productivity, it is re-
quired to reduce the weight of the arms and/or to in-
crease their speed of operation. For these purposes
it is very desirable to build flexible robotic manipula-
tors. Compared to the conventional heavy and bulky
robots, flexible link manipulators have the potential
advantage of lower cost, larger work volume, higher
operational speed, greater payload-to-manipulator-
weight ratio, smaller actuators, lower energy con-
sumption, better maneuverability, better transporta-
bility and safer operation due to reduced inertia. But
the greatest disadvantage of these manipulators is the
vibration problem due to low stiffness.”

In terms of Dynamical Systems, vibration quench-
ing is tightly connected with the basic problem of
stability and stabilization; both stabilization and vi-
bration quenching are achieved by feedback control
if,especially increased stiffness is to be avoided. At its
turn a good stabilizing structure may be achieved pro-
vided a sound mathematical model of the dynamics
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is available. Or, the flexible manipulator belongs to
the class of thecontrolled objects with distributed pa-
rameters having one space dimension for parameter
distribution. More specific, reduced stiffness results
in blocking the possibility of neglecting this param-
eter distribution along the length of the manipulator
arm. Consequently, the modeling of the manipulator
arm is made by assimilating it to a rod/beam. With
respect to this we would like to point out another sur-
vey (Russell, 1986), where various “energy conser-
vative and dissipative beam models” are described:
Euler- Bernoulli model, Rayleigh model, Timoshenko
model, models with Kelvin-Voight dissipation. If the
models are deduced using the generalized variational
principle of Hamilton, then considering one model or
another depends on the expressions adopted for the
potential energy and various forces involved in mod-
eling.

B. The Hamilton approach in modeling beams for
flexible robot manipulators as well as for other en-
gineering devices (Răsvan, 2014) leads to somehow
unusual mathematical structures i.e. initial bound-
ary value problems for hyperbolic partial differential
equationswith derivative boundary conditions. From
these models it is obvious that the natural damping of
the systems consists of the quite weak distributed and
boundary dampings; moreover, stability improvement
which is in close connection with vibration quenching
has to be achieved by feedback control. At its turn
this feedback may be space distributed or boundary
or combined.

A rather widespread method for control synthesis
is now thecontrol Liapunov function approach. For
the aims of this paper a good reference survey might
be (de Queiroz et al., 2000). As it is known, find-
ing a suitable Liapunov function(al) implies “guess-
ing”. With respect to this theenergy identityrepre-
sents a very useful hint in finding a good Liapunov
function which allows synthesis of a stabilizing con-
troller. Since this synthesis may be performed at the
formal level (from the mathematical point of view),
the closed loop structure should be considered as a
mathematical probleman und f̈ur sich (in itself) and
treated as such (existence, uniqueness, well posed-
ness, stability).

Following some references e.g. (Icart et al., 1992;
Cherkaoui and Conrad, 1992; de Queiroz et al., 2000)
we shall consider here the rod model for the flexi-
ble manipulator which coincides basically with the vi-
brating string equation. For this model we shall per-
form the synthesis of the stabilizing controllers, ob-
tain the closed loop model and discuss the theory it.
As a consequence what is left of this paper is orga-
nized as follows. First the corresponding expressions

for the kinetic and potential energies will be consid-
ered allowing to obtain exactly the rod modelvia the
Hamilton principle. The involved external or virtual
(accounting for constraints) forces are listed in order
to obtain the controlled mathematical model. To it we
associate the energy identity which will turn useful
for controller synthesis. Once the closed loop model
will be obtained, a section of the paper will be allo-
cated to the basic theory. The stability discussion will
be followed by the robust control issues and robust-
ness properties. Finally a section of conclusions and
hints for future research will end the exposition.

2 THE MATHEMATICAL MODEL
AND THE ENERGY IDENTITY

A. We shall consider the flexible manipulator carrying
a payload and being rotated through a hub, as sug-
gested by (de Queiroz et al., 2000) and illustrated in
Figure 1

y

x

 

)(tu

( , )v s t

s)(t 

HJ )(t 

Figure 1: Flexible manipulator dynamics:s - current coor-
dinate on the flexible arm;ν(s, t) - current local deflection of
the flexible arm element including with respect to the inertia
axis of the rotating hub;JH - mass of the torque controlled
rotating hub;m - payload mass;u(t) - the control force at
the payload;τ(t) - the control torque at the hub.

In the following we reproduce in brief the model
deduction of (Răsvan, 2014). In order to make use of
the variational principle of Hamilton we write down

1o The kinetic energy of the controlled hub with the
moment of inertiaJH , the flexible arm and the
payload massm, given by

Ek(t) =
1
2

[

JH
(

θ̇(t)
)2

+m

(

d
dt

y(L, t)

)2

+

+

∫ L

0
ρ(s)y2

t (s, t)ds

]

(1)
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wherey(s, t) is the current position of the moving
flexible cable at the local coordinates (including
the elastic deflection) and at the moment of time
t, ρ(s) being the local mass density at the local
coordinates. We shall have also

y(s, t) = sθ(t)+ν(s, t) (2)

whereθ is angular position of the rotating hub and
ν(s, t) is position with respect to the rotating sys-
tem of coordinates

2o The potential energy due to the strain energy of
the flexible cable given by

Ep(t) =
1
2

∫ L

0
T(s)ν2

s(s, t)ds (3)

whereT(s) is the tension of the flexible link of the
arm.Remark that (2) impliesνs(s, t) ≡ ys(s, t)−
θ(t).

3o The external “forces” acting on this mechanical
system are the following: the control torqueτ(t),
the thrust regulating force applied at the payload
boundary, possible local and distributed perturba-
tions. Even if they might be negligible, we shall
include also the friction forces, in order to keep
the model structure as close as possible to the
most general case (Răsvan, 2014). The work of
these forces is given by

Wm(t) = (τ(t)+φ0(t)+χ0(t))θ(t)+

+(u(t)+ fL(t)+χL(t))y(L, t)+

+
∫ L

0
( f (s, t)+χ(s, t))y(s, t)ds

(4)

Hereχ0(t), χL(t), χ(s, t) are the virtual forces ac-
counting for viscous damping forces given by

χ0(t) =−c0θ̇(t) , χL(t) =−cLyt(L, t) ,

χ(s, t) =−c(s)yt(s, t)
(5)

Define the functional

I(t1, t2) :=
∫ t2

t1
(Ek(t)−Ep(t)+Wm(t))dt (6)

and, following the approach of the variational calcu-
lus (Akhiezer, 1981), introduce the following varia-
tions

y(s, t) = ȳ(s, t)+ εη(s, t) (7)

whereȳ(s, t) corresponds to an extremal. LetIε(t1, t2)
be the functional (6) written along the variations (7).
The necessary condition for the extremum is given by

I ′ε(0) =
dI
dε

∣

∣

∣

∣

ε=0
= 0 (8)

After some standard manipulation (Răsvan, 2014) we
find the following model boundary value problem

−ρ(s)ytt − c(s)yt +(T(s)(ys−θ))s+ f (s, t) = 0

ys(0, t) = θ(t)

−JH θ̈− c0θ̇+
∫ L

0
T(s)(ys(s, t)−θ)ds+

+τ(t)+φ0(t) = 0

−mytt(L, t)− cLyt(L, t)−T(L)(ys(L, t)−θ)+

+uL(t)+dL(t) = 0
(9)

The model is somehow nonstandard due to the fact
that it contains both linear and angular motion coor-
dinates. However, if the flexible rod material has ho-
mogeneous properties i.e.ρ(s), c(s) but especially
T(s) are constant i.e. independent of the space coor-
dinate then equations (9) become closer to the tradi-
tional ones, as follows

−ρytt − cyt +Tyss+ f (s, t) = 0

ys(0, t) = θ

−JH θ̈− c0θ̇−TLθ+T(y(L, t)− y(0, t))+

+τ(t)+φ0(t) = 0

−mytt(L, t)− cLyt(L, t)+Tθ−Tys(L, t)+

+uL(t)+dL(t) = 0

(10)

The model is clearly described by a boundary value
problem for the string equation, the boundary condi-
tions being derivative.It is worth mentioning that in
standard casesc - the distributed damping - is negligi-
ble and there is no thrust control for the payload mass
at s= L i.e. uL(t)≡ 0.

In the following we shall write down the so called
energy identityfor (9): we multiply the first equation
by yt and perform some integration by parts with re-
spect tos from 0 toL and take into account the bound-
ary conditions to obtain

d
dt

· 1
2

{

JH(θ̇(t))2+m(yt(L, t))
2 +

+

∫ L

0
[ρ(s)yt(s, t)

2+T(s)(ys(s, t)−θ(t))2]ds

}

+

+c0(θ̇(t))2+ cL(yt(L, t))
2+

∫ L

0
c(s)yt (s, t)

2ds−

−(τ(t)+φ0(t))θ̇(t)−

−(uL(t)+ fL(t))yt(L, t)−
∫ L

0
f (s, t)yt (s, t)ds≡ 0

(11)
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We shall end this subsection by some additional
comments and explanations concerning the premises
of the obtained model. Our starting references had
been at the beginning (Icart et al., 1992; Cherkaoui
and Conrad, 1992); the model used there appeared
to be more of pure mathematical interest while for
the stabilizing control displayed some drawbacks (at
least with respect to our purpose - “guess” and use of
a “natural” control Liapunov function); on the other
hand, the analogy of several models arising from var-
ious fields (overhead crane and marine riser, oilwell
drillstring) turn to be stimulating for seeking for an-
other model - obtained from physical premises. The
reference (de Queiroz et al., 2000) contained such
unified models under the framework of the control
Liapunov functionals and the model of the flexible
arm was adopted but based on the Hamilton princi-
ple. As mentioned in (de Queiroz et al., 2000), the
model there strongly relies on the model in (Junk-
ins and Kim, 1993). It must be mentioned however
that the models of the aforementioned reference were
obtained mainly for aeronautical structures and the
physics might have been different e.g. centrifugal
effects of stiffening and softening. Neglecting such
“side effects” led e.g. to formula (2). There are also
other specific simplifying approaches in our model
but we discuss only the choice of the arm modeling as
a rod what gave the string equation while there existed
other options as described in (Russell, 1986) among
which the Euler Bernoulli beam is mostly preferred.
Last but not least, we have been guided in our option
by the aim to obtain a rigorous ground for the bound-
ary value problems thus obtained: complicated mod-
els, due to their nonlinearities and/or discontinuities
are not easy to give a basic theory allowing to go be-
yond the formal level. It will become clear that even
our models cannot be treated in all cases and open
problems persist.
B. In the following we shall discuss the equilibria -
constant trajectories - of system (9) and their “inher-
ent stability”i.e. with blocked control signals; with re-
spect to this we shall consider all perturbations iden-
tically 0

f (s, t)≡ 0 , φ0(t)≡ 0 , dL(t)≡ 0 (12)

and takeτ(t)≡ τ̄, uL(t)≡ ūL. Letting the time deriva-
tives be identically 0 the following equations for the
steady state are obtained

(T(s)(ȳs− θ̄))s ≡ 0 ; ȳs(0)− θ̄ = 0
∫ L

0
T(s)(ȳs(s)− θ̄)ds+ τ̄ = 0

−T(L)(ȳs(L)− θ̄)+ ūL = 0

(13)

to obtainūL = 0, τ̄ = 0, ȳ(s) = θ̄s+ ȳ(0); taking into

account (2) and the significance ofν(s, t) it follows
thatȳ(0) = 0 ; however̄θ remains undetermined what
is quite natural since it is a cyclic coordinate.

The occurrence of a cyclic coordinate requires
a deeper investigation of the possible steady states.
With respect to this we introduce the so called coordi-
nates of thesymmetric Friedrichs form for the partial
differential equationsas follows

yt(s, t) := v(s, t) , T(s)(ys(s, t)−θ(t)) := w(s, t)
(14)

also θ̇ = Ω to obtain the following boundary value
problem

ρ(s)vt + c(s)v−ws= f (s, t)

wt −T(s)(vs(s, t)−Ω(t)) = 0

w(0, t) = 0

JHΩ̇+ c0Ω−
∫ L

0
w(s, t)ds= τ(t)+φ0(t)

mvt(L, t)+ cLv(L, t)+w(L, t) = uL(t)+dL(t)
(15)

Taking again identically zero perturbationsf (s, t),
φ0(t), dL(t) and blocked (constant) input signalsτ̄ and
ūL, a new type of equilibria is obtained, namely

v̄(s) = Ω̄s+ v̄(0) , w̄(s) =
∫ s

0
(Ωσ+ v̄(0))c(σ)dσ

(16)
wherev̄(0) andΩ are the unique solution of a linear
system. If these steady state variables are non-zero
this would signify a uniformly rotating arm (!) with
some steady state elastic deformations unless we im-
pose again ¯uL = 0, τ̄ = 0. This is the only interesting
case form the engineering point of view.

In order to obtain some information about the sta-
bility of the equilibrium thus determined we shall ex-
amine the free system (15); this is a linear boundary
value problem and the stability of the identically zero
equilibrium might be examined using the Laplace
transform at least at the formal level since we have no
information about its admissibility for the solutions
of (15). Taking into account the space varying pa-
rameters and the quite complicated boundary condi-
tions, the associated transforms might be not easy to
tackle. But we have at our disposal the energy identity
(11) which suggests the following quadratic Liapunov
functional (written in the variables of (15))

V (X,Y,φ(·),ψ(·)) = 1
2

{

JHX2+mY2+

+

∫ L

0
(ρ(s)φ2(s)+ψ2(s))ds

} (17)

defined onR×R×L2(0,L)×L2(0,L) with the re-
strictionY = φ(L). The energy identity also gives the
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expression of the derivative of (17) along the solutions
of the free system (15) i.e. withuL(t) ≡ 0, τ(t) ≡ 0,
φ0(t)≡ 0, dL(t)≡ 0, f (s, t) ≡ 0

d
dt

V (Ω(t),v(L, t),v(·, t),w(·, t)) =

=−c0Ω2(t)− cLv2(L, t)−
∫ L

0
c(s)v2(s, t)ds

(18)

SinceV is positive definite and its derivative - nega-
tive semi-definite, the equilibrium at the origin is sta-
ble (Liapunov stable in the sense of the norm defined
by the Liapunov functional (17) itself). The Liapunov
functional being an energy, it is only natural to obtain
a derivative functional which is negative semi-definite
only - this is well known for energy like Liapunov
functions arising in the early stages of the stability
theory. We may use the Barbashin Krasovskii LaSalle
invariance principle (at least in a formal way, but we
may hope to be in one of the cases when it holds for
abstract dynamical systems also (Saperstone, 1981))
and find that the only invariant set where the kernel
of the derivative function is contained is the zero so-
lution. This zero solution corresponding to the arm
with the payload stopped in some resulting position is
thus stable.

This result (still at the formal level) suggests the
following remarks

i) the free system (15) has a quite non-robust stabil-
ity since it depends on the natural dampings only
and these dampings are very weak even negligible
in practice;

ii) the system having a cyclic variable, it is but nat-
ural to have the arm with the payload stopped in
an arbitrary position depending on the initial one;
however this is not acceptable in the practical ap-
plications.

The above considerations show that, in order to
ensure positioning of the payload and an improved
stability for the flexible manipulator, a feedback con-
troller must be used. In the following we shall con-
sider controller synthesis and the properties of the
closed loop system.

3 CONTROLLER DESIGN. THE
RESULTING CLOSED LOOP
SYSTEM

We shall realize the controller design based on the
c.l.f. (control Liapunov function) method by mak-
ing use of a modified version of the functional (17)
taking into account the two aforementioned tasks of

the controller: precise positioning of the payload and
improved stability. For the positioning we shall add
to (17) a quadratic term penalizing the error from a
given angular referenceθp.
A. Refer first to the basic controlled system (9); since
we discuss stabilization, the persistent perturbations
f (s, t), φ0(t), dL(t) are again set to zero. The Lia-
punov functional suggested by (11) is as follows

V (X,Y,Z,φ(·),ψ(·)) = 1
2

{

a0X2+ JHY2+mZ2+

+

∫ L

0
(ρ(s)φ2(s)+T(s)(ψ(s)−X)2)ds

}

(19)
where a0 > 0 is a free design parameter; as men-
tioned, the term(ψ(·)− θp)

2 is penalizing the de-
viation from the prescribed angular position of the
payload. The functional is defined onR×R×R×
L2(0,L)×L2(0,L) with the restrictionZ = φ(L). On
the domain of definition the functional is positive def-
inite. Along the solutions of (9) this functional reads
as follows

V (θ(t)−θp, θ̇(t),yt(L, t),yt (·, t),ys(·, t)) =

=
1
2

{

a0(θ(t)−θp)
2+ JH θ̇2(t)+my2

t (L, t) +

+

∫ L

0
(ρ(s)y2

t (s, t)+T(s)(ys(s, t)−θ(t))2)ds

}

(20)
Its derivative along the solutions has the following
form

d
dt

V (θ(t)−θp, θ̇(t),yt(L, t),yt (·, t),ys(·, t)) =

= a0(θ(t)−θp)θ̇(t)− c0(θ̇(t))2− cL(yt(L, t))2−

−
∫ L

0
c(s)yt(s, t)

2ds+ τ(t)θ̇(t)+uL(t)yt(L, t)

(21)
A rather simple choice for the controller structure

would be

τ(t) =−a0(θ(t)−θp)−g0(θ̇(t)) ,

uL(t) =−gL(yt(L, t))
(22)

wheregi(σ), i := 0,L are sector restricted nonlinear
functions that is, subject to the following inequalities

g
i
σ2 ≤ gi(σ)σ ≤ ḡiσ2 , gi(0) = 0 , i := 0,L (23)

Observe that these nonlinear functions are arbitrary,
the only conditions being (23). This signifies that we
assume some robustness properties of the stabilization
with respect to some uncertainty of the controllers.
In particular these functions can be taken linear thus
“pointing” to a PD (proportional derivative) controller
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at the boundarys= 0 and a D (derivative) controller at
s= L. In the general case of the sector restricted non-
linearities, these are nonlinear controllers. Introduc-
ing the controllers’ equations (22) in the controlled
equations (9), the equations of the closed loop system
are obtained as follows (including now the non-zero
persistent perturbations

ρ(s)ytt + c(s)yt − (T(s)(ys−θ))s = f (s, t)

ys(0, t) = θ(t)

JH θ̈+ c0θ̇+g0(θ̇)+a0(θ(t)−θp)−

−
∫ L

0
T(s)(ys(s, t)−θ)ds= φ0(t)

mytt (L, t)+ cLyt(L, t)+gL(yt(L, t))−

−T(L)(ys(L, t)−θ) = dL(t)

(24)

From these equations it is quite clear that the PD
controller ats= 0 “imposes” to the cyclic variable
θ the reference valueθp and introduces an additional
nonlinear/linear damping.The other controller - a non-
linear D controller - introduces an additional nonlin-
ear/linear damping.
B. We shall now discuss in brief some straightfor-
ward properties of system (24). Let again the persis-
tent perturbations be identically zero and check first
the steady state solutions, which are static equilibria
(speaking the language of Rational Mechanics) sub-
ject to the steady state equations

(T(s)(ȳs(s)− θ̄))s = 0 , ȳs(0) = θ̄

a0(θ̄−θp)−
∫ L

0
T(s)(ȳs(s)− θ̄)ds= 0

T(L)(ȳs(L)− θ̄) = 0

(25)

It is a matter of simple and straightforward manip-
ulation to find

θ̄ = θp , ȳ(s) = θps

hence the static equilibrium is unique and its signifi-
cance is that positioning is without steady state error.

We have to prove however that this steady state is
a limit regime and it has asymptotic stability. With re-
spect to this we remind that to the closed loop system
(24) there is associated the c.l.f. (control Liapunov
functional) (19) which has the form (20) along sys-
tem (24) and is positive definite. If the persistent per-
turbations are again set to zero since the aim is equi-
librium stability, then the derivative of the Liapunov
functional that follows from (21) with the controller

choice (22) will be

d
dt

V (θ(t)−θp, θ̇(t),yt(L, t),yt (·, t),ys(·, t)) =

=−
∫ L

0
c(s)yt (s, t)

2ds− (c0θ̇(t)+g0(θ̇(t)))θ̇(t)−

−(cLyt(L, t)+gL(yt(L, t)))yt (L, t)≤ 0
(26)

Let us first mention that in the real case of a flex-
ible manipulator there is no thrust controller on the
payload (unlike in the case of e.g. the marine riser)
hencegL(σ)≡ 0. If the sector conditions (23) are such
thatc0σ+g0(σ)> 0 then the derivative function (26)
vanishes on the set

yt(s, t)≡ 0 , c0θ̇(t)+g0(θ̇(t))≡ 0 , yt(L, t)≡ 0

On this set the trajectories of system (24) are defined
exactly by the steady state equations (25) hence the
largest invariant set contained in the set where the
derivative function (26) vanishes is exactly the unique
equilibrium. Global asymptotic stability of this equi-
librium would follow provided the invariance princi-
ple Barbašin Krasovskii LaSalle is valid in this case.
In some special cases this might be true, see (Saper-
stone, 1981); one of this cases which is some how
alike the considered here corresponds to the overhead
crane and is the subject of (d’Andréa Novel et al.,
1994), being mentioned in (Răsvan, 2014). In the fol-
lowing the problem will be analyzed within the frame-
work of the neutral functional differential equations
attached to the mixed initial boundary valued prob-
lems for hyperbolic partial differential equations.

4 THE BASIC PROPERTIES OF
THE DYNAMICAL SYSTEM

Starting from the 60ies of the previous century, some
authors who studied hyperbolic partial differential
equations in two dimensions, applied to physics and
engineering, discovered that integration of the Rie-
mann invariants along the characteristics allow asso-
ciation of a system of differential equations with de-
viated argument to the mixed initial boundary value
problem with unusual (in the sense of non standard
that is different from the Neumann or Robin) bound-
ary conditions containing higher order derivatives.
This “association” must be understood in the sense
that the aforementioned system of differential equa-
tions with deviated argument is constructed starting
from a solution of the boundary value problem and
the structure of the boundary conditions. Moreover,
a one to one correspondence between the solutions
of the two aforementioned mathematical objects may
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be established in a rigorous way (see Theorem 1 and
all mathematical results obtained for one of these ob-
jects may be projected on the other one. Among the
papers contributing to this approach, which are enu-
merated in the Reference list of (Răsvan, 2014), it is
worth mentioning the first of that list (Abolinia and
Myshkis, 1960) and the less circulated but the most
useful for our context (Cooke, 1970) (where the term
“derivative boundary conditions” is used).We shall
not reproduce here the results of the aforementioned
reference but rather apply them to our case.
A. The first step will be to associate the system of
functional differential equations, starting from the
considered basic system since it has been already
mentioned that this method does not apply but to par-
ticular cases. Consider the closed loop system (24)
under the following assumptions

c(s)≡ 0 ; ρ(s)≡ ρ = const, T(s)≡ T = const

We assume also, to simplify the computation formu-
lae, that the distributed perturbations are identically
zero i.e. f (s, t) ≡ 0. This assumption does not af-
fect generality of the analysis since we are interested
mainly in the Liapunov stability of the equilibria. Un-
der these circumstances (24) becomes

ρytt −Tyss= 0 ; ys(0, t) = θ

JH θ̈+ c0θ̇+g0(θ̇)+TLθ+a0(θ−θp)−

−T
∫ L

0
ys(s, t)ds= φ0(t)

mytt(L, t)+ cLyt(L, t)+T(ys(L, t)−θ) = dL(t)
(27)

Introduce now the variables for the symmetric
Friedrichs form, with their initial conditions deduced
from those of (24)

v(s, t) := yt(s, t) , w(s, t) := ys(s, t) ;

(y(s,0) = y0(s) , yt(s,0) = v0(s))⇒

⇒ v(s,0) = v0(s) , w(s,0) = y′0(s)

(28)

to obtain the new system

wt = vs , ρvt −Tws= 0 ; w(0, t) = θ

JH θ̈+ c0θ̇+g0(θ̇)+TLθ+a0(θ−θp)−

−T
∫ L

0
w(s, t)ds= φ0(t)

mvt(L, t)+ cLv(L, t)+T(w(L, t)−θ) = dL(t)
(29)

Introduce now the Riemann invariants as follows

u±(s, t) =
1
2
(v(s, t)∓

√

T/ρw(s, t)) (30)

with the corresponding initial conditions

u±(s,0) =
1
2
(v0(s)∓

√

T/ρy′0(s)) (31)

Here u+(s, t) stands for the progressive wave and
u−(s, t) for the reflected one. Consequently the initial
boundary value problem for the Riemann invariants
reads as below

u±t ±
√

T/ρu±s =
1
2ρ

f (s, t)
√

ρ/T(u−(0, t)−u+(0, t)) = θ

JH θ̈+ c0θ̇+g0(θ̇)+TLθ+a0(θ−θp)−

−
√

ρT
∫ L

0
(u−(s, t)−u+(s, t))ds= φ0(t)

m
d
dt
(u−(L, t)+u+(L, t))+ cL(u

−(L, t)−u+(L, t))+

+
√

ρT(u−(L, t)−u+(L, t))−Tθ = dL(t)
(32)

We are now in position to apply the algorithm
suggested in (Cooke, 1970) and fully described and
proved in (Răsvan, 2014). Integration along the char-
acteristics of the Riemann invariants will give

y+(t) := u+(L, t) ⇒ u+(0, t) = y+(t +L
√

ρ/T) ;

y−(t) := u−(0, t) ⇒ u−(L, t) = y−(t +L
√

ρ/T)
(33)

and suggests the following representation formulae

u+(s, t) = y+(t + s
√

ρ/T) ,

u−(s, t) = y−(t +(L− s)
√

ρ/T)
(34)

Introducing the new functions

η±(t) = y±(t +L
√

ρ/T) (35)

we obtain, after some manipulation the following sys-
tem of functional equations

JH θ̈+ c0θ̇+g0(θ̇)+TLθ+a0(θ−θp)−

−T
∫ 0

−L
√

ρ/T
(η−(t +λ)−η+(t +λ))dλ = φ0(t)

√

ρ/T(η+(t)−η−(t −L
√

ρ/T))+θ = 0

m
d
dt
(η−(t)+η+(t −L

√

ρ/T))+

+cL(η−(t)+η+(t −L
√

ρ/T))+

+
√

ρT(η−(t)−η+(t −L
√

ρ/T))−Tθ = dL(t)
(36)

Following the same procedure (Cooke, 1970;
Răsvan, 2014), we associate to (36) the initial con-
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ditions

η+
0 (t) = u+(−t

√

T/ρ,0) ,

η−
0 (t) = u−(L+ t

√

T/ρ,0) ; −L
√

T/ρ ≤ t ≤ 0
(37)

The converse procedure, based on the representa-
tion formulae deduced from (35) namely

u+(s, t) = η+(t +(s−L)
√

ρ/T) ,

u−(s, t) = η−(t − s
√

ρ/T)
(38)

allows the statement of the following theorem estab-
lishing a one-to-one correspondence between the so-
lutions of (32) and the solutions of (36)

Theorem 1. Let (u±(s, t),θ(t)) be a solution of (32)
with some initial conditions(u±(s,0),θ(0), θ̇(0)), 0≤
s≤ L. Thenη±(t),θ(t) is a solution of (36) with the
initial conditionsη±

0 (t),θ(0), θ̇(0)), whereη±
0 (t) are

defined on−L
√

T/ρ ≤ t ≤ 0 by (37).

Conversely, letη±(t),θ(t) be a solution of (36)
with some initial conditionsη±

0 (t),θ(0), θ̇(0)), where
η±

0 (t) are defined on−L
√

T/ρ ≤ t ≤ 0. Then
(u±(s, t),θ(t)) is a solution of (32) with the initial
conditions(u±(s,0),θ(0), θ̇(0)), where u±(s, t) are
defined by the representation formulae (38) and the
initial conditions (u±(s,0),θ(0), θ̇(0)) with u±(s,0)
defined accordingly also from (38).

B. Having Theorem 1 at our disposal, we may focus
now on system (36) since all results concerning its
solutions are automatically projected back on the so-
lutions of (32). Observe first that system (36) is a sys-
tem of coupled delay differential and difference equa-
tions in continuous time. Such systems belong to the
broader class of functional differential equations of
neutral typesee e.g. (Hale and Lunel, 1993). It can be
seen that system (36) is quasi-linear: it contains a sin-
gle nonlinear function which is sector restricted - see
(23). For such systems existence, uniqueness and well
posedness of the Cauchy initial value problem holds -
see (Hale and Lunel, 1993), Section 2.8. From these
results on neutral functional differential equations we
deduce existence, uniqueness and well posedness of
the initial boundary value problem (32) at the level
of continuous/discontinuous classical solutions. This
is a first step in overcoming the formal level of the
results concerning system (28) and of (27) also, due
to various representation formulae leading from these
systems to (32) and further, to (36) and conversely.

We focus in the following on the stability problem
for the equilibria of (36). The unique equilibrium of
(36) corresponding toφ0(t)≡ 0,dL(t)≡ 0 is given by

θ̄ = θp ; η̄+ =−η̄− =
1
2

√

T/ρθp

The next step is to write down the Liapunov func-
tional (20) in the language of the variables of sys-
tem (36). Some straightforward manipulation based
on (30),(33)-(35) will give the following form of the
Liapunov functional

V (θ(t)−θp, θ̇(t),η+(·),η−(·)) = 1
2

{

a0(θ(t)−θp)
2

+JH θ̇2(t)+m(η−(t −L
√

ρ/T)+η+(t))2+

ρ
∫ L

0
[(η−(t − s

√

ρ/T)+η+(t +(s−L)
√

ρ/T))2+

(η−(t − s
√

ρ/T)+η−(t +(s−L)
√

ρ/T)−

θ(t))2]ds
}

(39)
which is positive definite. In the same way we re-
write the derivative (26) as follows, taking also into
account thatc(s)≡ 0 andgL(σ)≡ 0

d
dt

V (θ(t)−θp, θ̇(t),yt(L, t),yt (·, t),ys(·, t))

=−(c0θ̇(t)+g0(θ̇(t)))θ̇(t)−

−cL(η+(t −L
√

ρT)+η−(t))2 ≤ 0

(40)

The set where this derivative vanishes is defined
by

θ̇(t)≡ 0 , η+(t −L
√

ρT)+η−(t)≡ 0 (41)

From these conditions and from equations (36) we de-
duce that the largest invariant set contained in (41) is
exactly the unique equilibrium of (36) namely

θ̄ = θp ; η̄+ =−η̄− = (1/2)
√

T/ρ
Application of the Barbašin Krasovskii LaSalle in-
variance principle can thus give global asymptotic sta-
bility of this equilibrium of system (36) and,via The-
orem 1, global asymptotic stability of the time invari-
ant solution of (32); taking into account the converse
expressions of (30), the same property holds for the
equilibrium of (29).

Now, the invariance principle for neutral func-
tional differential equations is given by Theorem
12.7.2 of (Hale and Lunel, 1993). However this theo-
rem is valid only for those neutral functional differen-
tial equations with strongly stable difference operator.
In the case of (36) this difference operator is defined
by

D

(

η+

η−

)

(·) =
(

η+(0)

η−(0)

)

−
(

0 1

−1 0

)

×

(

η+(−L
√

ρ/T)

η−(−L
√

ρ/T)

)

(42)
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and its stability is established by the location of the
eigenvalues of the matrix

D =

(

0 1

−1 0

)

with respect to the unit disk of the complex plane.
Since these eigenvalues are±ı, the difference oper-
ator is only stable and Theorem 12.7.2 cannot be ap-
plied. As mentioned in (Saperstone, 1981) the strong
stability condition might be replaced by an additional
condition of smoothing the trajectories of the dynam-
ical system, but such a condition has not been pointed
out yet.

If nevertheless the payload mass effects are con-
sidered negligible, then the last equation of (36) is re-
placed by

cL(η−(t)+η+(t −L
√

ρ/T))+

+
√

ρT(η−(t)−η+(t −L
√

ρ/T))−Tθ = dL(t)

Consequently the matrixD of the newly defined dif-
ference operator will be replaced by

D =







0 1

−c−√
ρT

c+
√

ρT
0







whose purely imaginary eigenvalues are now inside
the unit disk. The global asymptotic stability follows
now in a rigorous way being in fact valid for the equi-
librium of the following system

wt = vs , ρvt −Tws = 0 ; w(0, t) = θ

JH θ̈+ c0θ̇+g0(θ̇)+TLθ+a0(θ−θp)−

−T
∫ L

0
w(s, t)ds= φ0(t)

cLv(L, t)+T(w(L, t)−θ) = dL(t)

(43)

C. It is interesting and useful to make some com-
ments concerning the global asymptotic stability of
system (43). This control-theoretical result has been
obtained by using a naturally associated control Li-
apunov functional suggested by the energy identity.
The synthesized stabilizing controller has a twofold
role - exact positioning of the payload and increasing
the damping factor at the controlled boundary. This
simple controller has nevertheless a necessaryrobust
stability in the sense that the global asymptotic stabil-
ity property is valid for an entire class of linear and
nonlinear damping functionsg0(σ) satisfying the sec-
tor condition

c0σ+g0(σ)> 0

that is system (43) isabsolutely stable. Moreover,
if the approach of K.P. Persidskii is carefully used
for the systems of neutral functional differential equa-
tions as in the case of delayed functional differential
equations (Răsvan, 2012) then this asymptotic stabil-
ity may be shown asexponential- what is basic in
engineering systems stability.

5 CONCLUSIONS. OPEN
PROBLEMS AND
PERSPECTIVES

We have presented throughout this paper an attempt
to have a sound mathematical basis for the analysis
of the dynamics and the control of a flexible manip-
ulator with distributed parameters - assimilated to a
rod. We overview briefly the topics already presented
in the Abstract: writing down of the model as an ini-
tial boundary value problem with derivative bound-
ary conditions by applying the variational principle
of Hamilton; association of a “natural” control Li-
apunov functional issued from the energy identity;
synthesis of a positioning and stabilizing boundary
controller; association of a system of functional dif-
ferential equations of neutral type allowing the rig-
orous construction of the basic (existence, unique-
ness, well posedness) theory as well as of the stabil-
ity theory based on weak Liapunov functionals and
Barbašin Krasovskii LaSalle principle. Worth men-
tioning that this association allows more, e.g., nu-
merically robust computational approaches based on
the method of lines (which turns to be within this
framework delay approximation by ordinary differ-
ential equations) which are implemented using struc-
tures belonging to the techniques of Artificial Intel-
ligence (Danciu, 2013a; Danciu, 2013b; Danciu and
Răsvan, 2014).

A number of possible extensions and open prob-
lems have been pointed out even throughout the pa-
per exposition. We give here a brief account of some
of them. First, the approachvia neutral functional
differential equations appears as feasible for systems
without distributed damping and with uniform param-
eters. In other cases they are much more compli-
cated (Abolinia and Myshkis, 1960) and an additional
analysis is necessary. With respect to this it is worth
recalling some aspects that have been discussed in
Section 2.

Mathematical modeling starting from Physics and
Theoretical Engineering is almost always associated
with the attempt to be as complete and exhaustive as
possible regardless how complicated the model re-
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sults. However, a good well fitted simplifying as-
sumption may transform that primary model into a
tractable one (we have in mind the Prandtl assump-
tion that made the Navier Stokes equations solvable).
In the present case we have been guided by the simi-
larities between the models occurring in such various
engineering fields as flexible manipulator arms, ris-
ers and overhead cranes, drillstrings (Bobaşu et al.,
2012; Saldivar et al., 2013; Răsvan, 2013; Răsvan,
2014). These similarities at their turn arise from con-
sidering identical expressions for the energies and the
same type of forces or torques acting on these sys-
tems. Worth mentioning that such simplifying as-
sumptions as adoption of formula (2) have also their
role as well as the string model for the beams occur-
ring in the physical models; other models of beams
presented in (Russell, 1986) such as Euler Bernoulli,
Rayleigh, Timoshenko may provide other sources for
research development.

Even in the analyzed case a lot of problems oc-
curred when considering basic (existence and unique-
ness) as well as stability theory and we were able to
solve only some particular cases. Here the discussion
is quite interesting and deserves some attention. The
experience of the authors shows that all encountered
models arising from Mechanics and tackled by asso-
ciating neutral functional differential equations gener-
ate difference operators - see Section 4 - that are stable
but not strongly stable. On the other hand the standard
theory of these equations (Hale and Lunel, 1993) is
based on the strong stability assumption. Therefore
relaxation of this assumption is another urgent task.
Finally, development of the qualitative theory to in-
clude the case of persistent perturbations (dissipative-
ness) and stability of the forced oscillations is also
of obvious interest. The authors consider these asser-
tions as underlying a genuine research program since
the considered model of this paper applies to other
fields also.
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